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PBW BASES AND MARGINALLY LARGE TABLEAUX IN TYPE D

BEN SALISBURY, ADAM SCHULTZE, AND PETER TINGLEY

Abstract. We give an explicit description of the unique crystal isomorphism between
two realizations of B(∞) in type D: that using marginally large tableaux and that
using PBW monomials with respect to one particularly nice reduced expression of the
longest word.

1. Introduction

For any symmetrizable Kac-Moody algebra, the crystal B(∞) is a combinatorial
object that contains information about the corresponding universal enveloping algebra
and its integrable highest weight representations. Kashiwara’s definition of B(∞) uses
some intricate algebraic constructions, but it can often be realized in quite simple ways.
We consider two such realizations.

(1) The construction using marginally large tableaux from [6].
(2) The recent construction using bracketing rules on Kostant partitions from [12],

which is naturally identified with the algebraic crystal structure on PBW mono-
mials for one particularly nice reduced expression of w0.

We give an explicit description of the unique crystal isomorphism between these two
realizations (see Theorem 3.1). This is a type D analogue of a type A result that can
be found in [3], although the type D situation is a little different. Most notably, the
isomorphism is not as “local:” in type A, the map from tableaux to Kostant partitions
simply maps each box in the tableau to a root, but in type D one must consider multiple
boxes at once. In the final section we give a diagrammatic description of Kostant
partitions and the crystal operators on them which mimics the diagrams implicit from
the multisegment picture in type A [3, 7, 9, 13].

2. Background

Let g be the Lie algebra of type Dn with Cartan matrix and Dynkin diagram

A = (aij) =








2 −1 0 ··· 0 0 0
−1 2 −1 ··· 0 0 0
0 −1 2 ··· 0 0 0

. . .
0 0 0 ··· 2 −1 −1
0 0 0 ··· −1 2 0
0 0 0 ··· −1 0 2








,
α1 α2 αn−2

αn−1

αn

· · ·

.

Let {α1, . . . , αn} be the simple roots and {α∨
1 , . . . , α

∨
n} the simple coroots, related by

the inner product 〈α∨
j , αi〉 = aij . Define the fundamental weights {ω1, . . . , ωn} by

〈α∨
i , ωj〉 = δij . Then the weight lattice is P = Zω1 ⊕ · · · ⊕Zωn and the coweight lattice
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βi,k = αi + · · ·+ αk, 1 ≤ i ≤ k ≤ n− 1

γi,k = αi + · · ·+ αn−2 + αn + αn−1 + · · ·+ αk, 1 ≤ i < k ≤ n

βi,k = ǫi − ǫk+1, 1 ≤ i ≤ k ≤ n− 1

γi,k = ǫi + ǫk, 1 ≤ i < k ≤ n

Table 2.1. Positive roots of type Dn, expressed both as a linear com-
bination of simple roots and in the canonical realization following [2].

is P∨ = Zα∨
1 ⊕ · · · ⊕ Zα∨

n . The Cartan subalgebra h is given by C⊗Z P∨. Also, let Φ
denote the roots associated to g, with the set of positive roots denoted Φ+. The list of
positive roots is given in Table 2.1.

Let B(∞) be the infinity crystal associated to g as defined in [8]. This is a countable
set along with operators ei and fi which roughly correspond to the Chevalley generators
of g. We don’t need the details of the definition of B(∞), as we just consider two
explicitly defined ways to realize it.

2.1. Type D marginally large tableaux.

Definition 2.1. A marginally large tableau of type Dn is an n− 1 row tableau on the
alphabet

J(Dn) :=

{

1 ≺ · · · ≺ n− 1 ≺
n

n
≺ n− 1 ≺ · · · ≺ 1

}

which satisfies the following conditions.

(1) The first column has entries 1, 2, . . . , n− 1 in that order.
(2) Entries weakly increase along rows.
(3) The number of i-boxes in the ith row is exactly one more than the total number

of boxes in the (i+ 1)st row. We call this condition “marginal largeness.”
(4) Every entry in the ith row is � ı.
(5) The entries n and n do not appear in the same row.

Denote by T (∞) the set of marginally large tableaux.

Example 2.2. In type D4, the elements of T (∞) all have the form

T =
1 1 · · · 1 1 · · · 1 1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1 1 2 · · · 2 3 · · · 3 x1 · · · x1 3 · · · 3 2 · · · 2 1 · · · 1

2 2 · · · 2 2 · · · 2 2 3 · · · 3 x2 · · · x2 3 · · · 3 2 · · · 2

3 x3 · · · x3 3 · · · 3

,

where xi ∈ {4, 4} for each i = 1, 2, 3. We typically shade the i-boxes in row i, as these
are basically placeholders. In particular, the unique element of weight zero is

T∞ =
1 1 1
2 2
3

.

Definition 2.3. Fix a type Dn marginally large tableau. The reading word read(T ) is
obtained by reading right to left along rows, starting at the top and working down.
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1 · · · n− 1

n

n

n− 1 · · · 1
1 n − 2

n
−

1

n

n

n
−

1

n − 2 1

Figure 2.1. The fundamental crystal of type Dn.

Definition 2.4. For each 1 ≤ i ≤ n, the bracketing sequence bri(T ) is the sequence
obtained by placing a ‘)’ under each letter for which there is an i-colored arrow entering
the corresponding box in Figure 2.1, and a ‘(’ under each letter for which there is an
i-colored arrow leaving the corresponding box. Sequentially cancel all ()-pairs to obtain
a sequence of the form ) · · · )(· · · (. The remaining brackets are called uncanceled.

Definition 2.5. Let T ∈ T (∞) and i ∈ I.

(1) Let x be the letter in T corresponding to the rightmost uncanceled ‘)’ in bri(T ).
Then eiT is the tableau obtained from T by replacing the box containing x by
the box containing the letter at the other end of the i-arrow from x in Figure 2.1.
If the result is not marginally large, then delete exactly one column containing
the elements 1, . . . , i so that the result is marginally large. If no such ‘)‘ exists,
then define eiT = 0.

(2) Let y be the letter in T corresponding to the leftmost uncanceled ‘(’ in bri(T ).
Then fiT is the tableau obtained from T by replacing the box containing y by
the box containing the letter at the other end of the i-arrow from y in Figure 2.1.
If the result is not marginally large, then insert exactly one column containing
the elements 1, . . . , i so that the result is marginally large.

Example 2.6. Consider D4 and

T =
1 1 1 1 1 1 1 1 1 2 2 3 1 1 1
2 2 2 2 3 4 3 3
3 4 3

.

To calculate e4 and f4, the relevant arrows from Figure 2.1 are

3 4 4 3
4 4

Thus each 3 and 4 will contribute ‘(’, each 4 and 3 will contribute ‘)’, and all other
letters will contribute nothing. The reading word and bracketing sequence are

read(T ) = 1 1 1 3 2 2 1 1 1 1 1 1 1 1 1 3 3 4 3 2 2 2 2 3 4 3

br4(T ) = ) ) ) ) ( ) ) (.

The rightmost uncanceled ‘)’ is the one shown in blue, so e4 changes the corresponding
4-box in the third row to a 3-box. To maintain marginal largeness, we must also slide
the first row one unit to the left so that we have exactly one more 3-box in the third
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row than total number of boxes in the (empty) fourth row:

e4T =
1 1 1 1 1 1 1 1 2 2 3 1 1 1
2 2 2 3 4 3 3
3 3

.

Similarly,

f4T =
1 1 1 1 1 1 1 1 1 1 2 2 3 1 1 1
2 2 2 2 2 3 4 3 3
3 4 4 3

.

We are using the so-called middle-Eastern reading, as defined in [5]. This differs from
the original definition of the signature rule for element of T (∞) given in [6] which uses
the far-Eastern reading. However, the resulting operators are identical.

Proposition 2.7. The operators ei and fi on T (∞) defined using the far-Eastern read-
ing and the middle-Eastern reading, respectively, are identical.

Proof. Fix T ∈ T (∞) and let cij be the number of j-boxes in row i of T . First assume
1 ≤ i ≤ n− 2. Then all brackets used in calculating fi come from rows 1, . . . , i+1. The
brackets corresponding to unshaded boxes come in exactly the same order for the two
readings. Thus the only difference between the two bracket orders is at the right end of
the sequence, where one has:

far-Eastern: · · · (ci,i−ci+1,i+1+cι+1,i+1() · · · ()
︸ ︷︷ ︸

ci+1,i+1

,

middle-Eastern: · · · (ci,i(cı+1,i+1)ci+1,i+1 .

(2.8)

Since ci,i > ci+1,i+1, the portions shown each have no uncanceled, ‘),’ and they have
the same number of uncanceled ‘(,’ with the first uncanceled ‘(’ corresponding to a
shaded i. It follows that the first uncanceled bracket of each type in the two sequences
corresponds to a box of the same type (i.e., same content and on same row). Clearly
both rules always apply fi to the leftmost box of a given type, and ei to the rightmost,
so the two rules agree.

The argument for i = n − 1, n is similar, and in fact simpler, since the only shaded
boxes that are relevant are the shaded n− 1.

Remark 2.9. Unlike in type A, the operators on finite type D tableaux using these
two readings are different. They only agree for marginally large tableaux.

Since the shaded boxes of a marginally large tableau are merely placeholders, we
sometimes omit them. For a tableau T , consider the reduced form of T , which is obtained
by removing all shaded boxes and sliding the rows so that the result is left-justified.
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Example 2.10. Continuing Example 2.6, we can picture the crystal graph around T

using tableaux in reduced form.

2 2 3 1 1 1
3 4 3 3
4 3

2 3 1 1 1
3 4 3 3
4 3

2 2 3 1 1 1
3 4 4 3
4 3

2 2 3 1 1 1
3 4 3 3
3

2 2 2 3 1 1 1
3 4 3 3
4 3

2 2 2 1 1 1
3 4 3 3
4 3

2 2 3 1 1 1
3 3 3 3
4 3

2 2 3 1 1 1
3 4 3 3
4 4 3

1 3 4

1 2 3 4

2.2. Crystal structure on Kostant partitions. Here we review the crystal structure
on Kostant partitions from [12]. As explained there, this is naturally identified with
the crystal structure on PBW monomials from, for example, [1, 10] for the reduced
expression

w0 = (s1s2 · · · sn−2sn−1snsn−2 · · · s1) · · · (sn−2sn−1snsn−2)sn−1sn.

Let R be the set of symbols {(β) : β ∈ Φ+}. Let Kp(∞) be the free Z≥0-span
of R. This is the set of Kostant partitions. We denote elements of Kp(∞) by α =
∑

(β)∈R cβ(β). If cβ 6= 0, we say that α is supported on β and that (β) is a part of α.

Definition 2.11. Consider the following subsets of positive roots depending on i ∈ I.

(1) For 1 ≤ i ≤ n− 1, define

Φi = {βk,i−1, βk,i : 1 ≤ k ≤ i} ∪ {γk,i, γk,i+1 : 1 ≤ k ≤ i− 1}

and order the roots in Φi by

β1,i < β1,i−1 < γ1,i < γ1,i+1 < · · · < βi−1,i < βi−1,i−1 < γi−1,i < γi−1,i+1 < βi,i.

(2) For i = n, define

Φn = {βk,n−2, βk,n−1 : 1 ≤ k ≤ n− 2} ∪ {γk,n−1, γk,n : 1 ≤ k ≤ n− 2} ∪ {γn−1,n}

and order the roots in Φn by

γ1,n < β1,n−2 < γ1,n−1 < β1,n−1 < · · ·

< γn−2,n < βn−2,n−2 < γn−2,n−1 < βn−2,n−1 < γn−1,n.

The bracketing sequence Si(α) consists of, for each β ∈ Φi, cβ-many ‘)’ if β − αi is a
positive root and cβ-many ‘(’ if β+αi is a positive root, ordered as above. Successively
cancel ()-pairs to obtain sequence of the form ) · · · )(· · · (. We call the remaining brackets
uncanceled.
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Definition 2.12. Let i ∈ I and α =
∑

(β)∈R

cβ(β) ∈ Kp(∞).

• Let β be the root corresponding to the rightmost uncanceled ‘)’ in Si(α). Define

eiα = α− (β) + (β − αi).

If β = αi, we interpret (0) as the additive identity in Kp(∞). If no such ‘)’
exists, then eiα is undefined.

• Let γ denote the root corresponding to the leftmost uncanceled ‘(’ in Si(α).
Define,

fiα = α− (γ) + (γ + αi).

If no such ‘(’ exists, set fiα = α+ (αi).

• wt(α) = −
∑

β∈Φ+

cββ.

• εi(α) = number of ‘)’ in the bracketing sequence of α.
• ϕi(α) = εi(α) + 〈α∨

i ,wt(α)〉.

Proposition 2.13 ([12]). With the operations defined above, Kp(∞) realizes B(∞).

Example 2.14. Let i = n = 4 and consider

α = 5(α1) + (α1 + α2 + α3 + α4) + 3(α1 + 2α2 + α3 + α4)

+ 2(α2 + α4) + (α2 + α3) + (α2 + α3 + α4) + (α3) + 2(α4).

Look at the coefficients cβ of α corresponding to β ∈ Φ4.

0γ1,4 0β1,2 γ1,3 0β1,3 2γ2,4 0β2,2 γ2,3 β2,3 2γ3,4
) )) ) ( ) )

Hence, e4α = α− (α4) + (0) = α− (α4) and f4α = α+ (α4).

3. The isomorphism

Theorem 3.1. The unique crystal isomorphism Ψ: T (∞) −→ Kp(∞) can be described
as follows. For a tableaux T ∈ T (∞), let R1, . . . , Rn−1 denote the rows of T starting at

the top. Set Ψ(T ) =
∑n−1

j=1 Ψ(Rj), where Ψ(Rj) is defined in the following way:

(1) if j 6= n− 1, each  is sent to (βj,j) + (γj,j+1);
(2) if j = n− 1, each  is sent to (βn−1,n−1) + (γn−1,n);

(3) each pair k, k, where k 6= n− 1, maps to (βj,k) + (γj,k+1);
(4) each pair n− 1, n − 1 maps to (βj,n−1) + (γj,n);
(5) each remaining k ∈ {j, j + 1, . . . , n} is sent to (βj,k−1);

(6) each remaining k ∈ {n, n− 1, . . . , + 1} is sent to (γj,k).

Example 3.2. Let n = 4 and

T =
1 1 1 1 1 1 1 1 1 2 2 3 1 1 1
2 2 2 2 3 4 3 3
3 4 3

.
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Then

Ψ(R1) = 3
(
(β1,1) + (γ1,2)

)
+ (γ1,3) + 2(β1,1),

Ψ(R2) =
(
(β2,3) + (γ2,4)

)
+ (γ2,3) + (β2,4),

Ψ(R3) =
(
(β3,3) + (γ3,4)

)
+ (γ3,4),

so

Ψ(T ) = 5(β1,1) + (γ1,3) + 3(γ1,2) + 2(γ2,4) + (β2,3) + (γ2,3) + (β3,3) + 2(γ3,4).

Compare with Example 2.14.

The proof of Theorem 3.1 will occupy the rest of this section. Denote by eTi and fT
i

the Kashiwara operators on T (∞) from Definition 2.5, and by e
Kp
i and f

Kp
i those on

Kp(∞) from Definition 2.12.

Lemma 3.3. Fix i ∈ I and a row index j. Let T ∈ T (∞) be such that the only unshaded
boxes appearing in T occur in row j. Then bri(T ) and Si(Ψ(T )) have the same number
of uncanceled brackets (both left and right). Furthermore, if bri(T ) has an uncanceled

left bracket, then f
Kp
i Ψ(T ) = Ψ(fT

i T ).

Proof. First consider i ∈ {1, . . . , n− 1}. We are only interested in entries i, i+ 1, ı+ 1,
and ı, along with pairs i−1, ı− 1, since these are the only entries that result in brackets
in bri(T ) or in Si(Ψ(T )).

First consider a pair i− 1 and ı− 1: This corresponds to no brackets in bri(T ), and
to (βj,i−1), (γj,i) in Ψ(T ), which gives a canceling pair of brackets in Si(Ψ(T ). So the
statement is true for T if and only if it is true tor the tableau with this pair removed.
Thus we can assume T has no such pairs.

Assume row j of T has p boxes of ı+ 1, q of i+ 1, r of i, s of ı:

Rj = i · · · i i+ 1 · · · i+ 1 · · · ı+ 1 · · · ı+ 1 ı · · · ı
︸ ︷︷ ︸

r

︸ ︷︷ ︸

q

︸ ︷︷ ︸

p

︸ ︷︷ ︸

s

.

We consider four cases.
Case 1: p > q and r > s. Then

Ψ(Rj) = (r − s)(βj,i−1) + s(βj,i) + q(βj,i+1) + q(γj,i+2) + (s+ p− q)(γj,i+1)

and

fT
i (Rj) = i · · · i i+ 1 · · · i+ 1 · · · ı+ 1 · · · ı+ 1 ı · · · ı

︸ ︷︷ ︸

r

︸ ︷︷ ︸

q

︸ ︷︷ ︸

p−1
︸ ︷︷ ︸

s+1

giving

f
Kp
i Ψ(Rj)

= (r − s− 1)(βj,i−1) + (s+ 1)(βj,i) + q(βj,i+1) + q(γj,i+2) + (s+ p− q)(γj,i+1)

= Ψ(fT
i Rj).

Furthermore

bri(Rj) = )s (p )q (r and Si

(
Ψ(Rj)

)
= )s (r−s (s+p−q,

so both bri(Rj) and Si(Ψ(T )) have s uncanceled ‘)’ and r + p− q uncanceled ‘(.’
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Case 2: p > q and r ≤ s. Then

Ψ(Rj) = r(βj,i) + q(βj,i+1) + q(γj,i+2) + (r + p− q)(γj,i+1) + (s− r)(γj,i)

and

fT
i (Rj) = i · · · i i+ 1 · · · i+ 1 · · · ı+ 1 · · · ı+ 1 ı · · · ı

︸ ︷︷ ︸

r

︸ ︷︷ ︸

q

︸ ︷︷ ︸

p−1
︸ ︷︷ ︸

s+1

giving

f
Kp
i Ψ(Rj)

= r(βj,i) + q(βj,i+1) + q(γj,i+2) + (r + p− q − 1)(γj,i+1) + (s− r + 1)(γj,i)

= Ψ(fT
i Rj).

Again, both bri(Rj) and Si(Ψ(T )) have s uncanceled ‘)’ and r + p− q uncanceled ‘(.’
Case 3: p ≤ q and r > s.

Ψ(Rj) = (r − s)(βj,i−1) + (q − p+ s)(βj,i) + p(βj,i+1) + p(γj,i+2) + s(γj,i+1)

and

fT
i (Rj) = i · · · i i+ 1 · · · i+ 1 · · · ı+ 1 · · · ı+ 1 ı · · · ı

︸ ︷︷ ︸

r−1
︸ ︷︷ ︸

q+1
︸ ︷︷ ︸

p

︸ ︷︷ ︸

s

giving

f
Kp
i Ψ(Rj)

= (r − s− 1)(βj,i−1) + (q − p+ s+ 1)(βj,i) + p(βj,i+1) + p(γj,i+2) + s(γj,i+1)

= Ψ(fT
i Rj).

Both bri(Rj) and Si(Ψ(T )) have s+ q − p uncanceled ‘)’ and r uncanceled ‘(.’
Case 4: p ≤ q and r ≤ s. Then

Ψ(Rj) = (q − p+ r)(βj,i) + p(βj,i+1) + p(γj,i+2) + r(γj,i+1) + (s − r)(γj,i)

and

fT
i (Rj) = i · · · i i+ 1 · · · i+ 1 · · · ı+ 1 · · · ı+ 1 ı · · · ı

︸ ︷︷ ︸

r−1
︸ ︷︷ ︸

q+1
︸ ︷︷ ︸

p

︸ ︷︷ ︸

s

giving

f
Kp
i Ψ(Rj)

= (q − p+ r)(βj,i) + p(βj,i+1) + p(γj,i+2) + (r − 1)(γj,i+1) + (s− r + 1)(γj,i)

= Ψ(fT
i Rj).

Again both bri(Rj) and Si(Ψ(T )) have s+ q − p uncanceled ‘)’ and r uncanceled ‘(.’
The i = n − 1 case follows by the same argument, except there will never be both

i + 1 and ı+ 1 in the same row, so either p or q will be zero. The i = n case follows
from the i = n− 1 case using the Dynkin automorphism exchanging n− 1 and n, which
has the effect on tableau of interchanging the symbols n̄ and n. (See Figure 2.1.)
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Example 3.4. Consider type D4 and i = 2, and the tableau

T =
1 1 1 2 2 3 4 3 1 1
2 2
3

.

Then the reading word and bracketing sequence are

1 1 3 4 3 2 2 1 1 1 2 2 3
br2(T ) = ( ) ( ( ( ( )

so

fT
2 T =

1 1 1 2 3 3 4 3 1 1
2 2
3

Direct calculation gives

Ψ(T ) = 2
(
(β1,1) + (γ1,2)

)
+
(
(β1,3) + (γ1,4)

)
+ 2(β1,1) + (β1,3)

= 4(β1,1) + 2(β1,3) + (γ1,4) + 2(γ1,2)

and

Ψ(fT
2 T ) = 2

(
(β1,1) + (γ1,2)

)
+
(
(β1,3) + (γ1,4)

)
+ (β1,1) + (β1,2) + (β1,3)

= 3(β1,1) + (β1,2) + 2(β1,3) + (γ1,4) + 2(γ1,2).

The bracketing sequence on Kostant partitions is

0β1,2 4β1,1 2γ1,2 0γ1,3 0β2,2,

S2(Ψ(T )) = (( (( ))

so f
Kp
2 (Ψ(T )) = Ψ(T )− (β1,1) + (β1,1 + α2). Since (β1,1 + α2) = (β1,2) this agrees with

Ψ(f2(T ).

Proof of Theorem 3.1. If suffices to show that, for all i, fT
i Ψ(T ) = Ψ(fKp

i T ). By the
definition of the bracketing sequences and of Ψ we have

bri(T ) factors as bri(R1)bri(R2) · · · bri(Rn−1), and

Si(Ψ(T )) factors as Si

(
Ψ(R1)

)
Si

(
Ψ(R2)

)
· · ·Si

(
Ψ(Rn−1)

)
.

By Lemma 3.3, each bri(Rt) has the same number of uncanceled brackets as each
Si(Ψ(Rt)). Hence the first uncanceled ‘(’ in bri(T ) and in Si(Ψ(T )) occur in the same

factor, say from row Rj. But then, also by Lemma 3.3, fT
i Ψ(Rj) = Ψ(fKp

i Rj), so in

fact fT
i Ψ(T ) = Ψ(fKp

i T ).

4. Stack notation

As mentioned in the introduction, this work is a type D analogue of a type A result
found in [3]. That type A result may be described within the framework of multiseg-
ments [7, 9, 13], which have the advantage of a convenient diagrammatic notation which
makes the crystal structure apparent. By analogy, one may introduce a stack notation
for Kostant partitions in type D in which the crystal structure may be read off easily.
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Make the association,

βi,k =

k
...

i

, γj,ℓ =

ℓ+1
...

n−2
n−1 n
n−2
...

j

,

where 1 ≤ i ≤ k ≤ n − 1 and 1 ≤ j < ℓ ≤ n. Given i ∈ I, the set Φi from Definition
2.11 is the set of roots for which i may be either added or removed from the top of the
stack to obtain a stack for another root. If i 6= n, the order imposed on Φi in Definition
2.11 is

i
...

1

<

i−1
...

1

<

i
...

n−2
n−1 n
n−2
...

1

<

i+1
...

n−2
n−1 n
n−2
...

1

< · · · < i
i−1 < i− 1 <

i
...

n−2
n−1 n
n−2
...

i−1

<

i+1
...

n−2
n−1 n
n−2
...

i−1

< i.

If i = n, then the order on Φn may be depicted as

n
n−2
...

1

<

n−2
...

1

<

n−1 n
n−2
...

1

<

n−1
n−2
...

1

< · · · < n
n−2 < n−2 < n−1 n

n−2 < n−1
n−2 < n.

The brackets in Si(α) correspond to the stacks, and the crystal operators from Definition
2.12 act by adding or removing i from the top of an appropriate stack: fi adds i to the
top of the stack corresponding to the leftmost uncanceled ‘(’.

Example 4.1. The Kostant partition from Example 2.14 may be written as

α = 1 1 1 1 1
3 4
2
1

2
3 4
2
1

2
3 4
2
1

2
3 4
2
1

4
2

4
2

3
2

3 4
2 3 4 4 .

The support of α in Φ4, in order, is

3 4
2
1

4
2

4
2

3 4
2

3
2 4 4

S4(α) = ) ) ) ) ( ) ) ,

so

f4α = 1 1 1 1 1
3 4
2
1

2
3 4
2
1

2
3 4
2
1

2
3 4
2
1

4
2

4
2

3
2

3 4
2 3 4 4 4 .
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