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HOW OFTEN DOES THE BEST TEAM WIN? A UNIFIED
APPROACH TO UNDERSTANDING RANDOMNESS

IN NORTH AMERICAN SPORT

BY MICHAEL J. LOPEZ, GREGORY J. MATTHEWS AND

BENJAMIN S. BAUMER

Skidmore College, Loyola University Chicago and Smith College

Statistical applications in sports have long centered on how to best sep-
arate signal (e.g., team talent) from random noise. However, most of this
work has concentrated on a single sport, and the development of meaning-
ful cross-sport comparisons has been impeded by the difficulty of translat-
ing luck from one sport to another. In this manuscript we develop Bayesian
state-space models using betting market data that can be uniformly applied
across sporting organizations to better understand the role of randomness
in game outcomes. These models can be used to extract estimates of team
strength, the between-season, within-season and game-to-game variability of
team strengths, as well each team’s home advantage. We implement our ap-
proach across a decade of play in each of the National Football League (NFL),
National Hockey League (NHL), National Basketball Association (NBA) and
Major League Baseball (MLB), finding that the NBA demonstrates both the
largest dispersion in talent and the largest home advantage, while the NHL
and MLB stand out for their relative randomness in game outcomes. We con-
clude by proposing new metrics for judging competitiveness across sports
leagues, both within the regular season and using traditional postseason tour-
nament formats. Although we focus on sports, we discuss a number of other
situations in which our generalizable models might be usefully applied.

1. Introduction. Most observers of sport can agree that game outcomes are to
some extent subject to chance. The line drive that miraculously finds the fielder’s
glove, the fumble that bounces harmlessly out-of-bounds, the puck that ricochets
into the net off of an opponent’s skate or the referee’s whistle on a clean block can
all mean the difference between winning and losing. Yet game outcomes are not
completely random—there are teams that consistently play better or worse than the
average team. To what extent does luck influence our perceptions of team strength
over time?

One way in which statistics can lead this discussion lies in the untangling of
signal and noise when comparing the caliber of each league’s teams. For exam-
ple, is team i better than team j? And if so, how confident are we in making this
claim? Central to such an understanding of sporting outcomes is that if we know
each team’s relative strength, then, a priori, game outcomes—including wins and
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losses—can be viewed as unobserved realizations of random variables. As a simple
example, if the probability that team i beats team j at time k is 0.75, this implies
that in a hypothetical infinite number of games between the two teams at time k,
i wins three times as often as j . Unfortunately, in practice team i will typically
only play team j once at time k. Thus, game outcomes alone are unlikely to pro-
vide enough information to precisely estimate true probabilities and, in turn, team
strengths.

Given both national public interest and an academic curiosity that has extended
across disciplines, many innovative techniques have been developed to estimate
team strength. These approaches typically blend past game scores with game, team
and player characteristics in a statistical model. Corresponding estimates of talent
are often checked or calibrated by comparing out-of-sample estimated probabili-
ties of wins and losses to observed outcomes. Such exercises do more than drive
water-cooler conversation as to which team may be better. Indeed, estimating team
rankings has driven the development of advanced statistical models [Bradley and
Terry (1952), Glickman and Stern (1998)] and occasionally played a role in the
decision of which teams are eligible for continued postseason play [CFP (2014)].

However, because randomness manifests differently in different sports, a limita-
tion of sport-specific models is that inferences cannot generally be applied to other
competitions. As a result researchers who hope to contrast one league to another
often focus on the one outcome common to all sports, won–loss ratio. Among other
flaws measuring team strength using wins and losses performs poorly in a small
sample size, ignores the game’s final score (which is known to be more predictive
of future performance than won–loss ratio [Boulier and Stekler (2003)]) and is un-
duly impacted by, among other sources, fluctuations in league scheduling, injury to
key players and the general advantage of playing at home. In particular variations
in season length between sports—NFL teams play 16 regular season games each
year, NHL and NBA teams play 82, while MLB teams play 162—could invalidate
direct comparisons of win percentages alone. As an example, the highest annual
team winning percentage is roughly 87% in the NFL but only 61% in MLB, and
part (but not all) of that difference is undoubtedly tied to the shorter NFL regu-
lar season. As a result, until now, analysts and fans have never quite been able
to quantify inherent differences between sports or sports leagues with respect to
randomness and the dispersion and evolution of team strength. We aim to fill this
void.

In the sections that follow we present a unified and novel framework for the
simultaneous comparison of sporting leagues, which we implement to discover in-
herent differences in North American sport. First, we validate an assumption that
game-level probabilities provided by betting markets provide unbiased and low-
variance estimates of the true probabilities of wins and losses in each professional
contest. Second, we extend Bayesian state-space models for paired comparisons
[Glickman and Stern (1998)] to multiple domains. These models use the game-
level betting market probabilities to capture implied team strength and variability.
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Finally, we present unique league-level properties that to this point have been dif-
ficult to capture, and we use the estimated posterior distributions of team strengths
to propose novel metrics for assessing league parity, both for the regular season
and postseason. We find that, on account of both narrower distributions of team
strengths and smaller home advantages, a typical contest in the NHL or MLB is
much closer to a coin flip than one in the NBA or NFL.

1.1. Literature review. The importance of quantifying team strength in com-
petition extends across disciplines. This includes contrasting league-level char-
acteristics in economics [Leeds and Von Allmen (2004)], estimating game-level
probabilities in statistics [Glickman and Stern (1998)] and classifying future game
winners in forecasting [Boulier and Stekler (2003)]. We discuss and synthesize
these ideas below.

1.1.1. Competitive balance. Assessing the competitive balance of sports
leagues is particularly important in economics and management [Leeds and Von
Allmen (2004)]. While competitive balance can purportedly measure several dif-
ferent quantities, in general it refers to levels of equivalence between teams. This
could be equivalence within one time frame (e.g., how similar was the distribution
of talent within a season?), between time frames (e.g., year-to-year variations in
talent) or from the beginning of a time frame until the end (e.g., the likelihood of
each team winning a championship at the start of a season).

The most widely accepted within-season competitive balance measure is Noll–
Scully [Noll (1991), Scully (1989)]. It is computed as the ratio of the observed
standard deviation in team win totals to the idealized standard deviation, which
is defined as that which would have been observed due to chance alone if each
team were equal in talent. Larger Noll–Scully values are believed to reflect greater
imbalance in team strengths.

While Noll–Scully has the positive quality of allowing for interpretable cross-
sport comparisons, a reliance on won–loss outcomes entails undesirable proper-
ties as well [Owen (2010), Owen and King (2015)]. For example, Noll–Scully
increases, on average, with the number of games played [Owen and King (2015)],
hindering any comparisons of the NFL (16 games) to MLB (162), for example.
Additionally, each of the leagues employ some form of an unbalanced schedule.
Teams in each of MLB, the NBA, NFL and NHL play intradivisional opponents
more often than interdivisional ones and intraconference opponents more often
than interconference ones, meaning that one team’s won–loss record may not be
comparable to another team’s due to differences in the respective strengths of their
opponents [Lenten (2015)]. Moreover, the NFL structures each season’s schedule
so that teams play interdivisional games against opponents that finished with the
same division rank in the standings in the prior year. In expectation, this punishes
teams that finish atop standings with tougher games, potentially driving winning
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percentages toward 0.500. Unsurprisingly, unbalanced scheduling and interconfer-
ence play can lead to imprecise competitive balance metrics derived from winning
percentages [Utt and Fort (2002)]. As one final weakness, varying home advan-
tages between sports leagues, as shown in Moskowitz and Wertheim (2011), could
also impact comparisons of relative team quality that are predicated on wins and
losses.

Although metrics for league-level comparisons have been frequently debated,
the importance of competitive balance in sports is more uniformly accepted, in
large part due to the uncertainty of outcome hypothesis [Knowles, Sherony and
Haupert (1992), Rottenberg (1956), Lee and Fort (2008)]. Under this hypothesis
league success—as judged by attendance, engagement and television revenue—
correlates positively with teams having equal chances of winning. Outcome uncer-
tainty is generally considered on a game-level basis but can also extend to season-
level success (i.e., teams having equivalent chances at making the postseason). As
a result it is in each league’s best interest to promote some level of parity—in
short, a narrower distribution of team quality—to maximize revenue [Crooker and
Fenn (2007)]. Related, the Hirfindahl–Hirschman Index [Owen, Ryan and Weath-
erston (2007)] and Competitive Balance Ratio [Humphreys (2002)] are two met-
rics attempting to quantify the relative chances of success that teams have within
or between certain time frames.

1.1.2. Approaches to estimating team strength. Competitive balance and out-
come uncertainty are rough proxies for understanding the distribution of talent
among teams. For example, when two teams of equal talent play a game without a
home advantage, outcome uncertainty is maximized; for example, the outcome of
the game is equivalent to a coin flip. These relative comparisons of team strength
began in statistics with paired comparison models, which are generally defined as
those designed to calibrate the equivalence of two entities. In the case of sports the
entities are teams or individual athletes.

The Bradley–Terry model (BTM, Bradley and Terry (1952)) is considered to be
the first detailed paired comparison model and the rough equivalent of the soon
thereafter developed Elo rankings [Elo (1978), Glickman (1995)]. Consider an ex-
periment with t treatment levels compared in pairs. BTM assumes that there is
some true ordering of the probabilities of efficacy, π1, . . . , πt , with the constraints
that

∑t
i=1 πi = 1 and πi ≥ 0 for i = 1, . . . , t . When comparing treatment i to treat-

ment j , the probability that treatment i is preferable to j (i.e., a win in a sports
setting) is computed as πi

πi+πj
.

Glickman and Stern (1998) and Glickman and Stern (2016) build on the BTM
by allowing team-strength estimates to vary over time through the modeling of
point differential in the NFL, which is assumed to follow an approximately normal
distribution. Let y(s,k)ij be the point differential of a game during week k of season
s between teams i and j . In this specification i and j take on values between 1
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and t , where t is the number of teams in the league. Let θ(s,k)i and θ(s,k)j be the
strengths of teams i and j , respectively, in season s during week k, and let αi be the
home advantage parameter for team i for i = 1, . . . , t . Glickman and Stern (1998)
assume that for a game played at the home of team i during week k in season s,

E[y(s,k)ij |θ(s,k)i, θ(s,k)j , αi] = θ(s,k)i − θ(s,k)j + αi,

where E[y(s,k)ij |θ(s,k)i, θ(s,k)j , αi] is the expected point differential given i and j ’s
team strengths and the home advantage of team i.

The model of Glickman and Stern (1998) allows for team strength parameters
to vary stochastically in two distinct ways: from the last week of season s to the
first week of season s + 1, and from week k of season s to week k + 1 of season s.
As such, it is termed a “state-space” model, whereby the data is a function of an
underlying time-varying process plus additional noise.

Glickman and Stern (1998) propose an autoregressive process to model team
strengths, whereby, over time, these parameters are pulled toward the league aver-
age. Under this specification past and future season performances are incorporated
into season-specific estimates of team quality. Perhaps as a result, Koopmeiners
(2012) identifies better fits when comparing state-space models to BTM’s fit sepa-
rately within each season. Additionally, unlike BTM’s, state-space models would
not typically suffer from identifiability problems were a team to win or lose all of
its games in a single season (a rare, but extant possibility in the NFL).1 For addi-
tional and related state-space resources, see Fahrmeir and Tutz (1994), Knorr-Held
(2000), Cattelan, Varin and Firth (2013), Baker and McHale (2015) and Manner
(2016). Additionally, Matthews (2005), Owen (2011), Koopmeiners (2012), Tutz
and Schauberger (2015) and Wolfson, Koopmeiners and DiLernia (2018) imple-
ment related versions of the original BTM.

Although the state-space model summarized above appears to work well in the
NFL, a few issues arise when extending it to other leagues. First, with point dif-
ferential as a game-level outcome, parameter estimates would be sensitive to the
relative amount of scoring in each sport. Thus, comparisons of the NHL and MLB
(where games, on average, are decided by a few goals or runs) to the NBA and NFL
(where games, on average, are decided by about 10 points) would require further
scaling. Second, a normal model of goal or run differential would be inappropri-
ate in low scoring sports like hockey or baseball, where scoring outcomes follow
a Poisson process [Mullet (1977), Thomas (2007)]. Finally, NHL game outcomes
would entail an extra complication, as roughly 25% of regular season games are
decided in overtime or a shootout.

In place of paired comparison models, alternative measures for estimating team
strength have also been developed. Massey (1997) used maximum likelihood esti-
mation and American football outcomes to develop an eponymous rating system.

1In the NFL, the 2007 New England Patriots won all of their regular season games, while the 2008
Detroit Lions lost all of their regular season games.
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A more general summary of other rating systems for forecasting use is explored
by Boulier and Stekler (2003). In addition support vector machines and simulation
models have been proposed in hockey [Demers (2015), Buttrey (2016)], neural net-
works and naïve Bayes implemented in basketball [Loeffelholz, Bednar and Bauer
(2009), Miljković et al. (2010)], linear models and probit regressions in football
[Harville (1980), Boulier and Stekler (2003)] and two-stage Bayesian models in
baseball [Yang and Swartz (2004)]. While this is a nonexhaustive list, it speaks to
the depth and variety of coverage that sports prediction models have generated.

1.2. Betting market probabilities. In many instances researchers derive esti-
mates of team strength in order to predict game-level probabilities. Betting market
information has long been recommended to judge the accuracy of these probabil-
ities [Harville (1980), Stern (1991)]. Before each contest sports books—including
those in Las Vegas and in overseas markets—provide a price for each team, more
commonly known as the money line.

Mathematically, if team i’s money line is �i against team j (with corresponding
money line �j ), where |�i | ≥ 100, then the boundary win probability for that team,
pi(�i), is given by:

pi(�i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

100

100 + �i

if �i ≥ 100,

|�i |
100 + |�i | if �i ≤ −100.

The boundary win probability represents the threshold at which point betting on
team i would be profitable in the long run.

As an example suppose the Chicago Cubs were favored (�i = −127 on the
money line) to beat the Arizona Diamondbacks (�j = 117). The boundary win
probability for the Cubs would be pi(−127) = 0.559; for the Diamondbacks,
pj (117) = 0.461. Boundary win probabilities sum to greater than one by an
amount collected by the sportsbook as profit (known colloquially as the “vig” or
“vigorish”). However, it is straightforward to normalize boundary probabilities to
sum to unity to estimate pij , the implied probability of i defeating j :

(1) pij = pi(�i)

pi(�i) + pj (�j )
.

In our example dividing each boundary probability by 1.02 = (0.559 + 0.461)

implies win probabilities of 54.8% for the Cubs and 45.2% for the Diamondbacks.
In principle money line prices account for all determinants of game outcomes

known to the public prior to the game, including team strength, location and in-
juries. Across time and sporting leagues researchers have identified that it is dif-
ficult to estimate win probabilities that are more accurate than the market; that
is, the betting markets are efficient. As an incomplete list, see Carlin (1996),
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Colquitt, Godwin and Caudill (2001), Gandar et al. (1988), Harville (1980), Lacey
(1990), Lopez and Matthews (2015), Nichols (2012), Paul and Weinbach (2014),
Spann and Skiera (2009), Stern (1991). Interestingly, Colquitt, Godwin and Caudill
(2001) suggested that the efficiency of college basketball markets was proportional
to the amount of pregame information available—with the amount known about
professional sports teams, this would suggest that markets in the NFL, NBA, NHL
and MLB are as efficient as they come. Manner (2016) merged predictions from a
state-space model with those from betting markets finding that the combination of
both predictions only occasionally outperformed betting markets alone.

We are not aware of any published findings that have compared leagues using
market probabilities. Given the varying within-sport metrics of judging team qual-
ity and the limited between-sport approaches that rely on wins and losses alone,
we aim to extend paired comparison models using money line information to better
capture relative team equivalence in a method that can be applied generally.

2. Validation of betting market data. We begin by confirming the accuracy
of betting market data with respect to game outcomes. Regular season game re-
sult and betting line data in the four major North American professional sports
leagues (MLB, NBA, NFL and NHL) were obtained for a nominal fee from Sports
Insights (https://www.sportsinsights.com). Although these game results are not of-
ficial, they are accurate and widely used. Our models were fit to data from the
2006–2016 seasons, except for the NFL, in which the 2016 season was not yet
completed.

These data were more than 99.3% complete in each league, in the sense that
there existed a valid betting line for nearly all games in these four sports across this
time period. Betting lines provided by Sports Insights are expressed as payouts,
which we subsequently convert into implied probabilities. The average vig in our
data set is 1.93%, but is always positive, resulting in revenue for the sportsbook
over a long run of games. In circumstances where more than one betting line was
available for a particular game, we included only the line closest to the start time
of the game. A summary of our data is shown in Table 1.

We also compared the observed probabilities of a home win to the correspond-
ing probabilities implied by our betting market data (Figure 1). In each of the four
sports, Hosmer–Lemeshow tests of an efficient market hypothesis using 10 equal-
sized bins of games did not show evidence of a lack of fit when comparing the
number of observed and expected wins in each bin. Thus, we find no evidence
to suggest that the probabilities implied by our betting market data are biased or
inaccurate—a conclusion that is supported by the body of academic literature ref-
erenced above. Accordingly, we interpret these probabilities as “true.”

3. Bayesian state-space model. Our model below expands the state-space
specification provided by Glickman and Stern (1998) to provide a unified frame-
work for contrasting the four major North American sports leagues.

https://www.sportsinsights.com
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TABLE 1
Summary of cross-sport data. tq is the number of unique teams in each sport q . ngames records the
number of actual games played, while nbets records the number of those games for which we have a
betting line. p̄games is the mean observed probability of a win for the home team, while p̄bets is the

mean implied probability of a home win based on the betting line. Note that we have near total
coverage (betting odds for almost every game) across all four major sports

Sport (q) tq ngames p̄games nbets p̄bets Coverage

MLB 30 26,728 0.541 26,710 0.548 0.999
NBA 30 13,290 0.595 13,245 0.615 0.997
NFL 32 2560 0.563 2542 0.589 0.993
NHL 30 13,020 0.548 12,990 0.565 0.998

Let p(q,s,k)ij be the probability that team i will beat team j in season s during
week k of sports league q , for q ∈ {MLB,NBA,NFL,NHL}. The p(q,s,k)ij ’s are
assumed to be known, calculated using sportsbook odds via Equation (1). In using
game probabilities we have a cross-sport outcome that provides more information
than only knowing which team won the game or what the score was.

In our notation, i, j = 1, . . . , tq , where tq is the number of teams in sport q such
that tMLB = tNBA = tNHL = 30 and tNFL = 32. Additionally, s = 1, . . . , Sq and k =
1, . . . ,Kq , where Sq and Kq are the number of seasons and weeks, respectively, in
league q . In our data, KNFL = 17, KNBA = 25, KMLB = KNHL = 28, with SNFL =
10 and SMLB = SNBA = SNHL = 11.

Our next step in building a model specifies the home advantage, and one imme-
diate hurdle is that in addition to having different numbers of teams in each league,
certain franchises may relocate from one city to another over time. In our data set
there were two relocations, Seattle to Oklahoma City (NBA, 2008) and Atlanta
to Winnipeg (NHL, 2011). Let αq0 be the league-wide home advantage (HA) in
league q , and let α(q)i� be the team-specific effect (positive or negative) for team i

among games played in city i�, for i� = 1, . . . , t�q . Here, t�q is the total number of
home cities; in our data t�MLB = 30, t�NBA = t�NHL = 31, and t�NFL = 32.

Letting θ(q,s,k)i and θ(q,s,k)j be season-week team strength parameters for teams
i and j , respectively, we assume that

E
[
logit(p(q,s,k)ij )|θ(q,s,k)i, θ(q,s,k)j , αq0, α(q)i�

]
= θ(q,s,k)i − θ(q,s,k)j + αq0 + α(q)i�,

where logit(·) is the log-odds transform. Note that θ(q,s,k)i and θ(q,s,k)j reflect ab-
solute measures of team strength and translate into each team’s probability of beat-
ing a league average team. We center team strength and individual home advantage
estimates about 0 to ensure that our model is identifiable (e.g.,

∑tq
i=1 θ(q,s,k)i = 0

for all q , s, k and
∑t�q

i�=1 α(q)i� = 0).
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FIG. 1. Accuracy of probabilities implied by betting markets. Each dot represents a bin of implied
probabilities rounded to the nearest hundredth. The size of each dot (N ) is proportional to the num-
ber of games that lie in that bin. We note that across all four major sports, the observed winning
percentages accord with those implied by the betting markets. The dotted diagonal line indicates a
completely fair market where probabilities from the betting markets correspond exactly to observed
outcomes. In each sport Hosmer–Lemeshow tests suggest that an efficient market hypothesis cannot
be rejected.

Let p(q,s,k) represent the vector of length g(q,s,k), the number of games in league
q during week k of season s, containing all of league q’s probabilities in week
k of season s. Our first model of game outcomes, henceforth referred to as the
individual home advantage model (Model IHA), assumes that

logit(p(q,s,k)) ∼ N
(
θ (q,s,k)X(q,s,k) + αq0Jg(q,s,k)

+αααqZ(q,s,k), σ
2
q,gameIg(q,s,k)

)
,

where θ (q,s,k) is a vector of length tq containing the team strength parameters in
season s during week k and αααq = {α(q)1, . . . , α(q)t�q

}. Note that αααq does not vary
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over time (i.e., HA is assumed to be constant for a team over weeks and seasons).
X(q,s,k) and Z(q,s,k) contain g(q,s,k) rows and tq and t�q columns, respectively. The
matrix X(q,s,k) contains the values {1,0,−1} where for a given row (i.e., one game)
the value of ith column in that row is a 1/−1 if the ith team played at home/away
in the given game and 0 otherwise. Z(q,s,k) is a matrix containing a 1 in column i�

if the corresponding game was played in city i� and 0 otherwise. Finally, σ 2
q,game

is the game-level variance, Jg(q,s,k)
is a column vector of length g(q,s,k) containing

all 1’s, and Ig(q,s,k)
is an identity matrix with dimension g(q,s,k) × g(q,s,k).

In addition we propose a simplified version of Model IHA, labeled as Model
CHA (constant home advantage), which assumes that the HA within each sport is
identical for each franchise, such that

logit(p(q,s,k)) ∼ N
(
θ (q,s,k)X(q,s,k) + αq0Jg(q,s,k)

, σ 2
q,gameIg(q,s,k)

)
.

In Model CHA, matrices p(q,s,k), X(q,s,k), Jg(q,s,k)
and Ig(q,s,k)

are specified identi-
cally to Model IHA. As a result for a game between home team i and away team
j during week k of season s, E[logit(p(q,s,k)ij )] = θ(q,s,k)i − θ(q,s,k)j + αq0 under
Model CHA.

Similar to Glickman and Stern (1998), we allow the strength parameters of the
teams to vary autoregressively from season-to-season and from week-to-week. In
general this entails that team strength parameters are shrunk toward the league
average over time in expectation. Formally,

θ(q,s+1,1)|θq,s,Kq , γq,season, σ
2
q,season ∼ N

(
γq,seasonθ (q,s,Kq), σ

2
q,seasonItq

)
for all s ∈ 1, . . . , Sq − 1, and

θ(q,s,k+1)|θ (q,s,k), γq,week, σ
2
q,week ∼ N

(
γq,weekθ (q,s,k), σ

2
q,weekItq

)
for all s ∈ 1, . . . , Sq , k ∈ 1, . . . ,Kq − 1.

In this specification γq,week is the autoregressive parameter from week-to-week,
γq,season is the autoregressive parameter from season-to-season and Itq is the iden-
tity matrix of dimension tq × tq .

Given the time-varying nature of our specification, all specifications use a
Bayesian approach to obtain model estimates. For sport q the team strength pa-
rameters for week k = 1 and season s = 1 have a prior distribution of

θ(q,1,1)i ∼ N
(
0, σ 2

q,season
)

for all i ∈ 1, . . . , tq .

Team-pecific home advantage parameters have a similar prior, namely,

α(q)i� ∼ N
(
0, σ 2

q,α

)
for i ∈ 1, . . . , t�q .

Finally, letting τ 2
q,game = 1/σ 2

q,game, τ 2
q,season = 1/σ 2

q,season, τ 2
q,week = 1/σ 2

q,week

and τ 2
q,α = 1/σ 2

q,α , we assume the following prior distributions [Gelman (2006)]:

τ 2
q,game ∼ Uniform(0,1000), αq0 ∼ N(0,10,000),
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τ 2
q,season ∼ Uniform(0,1000), γq,season ∼ Uniform(0,1),

τ 2
q,week ∼ Uniform(0,1000), γq,week ∼ Uniform(0,1.5),

τ 2
q,α ∼ Uniform(0,1000).

Note that we cap γq,week and γq,season at 1.5 and 1.0, respectively, corresponding
to prior beliefs in whether or not team strengths could explode within (unlikely,
but feasible) or between (highly unlikely) seasons.

One of our main interests lies in gauging the game-level equivalence of each
league’s teams; that is, how likely was it or will it be for each team to beat other
teams? In this respect we are interested in both looking backwards across time
(descriptive) as well as looking forwards (predictive). However, Models IHA and
CHA each blend outcomes from weeks prior to, during and after week k to estimate
team strength. While this is ideal for measuring league parity looking backwards,
it is less appropriate to make future game predictions. As such in each q for sea-
son Sq (the last season of our data), we fit a series of state-space models using
Model IHA done on a weekly basis (these are termed sequential fits, as opposed
to cumulative). Formally, for k = 2, . . . ,Kq in season Sq , we fit Model IHA only
on games during k or prior. Sequential fits can be used to provide a sense of the
predictive capability of our model.

Posterior distributions of each parameter are estimated using Markov chain
Monte Carlo (MCMC) methods. We use Gibbs sampling via the rjags package
[Plummer (2016)] in the R [R Core Team (2016)] statistical computing environ-
ment to obtain posterior distributions, separately for each q .2 Three chains—using
40,000 iterations after a burn-in of 4000 draws, fit with a thin of five —yield 8000
posterior samples in each q .3 Visual inspection of trace plots with parallel chains
are used to confirm convergence. To assess the underlying assumptions of Models
IHA and CHA, including our use of the logit transform on our probability out-
comes, we use posterior predictive distribution checks, as in Gelman et al. (2014).
Comparisons of Models IHA and CHA are made using the Deviance Information
Criterion (DIC, Spiegelhalter et al. (2002)) and by examining each model’s poste-
rior predictive distribution.

While we are unable to share the exact betting market data due to licens-
ing restrictions, a simplified version of our game-level data, the data wrangling
code, Gibbs sampling code, posterior draws and the code used to obtain pos-
terior estimates and figures are all posted to a GitHub repository, available at
https://github.com/bigfour/competitiveness.

4. Model assessment. We begin by validating and comparing the fits of Mod-
els IHA and CHA.

2Alternatively, we could have fit one model and pooled information across sports. Given the large
between-league differences in structure, we opt against this approach.

32000 iterations were used for sequential fits with a burn-in of 1000.

https://github.com/bigfour/competitiveness
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TABLE 2
Deviance information criterion (DIC) by sport and model, along with the difference in DIC and the
associated standard errors (SE, in parentheses). IHA, individual home advantage; CHA, constant

home advantage

Model IHA Model CHA Difference (SE)

MLB −8538 −8481 −56.8 (37.9)

NBA 6864 7188 −323.9 (40.5)

NFL 1135 1288 −153.2 (24.3)

NHL −18,294 −18,128 −165.8 (37.7)

4.1. Model fit. Trace plots of αq0 , γq,season, γq,week, σq,game, σq,season and
σq,week are shown for each q in the Supplementary Material [Lopez, Matthews
and Baumer (2018)], Figures S2–S5. Visual inspection of these plots does not pro-
vide evidence of a lack of convergence or of autocorrelation between draws. These
trace plots stem from Model IHA; conclusions are similar when plotting draws
from Model CHA.

Table 2 shows the deviance information criterion (DIC) for each fit in each
league, along with the difference in DIC values and the associated standard error
(SE). In each of the NHL, NBA and NFL, fits with a team-specific HA (Model
IHA) yielded lower DIC’s (lower is better) by a statistically meaningful margin
with the most noticeable difference in fit improvement in the NBA. DIC’s were
also lower in MLB using Model IHA, although differences were not significant.

These results suggest that chance alone likely does not account for observed
differences in the home advantage among teams in the NBA, NHL and NFL. For
the NFL this implication matches the findings of Glickman and Stern (1998), who
identified meaningful between-franchise differences in terms of playing at home.
For consistency results that follow use model estimates from Model IHA.

4.2. Posterior predictive checks. We next address the fit of Models IHA and
CHA by looking at the posterior predictive distribution of each. Formally, we as-
sess whether Models IHA and CHA can use draws from their respective posterior
distributions to generate game-level data that roughly matches the observed data.

Our specific interest lies in the posterior predictive distribution of the logit of im-
plied probabilities, p(logit(̃p(q,s,k))| logit(p(q,s,k))). To draw values, we randomly
sample from the joint posterior distribution of the parameters (i.e., team strength,
home field advantage and variance parameters). Then, conditional on the drawn
parameters, we randomly draw from the distribution of logit(p̃(q,s,k)). Recall that
in the IHA model this distribution is assumed to be normal with the following
form:

logit(p(q,s,k)) ∼ N
(
θ (q,s,k)X(q,s,k) + αq0Jg(q,s,k)

+αααqZ(q,s,k), σ
2
q,gameIg(q,s,k)

)
.
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FIG. 2. Posterior predictive distributions. Density curves of 20 posterior predictive distributions
of logit probabilities (in gray) and one curve with the observed distribution of logit probabilities (in
red) are overlaid. The bandwith of the density curves is lowered to highlight the jagged nature of
sportsbook prices. By and large the posterior predictive distributions match the observed data.

We used 20 simulated sets of logit probabilities from this posterior predictive dis-
tribution, as well as 20 more from the posterior distribution of Model CHA.

Figure 2 overlays each of Model IHA’s 20 posterior predictive distributions of
logit probabilities (shown in gray density curves) along with the observed distribu-
tion of logit probabilities (shown in red). By and large, the observed distributions
of logit probabilities are similar to the simulated distributions in each sport. In
particular the density in the tails of the posterior predictive distributions (reflect-
ing probabilities near 0 or 1) does not show any meaningful departure from the
observed distributions.

We purposefully use a lower bandwith for the density curves in Figure 2 to high-
light interesting discrepancies between the observed and predictive distributions.
In the NBA and NFL, for example, the observed distribution is slightly lower than
the simulated distributions with logit probabilities near 0 (i.e., both teams have a
win probability of 0.5). This is likely occurring due to preference of sportsbooks to
set prices that are rounded to the nearest five (e.g., −105, −110, −155, etc.). As an
example, there are 33 NFL games where the home team’s boundary price is −185
(1.3% of games), and there are 22 other prices that are observed for the home team
in 15 or more unique games. Given that Models CHA and IHA do not extract back
to rounded prices for each team, it is not surprising that our posterior predictive
distributions are smoother than the observed data. Similarly, Glickman and Stern
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(1998) found discrepancies between the observed distribution of point differential
in the NFL and the posterior predictive distributions of point differential, on ac-
count of the increased likelihood of games ending with margins of victory of 3 or
7 in the NFL. We believe that we are observing a similar phenomenon, but based
on the increased likelihood of a sportsbook to assign rounded odds.

Next, we use posterior predictive distributions to compare the appropriateness
of Models IHA and CHA for each team, as well as to contrast each of the two
models to one another. To do this, we calculate the average discrepancy between
the mean posterior predictive distribution of each game and the observed game
probability, averaged over home team for each model. These team level results are
shown in Figure 3. Discrepencies from Model CHA are shown via circles with
arrows pointing toward the average discrepency for Model IHA. The color of the
arrow (blue for yes, red for no) identifies whether, on average, Model IHA more
closely matched the observed data than Model CHA. The dashed black line in each
plot at 0 on the x-axis corresponds to home teams for whom, on average, the mean
of the posterior predictive distribution matched that shown in our observed data.

For 80% of the teams across all leagues, the posterior predictive distribution us-
ing Model IHA more appropriately reflects the observed data. In MLB the two
models perform nearly the same with the exception of the Colorado Rockies,
whose home field advantage is underestimated when using Model CHA (see Sec-
tion 5.3). Discrepancies in Model IHA offer a slight improvement over those from
Model CHA in both the NFL and NHL with a marked improvement noticed in
the NBA. For example, observed home probabilities for Denver, Utah and Golden
State are underestimated using Model CHA, while those for Brooklyn, Detroit,
New York and Philadelphia, are, on average, overestimated. In the NHL the pos-
terior predictive distribution using Model IHA more closely matches the observed
data for 25 of the 30 teams.

5. Results. In this section we present our results. We discuss the implications
of our estimates of team strength and home advantage as well as the interpreta-
tion of our variance and autoregressive parameters. We conclude by evaluating our
team strength parameters and illustrating how they could be used for predictive
purposes and to build league parity metrics.

5.1. Team strength. Table 3 shows summary statistics of the team strength es-
timates, approximated using posterior mean draws for all weeks k and seasons s

across all four sports leagues. Overall, there tends to be a larger variability in team
strength at any given point in time in both the NFL and NBA, with average pos-
terior coefficient estimates tending to vary between −1.3 and 1.2 in the NBA and
−1.0 and 1.0 in the NFL (on the logit scale) about 95% of the time. For reference
a team-strength of 1.0 on the log-odds scale implies a e1.0

1+e1.0 = 73.1% chance of
beating a league average team in a game played at a neutral site. The standard
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FIG. 3. Posterior predictive distributions by model type. Each dot represents the average difference
between the posterior predictive distribution and the truth for each team’s home games under the
CHA model. The tip of the corresponding arrow represents the same quantity under the IHA model.
The difference is smaller under IHA for 80% of the teams.



2498 M. J. LOPEZ, G. J. MATTHEWS AND B. S. BAUMER

TABLE 3
Summary of average week-level team strength parameters, taken on the log-odds scale. N∗: number

of unique team strength draws (teams × seasons × weeks)

League (q) N∗ min 2.5th Q1 Q3 97.5th max sd

MLB 9240 −0.553 −0.373 −0.134 0.126 0.337 0.473 0.182
NBA 8250 −2.202 −1.268 −0.487 0.477 1.204 1.873 0.660
NFL 5440 −1.576 −1.092 −0.402 0.416 1.030 1.906 0.559
NHL 9240 −1.034 −0.523 −0.162 0.180 0.438 0.877 0.246

deviation of team strength is smallest in MLB, suggesting that—relative to the
other leagues—team strength is more tightly packed. Relative to MLB, spread of
team strengths are about 1.3, 3.1 and 3.6 times wider in the NHL, NFL and NBA,
respectively.

Figure 4 shows estimated team strength coefficients over time. In Figures S6–
S9 in the Supplement [Lopez, Matthews and Baumer (2018)], we provide an in-
dividual plot for each sport, which include divisional facets to allow easier iden-
tification of individual teams. Teams in these figures are depicted using their two
primary colors, scraped from http://jim-nielsen.com/teamcolors/ via the team-
colors package [Baumer and Matthews (2017)] in R. A color key for all teams
appears in the supplement.

As in Table 3 these figures suggest that the NBA and NFL boast larger between-
team gaps in quality than the NHL and MLB, implying more competitive balance
in the latter pair of leagues. At first glance this stands somewhat in contrast to
competitive balance as measured using Noll–Scully, which alternatively argues
that the NFL is more competitively balanced than MLB [Berri (2014)]. However,
Noll–Scully effectively measures parity across entire seasons of games, whereas
our snapshots of parity are specific to weeks within a season. As such our metrics
of parity are not directly comparable to Noll–Scully.

Our figures also illustrate several other observations. For example, the 2007
New England Patriots of the NFL stand out as having the highest probabilities of
beating a league average team, with an average team strength of 1.91 on the log-
odds scale, observed during Week 11. In that season, New England finished the
regular season 16–0 before eventually losing in the Super Bowl. The team with the
lowest probability of beating a league average team is the NBA’s 2007–08 Miami
Heat, who during week 23 had a posterior mean team strength of −2.2. That Heat
team finished with an overall record of 15–67, at one point losing 15 consecutive
games. Related, it is interesting that the team strength estimates of bad teams in
the NBA (e.g., the Heat in 2007–08) lie further from 0 than the estimates for good
teams. This possibly reveals the tendency for teams in this league to “tank”—
a strategy of fielding a weak team intentionally to improve the chances of having
better selection preference in the upcoming player draft [Soebbing and Humphreys
(2013)].

http://jim-nielsen.com/teamcolors/
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FIG. 4. Mean team strength parameters over time for all four sports leagues. MLB and NFL sea-
sons follow each yearly tick mark on the x-axis, while NBA and NHL seasons begin during years
labeled by the preceding tick marks.
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Another observation is that in the NHL top teams appear less dominant than
a decade ago. For example, there are seven NHL team seasons in which at least
one team reached an average posterior strength estimate of 0.55 or greater; each of
these came during or prior to the 2008–09 season. In addition to increased parity,
the league’s point system change in 2005–06—which unintentionally encouraged
teams to play more overtime games [Lopez (2013)]—could be responsible. More
overtime contests could lead to different perceptions in how betting markets view
team strengths, as overtime sessions and the resulting shootouts are roughly equiv-
alent to coin flips [Lopez and Schuckers (2017)].

As a final point of clarification in Figures 4, the periods of time with straight
lines of team strength estimates during the 2012–13 season (NHL) and 2011–12
season (NBA) reflect time lost due to lockouts.

5.2. Variance and autoregressive parameters. Table 4 shows the mean and
standard deviation of posterior draws for γq,season, γq,week, σq,game, σq,season and
σq,week for each q . Before discussing results from these posterior distributions, it is
important to recognize that each variance and autoregressive parameter is uniquely
tied to each sport’s relative logit scale. For example, the average posterior draw of
γNBA,season and γMLB,season are both equal to 0.62, implying that relative to each
league’s distribution of team strengths, we can expect the same amount of reversion
from one season to the next. However, given that there are larger gaps in the team
strengths in the NBA, this corresponds to larger reversions in season-level strength
when considered on an absolute scale.

Posterior draws of σq,game suggest that the highest game-level errors in our
log-odds probability estimates occur in the NBA (median posterior draw of
σNBA,game = 0.274), followed in order by the NFL, MLB and the NHL. Inter-
estingly, although Figure 4 identifies that the talent gap between teams is smallest
in MLB, σMLB,game ≈ 2 × σNHL,game in our posterior draws. We posit that this ad-
ditional game-level error in MLB is a function of the league’s pitching match-ups,
in which teams rotate through a handful of starting pitchers of varying calibers.

We also examine the joint distribution of the variability in team strength on
a season-to-season (σq,season) and week-to-week (σq,week) basis via the contour
plot in Figure S11 in the Supplementary Material [Lopez, Matthews and Baumer

TABLE 4
Mean posterior draw (standard deviation) by league

League (q) γq,season γq,week σq,game σq,season σq,week

MLB 0.618 (0.031) 1.002 (0.002) 0.201 (0.001) 0.093 (0.005) 0.027 (0.001)
NBA 0.618 (0.04) 0.977 (0.003) 0.274 (0.002) 0.44 (0.02) 0.166 (0.003)
NFL 0.69 (0.042) 0.978 (0.005) 0.233 (0.008) 0.331 (0.019) 0.147 (0.006)
NHL 0.542 (0.027) 0.993 (0.003) 0.105 (0.001) 0.121 (0.006) 0.053 (0.001)
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(2018)], using separate colors for each q . This figure reveals that the highest un-
certainty with respect to team strength occurs in the NBA, followed in order by the
NFL, NHL and MLB.

Even when accounting for the larger scale in outcomes, the NBA still stands out
as far as increased between-week uncertainty. There are a few possible explana-
tions for this. Injuries, the resting of starters and in-season trades would seemingly
have a larger impact in a sport like basketball where fewer players are participat-
ing at a single point in time. In particular our model cannot precisely gauge team
strength when star players who could play are rested in favor of inferior players.
Relative to the other professional leagues, star players take on a more important
role in the NBA [Berri and Schmidt (2006)], an observation undoubtedly known
in betting markets. That said, while there is increased variability in our estimate
of NBA team strengths, when considering differences in team talent to begin with,
these absolute differences are not as extreme (e.g., a difference in team strength of
0.05 means less in the NBA as far as relative ranking than in the NHL).

Figure S12 in the Supplementary Material [Lopez, Matthews and Baumer
(2018)] displays the joint posterior distribution of γq,season and γq,week via contour
plots for each q . On a season-to-season basis, team strengths in each of the leagues
tend to revert toward the league average of 0 as all draws of γq,season < 1 for all q .
Reversion toward the mean is largest in the NHL (estimated γNHL,season = 0.54,
implying 46% reversion), followed by the NBA (38%), MLB (38% reversion) and
the NFL (31%). However, the only pair of leagues with nonoverlapping credible
intervals are the NFL and NHL. Note that one reason that team strengths may
revert toward 0 each year is the structure of each league’s draft in which newly
eligble players are chosen. In expectation the worst team in each league is most
likely to get the top selection in the following year’s draft, and so by acquiring the
best perceived talent those worst teams are more likely to improve. Perhaps one
reason that the NFL shows the most consistency over time is that, in general, it is
the worst at drafting newly eligible players (see Lopez (2016) for comparisons in
the drafting ability of each league).

For each of the NHL, NBA and NFL, posterior estimates of γq,week (as well as
95% credible intervals) imply an autoregressive nature to team strength within each
season. Interestingly, the NBA and NFL are the least consistent leagues on a week-
to-week basis. In MLB, however, team strength estimates quite possibly follow
a random walk (i.e., γMLB,week = 1), in which the succession of team strength
is unpredictable. Alternatively, it is also feasible that MLB team strengths could
explode over time (γMLB,week > 1), in which case these estimates would be pulled
toward 0 in the long run (across seasons, via γMLB,season).

Finally, it is worth noting that our estimates for γNFL,week and γNFL,season—0.98
and 0.69, respectively—do not substantially diverge from the estimates observed
by Glickman and Stern (1998) (0.99 and 0.82). Further, our credible intervals are
narrower. For example, our 95% credible interval for γNFL,season of (0.61,0.77)

is entirely contained within the interval of (0.52,1.28) reported by Glickman and
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Stern (1998). In fairness it is unclear if the decreased uncertainty is a function of
our model specification (using log-odds of the probability of a win as the outcome,
as opposed to point differential) or because we used a larger sample (10 seasons,
compared to five).

Like Glickman and Stern (1998), we also observe an inverse link in posterior
draws of γNFL,week and γNFL,season. Given that total shrinkage across time is the
composite of within- and between-season shrinkage, such an association is not
surprising [Glickman and Stern (1998)]. If one source of reversion toward the av-
erage were to increase, the other would likely compensate by decreasing.

5.3. The home advantage. Figure 5 shows the 2.5th percentile, median and
97.5th percentile draws of each team’s estimated home advantage parameter pre-
sented on the probability scale. These are calculated by summing draws of αq0 and
α(q)i� for all i�. HAs are shown in descending order to provide a sense of the mag-
nitude of differences between the home advantage provided in MLB (league wide,
a 54% probability of beating a team of equal strength at home), NHL (55.5%),
NFL (58.9%), and NBA (62%). The two franchises that have relocated in the last
decade, the Atlanta Thrashers (NHL) and Seattle Supersonics (NBA), are also in-
cluded for the games played in those respective cities.

Figure 5 depicts substantial between-franchise differences in the home advan-
tage within both the NBA and NHL, with lesser between-franchise differences in
MLB and the NFL.

Interestingly, the draws of the home advantage parameters for of a few NFL
franchises are skewed (see Denver and Seattle, relative to Detroit), potentially the
result of a shorter regular season. Alternatively, the NFL’s HA may vary by season,
game time, or the day of the game. Anecdotally, night games (Thursday, Sunday or
Monday) conceivably offer a larger HA than those played during the day [Crabtree
(2014)]. Informally, NFL team-level HA estimates are similar in effect size to those
depicted by Koopmeiners (2012).

In the NBA Denver (first) and Utah (second) post the best home advantages with
Brooklyn showing the worst. This matches the results of Paine (2013), who found
significantly better performances when comparing Denver and Utah to the rest of
the league with respect to home and road point differential. In MLB the Colorado
Rockies stand out for having the highest home advantage, while the remaining 29
teams boast overlapping credible intervals. We note that teams playing at home
in Denver have the largest home advantages in MLB, the NBA and the NFL, and
the seventh highest in the NHL. We speculate that this consistent advantage across
sports is related to the home team’s acclimation to the city’s notably high altitude.

Differences between teams within the NBA have plausible impacts on league
standings. An NBA team with a typical home advantage can expect to win 62% of
home games against a like-caliber opponent. Yet for Brooklyn the corresponding
figure is 60%, while for Denver it is 66.1%. Across 41 games (the number each
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FIG. 5. Median posterior draw (with 2.5th, 97.5th quantiles) of each franchise’s home advantage
intercept on the probability scale. We note that the magnitude of home advantages are strongly seg-
regated by sport, with only one exception (the Colorado Rockies). We also note that no NFL team,
nor any MLB team other than the Rockies, has a home advantage whose 95% credible interval does
not contain the league median.
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team plays at home), this implies that Denver’s home advantage is worth an ex-
tra 1.68 wins in a single season, relative to a league average team. Compared to
Brooklyn, Denver’s home advantage is worth an estimated 2.5 wins per year. As
one important caveat, our model estimates do not account for varying line-up and
injury information. If opposing teams were to rest their star players at Denver, for
example, our model would artificially inflate Denver’s home advantage.

As a final note it is interesting that in comparing leagues, the relative magnitudes
of the home advantage match the relative standard deviations in team strength
(with the NBA the highest, followed in order by the NFL, NHL and MLB). To
check whether or not our model specification can appropriately separate the home
advantage from team strength estimates, we used a simulation study where we
changed the size of each league’s home advantage while keeping the scales of the
team strength parameters the same. This process is summarized in the supplemen-
tary materials. These simulations imply that our modeling framework could detect
if leagues with large home advantages have small differences in team strength, and
vice versa. That said, further research may be needed to precisely define home
advantage in light of varying team strength estimates, as well game-level charac-
teristics such as time (i.e., afternoon, night) and day (i.e., weekend, weekday.)

5.4. Evaluation of team strength estimates. Ultimately, estimates from Model
IHA are designed to estimate team quality at any given point in a season while
accounting for factors such as the home advantage and opponent caliber. If these
estimates more properly assess team quality than traditional metrics (e.g., won–
loss percentage or point differential), they should more accurately link to future
performance, such as how well teams will perform over the remainder of the sea-
son. Additionally, game-level probabilities estimated from our team strength coef-
ficients should closely track the observed money lines.

That said, it is admittedly unfair to use cumulative estimates of team strength
to predict past game outcomes, as future information is implicity used to inform
those same game outcomes. In this sense sequential fits are more appropriate for
understanding the predictive capability of our state-space models.

Figure 6 shows the coefficient of determination (R2) between each team’s fu-
ture won–loss percentage in a season and each team’s (i) average team strength
estimates from sequential Model IHA’s, (ii) season-to-date cumulative point dif-
ferential and (iii) season-to-date won–loss percentage. Within each sport this is
computed by game number, which helps to account for league-level differences in
season length. For purposes of using sequential team strength estimates, we used
the mean posterior draw from fits that ended the week prior.

Across each sport our estimates of team strength generally outperform past team
win percentage and point differential in predicting future win percentage. This gap
is most pronounced earlier in each season, which is not surprising given the insta-
bility of won–loss percentage and point differential in a small number of games.
Differences remain throughout most of the regular season in MLB, the NHL and
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FIG. 6. Coefficient of determination with future in-season win percentage. We note the improve-
ment our team strength estimates offer over season-to-date win percentage and season-to-date point
differential in most sports, especially early in the season. R2 values tend to 0 as the number of future
games goes to 0.

the NFL. However, by the NBA’s mid-season, won–loss ratio and point differen-
tial are similar to our estimates of team strength in assessing future performance.
By and large, this confirms the findings of Wolfson, Koopmeiners and DiLernia
(2018), who identified that most of the information needed to predict the remain-
der of the NBA season is contained within the first third of the year.

As a second check of predictive accuracy, we compare these predicted game-
level probabilities to known game outcomes. Table 5 highlights the area under
the receiver operating characteristic curve (AUC), which calculates the expecta-
tion that a randomly drawn probability from a winning home team is greater than
a randomly drawn probability of a losing home team (higher is better). Also in-
cluded is the Brier score (lower is better), along with an accompanying p-value as
implemented for calibration accuracy in Spiegelhalter (1986).

For each of the NBA, NFL and NHL, AUC and Brier metrics suggest that pre-
dictions made from sequential fits can closely approximate the observed game
probabilities. However, our predictions yield a lower AUC and a higher Brier score
in MLB, which likely reflects our inability to account for each game’s starting
pitcher.

Although results from these predictions do not suggest an existence of an arbi-
trage opportunity (recall that sports books add a vig to each team’s price), they do
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TABLE 5
AUC values and Brier scores (p-values) by sport. Observed probabilities use known probabilities
from betting markets, while sequential probabilities use predictions from posterior draws using

sequential fits of Model IHA

AUC Brier score

League (q) Observed Sequential Observed (p-value) Sequential (p-value)

MLB 0.605 0.573 0.241 (0.996) 0.245 (0.333)
NBA 0.756 0.756 0.194 (0.803) 0.194 (0.759)
NFL 0.682 0.685 0.226 (0.34) 0.226 (0.548)
NHL 0.595 0.589 0.242 (0.88) 0.243 (0.486)

imply that both our team strength and home advantage estimates can be used to
extract accurate game-level projections. Further, that there is no major deviation
from the observed data is comforting with respect to our choice of a model for the
game probabilities.

5.5. How often does the best team win? A new measure of league parity. We
conclude by addressing our initial question about the inherent randomness of game
outcomes.4

One simple way to compare league randomness would be to contrast the ob-
served distribution of p(q,s,k)ij ’s between each q . However, while sportsbook odds
can be used to infer the probability of each team winning, these odds are only
provided for scheduled games. As a result any between-league comparisons using
sportsbook odds alone would be contingent upon each league’s actual schedule,
and they may not accurately reflect differences that would be observed if all teams
were to play one another.

A second option would be to contrast our posterior draws of θ(q,s,k)i for all i,
either across time periods or at a fixed point in time, as these estimates account for
league particulars such as strength of schedule. However, such a procedure would
not scale to other sports or leagues where betting market data may be unavailable.
Rather, we would prefer a metric that can be applied generally to any competitive
scenario where paired comparison probabilities can be calculated.

To assess the equivalence of all teams in each league, we consider the likelihood
that—given any pair of teams chosen at random—the better team wins by simulat-
ing estimates of p(q,s,k)ij using posterior draws of team strength, home advantage
and game level error. For our purposes we define the better team to be the one, a
priori, with a higher probability of winning that game. If a contest has no inher-
ent randomness (consider the Harlem Globetrotters), then the better team always

4Our approach here is not unlike that of James, Albert and Stern (1993).



RANDOMNESS IN SPORT 2507

wins.5 Conversely, if game-level variability is large relative to the difference in
team strength, then even the inferior team might win nearly half the time.

Using our posterior draws, we approximate the distribution of game-level prob-
abilities between two randomly chosen teams using the following steps. Posterior
draws from Model IHA are used.

Given sport q with season length Kq , number of seasons Sq and number of
teams tq :

1. Draw season s̃ from {1, . . . , Sq}, and week k̃ from {1, . . . ,Kq}.
2. Draw teams ĩ and j̃ from {1, . . . , tq} without replacement.
3. Sample one posterior draw of team strength for ĩ and j̃ , θ̃

(q,s̃,k̃)ĩ
and θ̃

(q,s̃,k̃)j̃
,

respectively, from the posterior distributions of ĩ and j̃ ’s team strength estimates
during season s̃ at week k̃. For simplicity, assume θ̃

(q,s̃,k̃)ĩ
> θ̃

(q,s̃,k̃)j̃
.

4. Sample one posterior draw of the HA, α̃q0 , from the posterior distribution of
αq0 , as well as one posterior draw of team ĩ’s home advantage, α̃

(q)ĩ∗.

5. Sample one posterior draw of the game-level variance parameter, σ̃ 2
q,game,

and draw a game-level error, ε̃q,game, from ε̃q,game ∼ N(0, σ̃q,game)

6. Impute the simulated log-odds of ĩ beating j̃ , logit(p̃
(q,s̃,k̃)ĩj̃

) = α̃q0 +
α̃

(q)ĩ∗ + θ̃
(q,s̃,k̃)ĩ

− θ̃
(q,s̃,k̃)j̃

+ ε̃q,game.

7. Transform logit(p̃
(q,s̃,k̃)ĩj̃

) into a probability to obtain a simulated estimate,
p̃q,sim, where p̃q,sim = p̃

(q,s̃,k̃)ĩj̃

8. Repeat the above steps nsim times to obtain p̃q = {p̃q,1, . . . , p̃q,nsim}.
For each q , we simulated with nsim = 1000. Additionally, to remove the effect

of each league’s HA on simulated probabilities, we repeated the process fixing
α̃q0 = α̃

(q)ĩ∗ = 0 for each league to reflect game probabilities played in absence of
a home advantage.

Figure 7 shows the cumulative distribution functions (CDFs) for each set of
probabilities in each league. The median probability of the best team winning a
neutral site game is highest in the NBA (67%), followed in order by the NFL
(64%), NHL (57%) and MLB (56%). The spread of these probabilities are of great
interest. Nearly every simulated MLB and NHL game played at a neutral site is less
than a 3 : 1 proposition with respect to the best team winning (75%). Meanwhile,
roughly 27% of NBA and 20% of NFL neutral site match-ups are greater than this
3 : 1 threshold.

Factoring in each league’s home advantage works to exaggerate league-level
differences. When the best team plays at home in the NBA, it is always favored to
win at least 60% of the time, with the middle 50% of games ranging from a 68%
probability to an 84% probability. Meanwhile, even with a home advantage, it is

5The Harlem Globetrotters are an exhibition basketball team that plays hundreds of games in a
year, rarely losing.
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FIG. 7. Cumulative distribution function (CDF) of 1000 simulated game-level probabilities in each
league, for both neutral site and home games, with the better team (on average) used as the reference
and given the home advantage.

rare that the best MLB team is ever given a 70% probability of winning, with the
middle 50% of games ranging from 57% to 63%.

Finally, we use the CDFs displayed in Figure 7 to quantify the cumulative differ-
ence between each league’s game-level probabilities and a league of coin flips by
estimating the approximate area under each curve. Let RegParityq be our regular
season parity measure, such that

RegParityq = 2
∫ 1

0.5
P(p̃q ≤ x)dx,

where we multiply by 2 in order to scale so that 0 ≤ RegParityq ≤ 1, where 1 rep-
resents complete parity (every game a coin flip) and 0 represents no parity (every
game outcome pre-determined).

For games with no home advantage, RegParityMLB = 0.87, followed by the
NHL (0.84), NFL (0.70) and NBA (0.66). When the best team has a home advan-
tage, parity is again the greatest in the MLB (0.79), followed by the NHL (0.73),
NFL (0.55) and NBA (0.47). These results suggest that when the best team is
playing at home, the NBA is closer to a world where every game outcome is pre-
determined than to one where every game outcome is a coin flip. Meanwhile, even
when giving the best team a HA, MLB game outcomes remain lightly weighted
coin flips.
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5.6. Parity in postseason tournaments. Notions of parity in the regular sea-
son influence which teams make the playoffs, but each league conducts a single-
elimination postseason tournament with a different structure. To what extent do
those structures mitigate or reinforce the parity levels discussed in the previous
section? We address these questions using our team strength estimates.

First, we collect the z ∈ {8,16} teams with the highest average team strength
estimates over the last four weeks of each season in each sport. We then seed
(in descending order of team strength, irrespective of division or conference) and
simulate 1000 postseason tournaments, in which each round consists of a best-
of-seven-game series, with the higher seed having the home field advantage in
each round. The results shown in the Supplementary Material [Lopez, Matthews
and Baumer (2018)] (Figure S13) confirm that the relationship between seed and
tournament finish is strongest in the NBA and the NFL and considerably weaker
in MLB and the NHL. In particular the probability of the best team winning these
simulated tournaments is about twice as high in the NBA and NFL (both around
37%) as it is in the NHL or MLB (19% and 17%), as described in the Supplement
(Figure S14). These findings accord with our regular season parity measures.

To reveal more subtleties, we construct a postseason tournament parity metric
that acts as a pseudo-R2. Let F = (F1,F2, . . . ,Fz) be a z-dimensional random
vector with the dth element indicating the round of tournament finish of the dth
seed.6 That is, for the dth-seeded team, Fd = 1 indicates that team finished as
tournament champions, Fd = 2 implies that team finished as runners-up, and so
on. In a z-team tournament in which the higher seeded team always wins (i.e., the
seeds determine the finish), the vector F is constant with F1 = 1, F2 = 2, F3 =
F4 = 3, F5 = F6 = F7 = F8 = 4, etc. and in general, E[Fd ] = Fd = �log2 d + 1	
for d = 1,2, . . . , z. In the other extreme, where the seed is irrelevant (i.e., all values
of θ are equal and there is no home advantage), E[Fd ] = ∑z

d=1
1
z

· �log2 d + 1	 =
fz, where fz is a constant that depends on z.

We define a pseudo-R2 as

PostParityz = 1 − (E[F] − fz1z)
′(E[F] − fz1z)∑z

d=1(�log2 d + 1	 − fz)2 ,

where d = 1, . . . , z iterates over the seeds, fz is the seed-weighted expected fin-
ish round (e.g., 4.0625 for a 16-team tournament), and 1z is a vector of ones of
length z. A PostParityz value of 0 indicates that the higher seed always wins, while
a PostParityz value of 1 occurs when all seeds have the same expected finish. In
a 16-team, seven-game series tournament, the NBA and NFL’s PostParity16 val-
ues (0.43 and 0.51) lag far behind those of MLB and the NHL (0.88 and 0.85,
respectively).

6We note that F depends on the vector of team strengths.
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FIG. 8. Parity measures for simulated playoff tournaments. Each line shows how our pseudo-R2

parity metric changes as a function of tournament series length for both eight- and 16-team tourna-
ments in each sport. We note that in order for MLB to achieve the same lack of parity as the NBA,
it would have to play 75-game series in a 16-team tournament. Conversely, the NBA would have to
switch to an eight-team, single-game tournament to match the parity of the other three sports.

While these simulations force all sports to use the same postseason tournament
format, reality is quite different. Accordingly, we simulate tournaments while vary-
ing the number of teams who qualify (eight or 16) as well as the length of each
postseason series (selected odd numbers between 1 and 75). Figure 8 allows us to
compare values of PostParityz for different tournament structures across all four
sports. While PostParity8 and PostParity16 values may not be directly comparable,
we note that the one-game series played in the NFL results in parity similar to the
current MLB and NHL formats. This leaves the NBA alone as the sport whose
postseason tournament most likely coronates the strongest regular season teams.
Conversely, the playoff structure in MLB, which includes a single-game wild card
play-in7 and a five-game division series, serves to undermine advantages conferred
based on seed. In order to approach the level of parity (or lack thereof) of the NBA
playoffs, MLB would have to switch to a 16-team tournament in which each round
was approximately 75-game series. Conversely, in order to the achieve the level
of parity in the other three sports, the NBA would have to reduce the number of
playoff teams to eight, and play a single-game tournament.

Postseason parity cuts both ways. A tournament in which the higher seeds al-
ways win is potentially less interesting, but a tournament in which seeds don’t
matter might compromise the competitiveness of late-season games for playoff
teams. This represents a philosophical choice for commissioners. The NBA has

7We did not include the wild card game in our simulations.
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clearly chosen a postseason structure that—relative to other sports—largely en-
sures that the best teams will win most of the time. We suspect that this arrange-
ment is comforting for players and team executives, since the hard work of building
a good team is remunerated with postseason success. On the other hand, early-
round games may suffer from lack of interest, since fans may consider the out-
comes predetermined. Conversely, MLB (and to a slightly lesser extent the NFL
and NHL) postseason structure serves to maximize fan interest (recall the outcome
uncertainty hypothesis), while offering few postseason rewards (other than entry)
for regular season success. This may be an acceptable trade-off, since the regu-
lar season is so long and relatively few teams make the playoffs. Still, it may be
profoundly frustrating to players and team executives.

6. Conclusion.

6.1. Summary. We propose a modified Bayesian state-space framework that
can be used to estimate both time-varying strength and variance parameters in
order to better understand the underlying randomness in competitive organizations.
We apply this model to the NBA, NFL, NHL and MLB.

Our first finding relates to the relative equivalence of the four leagues. At a sin-
gle point in time, team strength estimates diverge substantially more in the NBA
and NFL than in the NHL and MLB. In the latter two leagues contests between
two randomly chosen teams are closer to a coin flip, in which each team has a
reasonable shot at winning. Understanding this underlying randomness would ap-
pear to be crucial for decision makers in these leagues. At critical moments in a
team’s evolution, such as the trade deadline, free agency period or the decision to
fire a coach, we recommend that team officials look past wins and losses to better
understand team strength in the context of their league. As one easy example it is
insufficient to evaluate a baseball or hockey team based on their performance in the
postseason alone, given that so many of those contests are nearly 50–50 outcomes.

Our next finding relates to the relative equivalence of the home advantage in
each league, with the NBA well ahead of the pack, with teams averaging a 62%
chance of winning versus a like-caliber opponent. We also show that the home
advantage varies most significantly between venues within each of the NBA and
the NHL. In the NBA, for example, the league’s best team home advantage is
worth a few wins per year, in expectation over the league’s worst home advantage.
Moreover, with the exception of the Colorado Rockies, it is not clear that any MLB
or NFL team has a statistically significant home effect.

Finally, we identify that team strengths derived from sequential fits are nearly
as accurate for predictive purposes as the observed game probabilities, as judged
by both links to future team performance and game-level outcomes. We conclude
by using team strength draws to propose two parity metrics, one for regular season
comparisons and another for postseason contrasts.
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6.2. Discussion. There are several options for applying or extending our
model. Generally, the conditions needed to apply our framework are minimal; only
paired events, outcome probabilities and some unit of time are needed.

As alternative examples in sports, comparisons between divisions of teams in
the same organization (as in English soccer) or between the top leagues of the same
sport (as in European soccer) would follow a similar structure to the one provided.
Alternatively, in any sporting league, modeling the impact of structural changes
(such as free agency, expansion or scoring system updates) would be straightfor-
ward to test by adding covariates to our models. Note that team sports are not
required for our model to apply: a similar framework could assess the caliber of
tennis players, whose relative strengths fluctuate over time both within and across
seasons. Competitive balance questions within amateur sport (e.g., conferences in
NCAA football or even across all intercollegiate sports) would follow a similar
design.

There are also several ways our model could generalize to other competitive
spheres of life. Assessing player and team strength in the increasing popular (and
visible) world of online gaming could be a future application. Online trivia leagues
(e.g., the Learned League) also pit players organized into divisions by ability in
head-to-head competition; their relative strengths could be modeled in our frame-
work. Given that political elections have only one outcome, traditional prediction
models are difficult to judge and calibrate. However, since our framework does
not require outcomes and expansive betting market data that tracks candidates’
probabilities over time exists, applying our models to political elections is another
possible extension. Comparisons in the volatility of candidate support over time,
either between states, countries or election cycles, may be feasible.

Additionally, researchers of the NBA, NFL, NHL and MLB could explore sev-
eral hypotheses using our provided team strength estimates. One option would be
to test how each league’s scheduling quirks impact won-loss standings. For exam-
ple, what is the consequence of the unbalanced schedule used in the NFL relative
to a balanced design? Given each league’s schedule, how likely is it for the best
team to qualify for postseason play? Finally, one could use time-varying estimates
of team strength to consider the existence of tanking, in which teams—in order to
secure a better draft position—are better off losing games later in the season. While
this has been demonstrated in basketball using betting market data [Soebbing and
Humphreys (2013)], it would also be worth looking at tanking in other leagues
or if team interest in tanking corresponds to the perceived talent available in the
upcoming draft.

Opportunities to improve our model are also plentiful. Both Models IHA and
CHA make use of the logit transform with game-level probabilities. Although our
posterior predictive checks do not seem to indicate that this assumption is unjusti-
fied, alternative transformations may be considered. We implemented a version
of Model IHA that used the arcsine square root transformation—the variance-
stabilizing transformation for binomial proportions—and found nearly identical
results with both game-level probability predictions and team strength estimates.
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To estimate predictions from the sequential fits, we repeatedly applied our
MCMC algorithm in each week. In place sequential Monte Carlo samplers [Gilks
and Berzuini (2001), Del Moral, Doucet and Jasra (2006)] would have been more
efficient. In the sports of soccer and hockey, one improvement would consider
three-way lines that include the probability of a tie game. Specifically, soccer bet-
ting markets use a vector of probabilities (win, loss, tie). To account for these
complexities, Firth (2017) proposed a generalized Bradley–Terry model to simul-
taneously model both wins and draws, one that could likewise start with imputed
game probability vectors. Finally, a comparison of team strengths estimated by our
model, as well as those fit by Glickman and Stern (1998) and Koopmeiners (2012),
could more acutely identify the impact of using betting market data relative to point
differential and won–loss outcomes.

To maintain consistency with the NFL’s calendar, we considered time on a
weekly basis; more refined approaches may be appropriate in other sports. As
an example investigation into starting pitchers in baseball—who change daily—
could lead to novel findings. Additionally, another model specification could con-
sider the possibility that time-varying estimates of team strength follow something
other than an autoregressive structure. One alternative assumption, for example,
is a stochastic volatility process [Glickman (2001)]. In this respect our model can
be considered a starting point for those looking to dig deeper in any sport without
losing an ability to make cross-league or cross-sport comparisons.

SUPPLEMENTARY MATERIAL

Supplement to “How often does the best team win? A unified approach
to understanding randomness in North American sport” (DOI: 10.1214/18-
AOAS1165SUPP; .pdf). We provide several plots corresponding to different por-
tions of our paper. In addition, we describe a simulation analysis.
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