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PBW BASES AND MARGINALLY LARGE TABLEAUX IN TYPES B

AND C

JACKSON CRISWELL, BEN SALISBURY, AND PETER TINGLEY

Abstract. We explicitly describe the isomorphism between two combinatorial realiza-

tions of Kashiwara’s infinity crystal in types B and C. The first realization is in terms

of marginally large tableaux and the other is in terms of Kostant partitions coming from

PBW bases. We also discuss a stack notation for Kostant partitions which simplifies that

realization.
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1. Introduction

The infinity crystal B(∞) is a combinatorial object associated with a symmetrizable

Kac–Moody algebra g. It contains information about the integrable highest weight repre-

sentations of g and the associate quantum group Uq(g). Kashiwara’s original description of

B(∞) used a complicated algebraic construction, but there are often simple combinatorial

realizations. Here we consider two such realizations in types Bn and Cn. The first is the

marginally large tableaux construction of [4, 5]. The second uses the Kostant partitions

from [10], which are related to Lusztig’s PBW bases [9] (see also [12]). In [3] and [11],

isomorphisms between these two realizations are studied in types An and Dn, respectively.

Our main result is a simple description of the unique isomorphism between these two real-

izations of B(∞) for types Bn and Cn. We also give a stack notation for Kostant partitions

of these types motivated by the connection to multisegments in type An described in [3].
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2 JACKSON CRISWELL, BEN SALISBURY, AND PETER TINGLEY

βi,k = αi + · · ·+ αk, 1 ≤ i ≤ k ≤ n

γi,k = αi + · · ·+ αk−1 + 2αk + 2αk+1 + · · ·+ 2αn, 1 ≤ i < k ≤ n

βi,k = εi − εk+1, 1 ≤ i ≤ k ≤ n− 1

βi,n = εi, 1 ≤ i ≤ n

γi,k = εi + εk, 1 ≤ i < k ≤ n

Table 2.1. Positive roots of typeBn, expressed both as a linear combination
of simple roots and in the canonical realization following [2].

βi,k = αi + · · · + αk, 1 ≤ i ≤ k < n

γi,k = αi + · · ·+ αn−1 + αn + αn−1 + · · · + αk, 1 ≤ i ≤ k ≤ n

βi,k = εi − εk+1, 1 ≤ i ≤ k < n

γi,k = εi + εk, 1 ≤ i ≤ k ≤ n

Table 2.2. Positive roots of type Cn, expressed both as a linear combination
of simple roots and in the canonical realization following [2].

2. Background

Let g be a Lie algebra of type Bn or Cn. The Cartan matrix and Dynkin diagram are

Bn : (aij) =








2 −1 0 ··· 0 0 0
−1 2 −1 ··· 0 0 0
0 −1 2 ··· 0 0 0

. . .
0 0 0 ··· 2 −1 0
0 0 0 ··· −1 2 −1
0 0 0 ··· 0 −2 2








, Cn : (aij) =








2 −1 0 ··· 0 0 0
−1 2 −1 ··· 0 0 0
0 −1 2 ··· 0 0 0

. . .
0 0 0 ··· 2 −1 0
0 0 0 ··· −1 2 −2
0 0 0 ··· 0 −1 2








Bn :
α1 α2 αn−1 αn

· · · Cn :
α1 α2 αn−1 αn.

· · ·

Let {α1, . . . , αn} be the simple roots and {α∨
1 , . . . , α

∨
n} the simple coroots, related by the

inner product 〈α∨
j , αi〉 = aij . Define the fundamental weights {ω1, . . . , ωn} by 〈α∨

i , ωj〉 = δij .

Then the weight lattice is P = Zω1⊕· · ·⊕Zωn and the coroot lattice is P∨ = Zα∨
1⊕· · ·⊕Zα∨

n .

Let Φ denote the roots associated to g, with the set of positive roots denoted Φ+. The list

of positive roots in type Bn is given in Table 2.1, and the list of positive roots in type Cn

is given in Table 2.2. The Weyl group associated to g is the group generated by s1, . . . , sn,

where si(λ) = λ − 〈α∨
i , λ〉αi for all λ ∈ P . There exists a unique longest element of W

which is denoted as w0. For notational brevity, set I = {1, 2, . . . , n}.

Let B(∞) be the infinity crystal associated to g as defined in [7]. This is a countable set

along with operators ei and fi, which roughly correspond to the Chevalley generators of g.

Here we use two explicit realizations of B(∞) but do not need the general definition.



PBW BASES AND TABLEAUX 3

2.1. Crystal of marginally large tableaux. Recall the fundamental crystals given below.

Bn : 1 · · · n 0 n · · · 1
1 n − 1 n n n − 1 1

Cn : 1 · · · n n · · · 1
1 n − 1 n n − 1 1

(2.1)

Define alphabets, denoted J(Bn) and J(Cn), to be the elements of these crystals with the

natural orderings

J(Bn) :
{
1 ≺ · · · ≺ n− 1 ≺ n ≺ 0 ≺ n ≺ n− 1 ≺ · · · ≺ 1

}
, and

J(Cn) :
{
1 ≺ · · · ≺ n− 1 ≺ n ≺ n ≺ n− 1 ≺ · · · ≺ 1

}
.

Definition 2.2. The set of marginally large tableaux, T (∞), is the set of semistandard

Young tableaux T with entries in J(Bn) or J(Cn) which satisfy the following conditions.

(1) The number of i in the i-th row of T is exactly one more than the total number

of boxes in the (i+ 1)-th row.

(2) Entries weakly increase along rows.

(3) All entries in the i-th row are � ı.

(4) If T is of type Bn, then the 0 does not appear more than once per row.

Definition 2.2 implies that the leftmost column of T contains 1 , 2 , . . . , n− 1 , n

in increasing order from top to bottom. We call the i in row i shaded boxes. The number

of shaded boxes in each row is one more than the total number of boxes in the next row.

Example 2.3. In type B3, each T ∈ T (∞) has the form

T =
1 1 1 · · · 1 1 1 · · · 1 1 1 · · · 1 1 · · · 1 1 2 · · · 2 3 · · · 3 0 3 · · · 3 2 · · · 2 1 · · · 1

2 2 2 · · · 2 2 3 · · · 3 0 3 · · · 3 2 · · · 2

3 0 3 · · · 3

.

The notation i · · · i indicates any number of i (possibly zero). Also, the 0 in each row

may or may not be present.

Definition 2.4. Fix T ∈ T (∞) for 1 ≤ j ≤ n − 1 and k ≻ j ∈ J . Let k
j
denote a box

containing k in row j of T . Define the weight of the box by:

Type Bn : wt
(

k
j

)

=

{

−βj,k−1 if k 6= 0,

−βj,n if k = 0,
wt

(

k
j

)

=

{

−γj,k if k 6= j,

−2βj,n if k = j.

Type Cn : wt
(

k
j

)

= −βj,k−1, wt
(

k
j

)

= −γj,k.

Define the weight wt(T ) of T to be the sum of the weights of all the unshaded boxes of T .

Note that the unique element of weight zero, denoted T∞, is the tableau where all boxes

are shaded. For example, in types B3 and C3,
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T∞ =
1 1 1
2 2
3

.

Definition 2.5. Let T ∈ T (∞).

(1) The Far-Eastern reading of T , denoted readFE(T ), records the entries of the boxes

in the columns of T from top to bottom and proceeding from right to left.

(2) The Middle-Eastern reading of T , denoted readME(T ), records the entries of the

boxes in the rows of T from right to left and proceeding from top to bottom.

Definition 2.6. Let T ∈ T (∞) of type Bn or Cn, and set read(T ) = readME(T ) or

readFE(T ). Consider the fundamental crystals from (2.1). For each i ∈ I = {1, 2, . . . , n},

the bracketing sequence bri(T ) is obtained by replacing each letter in read(T ) with )p(q,

where p is number of consecutive i-arrows entering and q is the number of consecutive

i-arrows leaving the corresponding box in the fundamental crystal.

After determining bri(T ), sequentially cancel all ()-pairs to obtain a sequence of the form

) · · · )(· · · ( called the i-signature of T . The i-signature is denoted as brci (T ).

Definition 2.7. Let T ∈ T (∞) and i ∈ I. Define 0 as a formal object not in T (∞).

(1) If there is no ‘)’ in brci (T ) then set eiT = 0. Otherwise let r be the box in T

corresponding to the rightmost ‘)’ in brci (T ). Define eiT to be the tableau obtained

from T by replacing the r in r with the predecessor in the alphabet of T (∞). If

this creates a column with exactly the entries 1, 2, . . . , i, then delete that column.

(2) Let ℓ be the box in T corresponding to leftmost ‘(’ in brci (T ). Define fiT to be

the tableau obtained from T by replacing the ℓ in ℓ with the successor of ℓ in the

alphabet of T (∞). If ℓ occurs in row i and ℓ = i, then also insert a column with

the entries 1, 2, . . . , i directly to the left of ℓ .

Example 2.8. Let T ∈ T (∞) for g of type B3 where

T =
1 1 1 1 1 1 1 1 1 2 0 3 2 1 1
2 2 2 2 3 0 2 2
3 3 3

.

By Definition 2.6, we have

readME(T ) = 1 1 2 3 0 2 1 1 1 1 1 1 1 1 1 2 2 0 3 2 2 2 2 3 3 3

br3(T ) = )) )( )( (( )) )) ((

brc3(T ) = )) ) ) (( ,

so by Definition 2.7, we obtain

e3T =
1 1 1 1 1 1 1 1 1 2 0 3 2 1 1
2 2 2 2 3 0 2 2
3 0 3
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and

f3T =
1 1 1 1 1 1 1 1 1 1 2 0 3 2 1 1
2 2 2 2 2 3 0 2 2
3 0 3 3

.

Example 2.9. Let T ∈ T (∞) for g of type C3 where

T =
1 1 1 1 1 1 1 1 1 2 3 3 3 2 1
2 2 2 2 3 3 3 1
3 3 3

.

By Definition 2.6, we have

readME(T ) = 1 2 3 3 3 1 1 1 1 1 1 1 1 1 1 3 3 3 2 2 2 2 3 3 3

br3(T ) = ) ( ( ) ) ( ) ) (

brc3(T ) = ) ) ( ,

so by Definition 2.7, we obtain

e3T =
1 1 1 1 1 1 1 1 2 3 3 3 2 1
2 2 2 3 3 3 1
3 3

and

f3T =
1 1 1 1 1 1 1 1 1 1 2 3 3 3 2 1
2 2 2 2 2 3 3 3 1
3 3 3 3

.

Theorem 2.10 ([5]). Using readFE(T ) and the operations defined in Definition 2.7, T (∞)

is a crystal isomorphic to B(∞).

It turns out that using readME in place of readFE is more convenient for us, and we can

do this because of the following:

Proposition 2.11. Let T (∞) be the set of marginally large tableaux of type Bn or Cn.

Then the crystal structures on T (∞) using either readFE or readME are identical.

Proof. Fix T ∈ T (∞) and i ∈ I. By the definition of ei and fi, we must show that the

leftmost ‘(’ and the rightmost ‘)’ in brci (T ) correspond to the same box for the two different

readings. We need only consider the positions of the i , i+ 1 , i , i+ 1 , and 0 (if

i = n and T is of type Bn). By Definition 2.2, these all occur in the first i+ 1 rows.

The unshaded boxes are read in the same order under the two readings (since there

cannot be two in the same column, and if one box is to the left of another it is also weakly

below it). Thus the two bracketing sequences are identical until the first shaded i is read.

We will call that part of the sequences the prefix. After that, the sequences are as follows,

where we use ℓi,j to denote the number of j in row i (and if i = n, ℓi+1,? is taken to be 0):

Middle-Eastern: · · · (ℓi,i (ℓi+1,i+1 )ℓi+1,i+1 ,

Far-Eastern: · · · (ℓi,i+ℓi+1,i+1
−ℓi+1,i+1 () · · · ()

︸ ︷︷ ︸

ℓi+1,i+1

.
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Since ℓi,i > ℓi+1,i+1, after cancellation these parts of the sequences contain only ‘(’ and the

leftmost ‘(’ corresponds to the rightmost i in row i.

Thus if the prefix has an uncanceled ‘(’, then this remains uncanceled in both complete

bracketing sequences, and corresponds to the same box for both. If the prefix does not

have an uncanceled ‘(’, then in both readings the leftmost uncanceled ‘(’ comes from the

rightmost i in row i. Furthermore, the sequences only have an uncanceled ‘)’ if this comes

from the prefix, in which case it corresponds to the same box in both.

2.2. Crystal of Kostant partitions. Here we review the crystal structure on Kostant

partitions from [10]. As explained there, this is naturally identified with the crystal of

PBW monomials as given in [1, 9] (see also [12]) for the reduced expression

w0 = (s1s2 · · · sn−2sn−1snsn−2 · · · s1) · · · (sn−2sn−1snsn−2)sn−1sn.

LetR be the set of symbols {(β) : β ∈ Φ+}. Let Kp(∞) be the free Z≥0-span ofR. This is

the set of Kostant partitions. Elements of Kp(∞) are written in the form α =
∑

(β)∈R cβ(β).

Definition 2.12. Consider the following sequences of positive roots depending on i ∈ I for

type Bn or Cn. For 1 ≤ i ≤ n− 1, define

ΦB
i = ΦC

i = (β1,i, β1,i−1, γ1,i, γ1,i+1, . . . , βi−1,i, βi−1,i−1, γi−1,i, γi−1,i+1, βi,i),

ΦB
n = (β1,n, β1,n−1, γ1,n, β1,n, . . . , βn−1,n, βn−1,n−1, γn−1,n, βn−1,n, βn,n),

ΦC
n = (γ1,1, β1,n−1, γ1,n, γ1,1, . . . , γn−1,n−1, βn−1,n−1, γn−1,n, γn−1,n−1, γn,n).

Let α ∈ Kp(∞). Define the bracketing sequence Si(α) by replacing the roots in ΦB
i or ΦC

i

with left and right brackets as follows:

In type Bn and Cn with 1 ≤ i < n, set

Si(α) = ) · · · )
︸ ︷︷ ︸

cβ1,i

(· · · (
︸ ︷︷ ︸

cβ1,i−1

) · · · )
︸ ︷︷ ︸

cγ1,i

(· · · (
︸ ︷︷ ︸

cγ1,i+1

· · · ) · · · )
︸ ︷︷ ︸

cβi−1,i

(· · · (
︸ ︷︷ ︸

cβi−1,i−1

) · · · )
︸ ︷︷ ︸

cγi−1,i

(· · · (
︸ ︷︷ ︸

cγi−1,i+1

) · · · )
︸ ︷︷ ︸

cβi,i

.

In type Bn with i = n, set

Sn(α) = ) · · · )
︸ ︷︷ ︸

cβ1,n

(· · · (
︸ ︷︷ ︸

2cβ1,n−1

) · · · )
︸ ︷︷ ︸

2cγ1,n

(· · · (
︸ ︷︷ ︸

cβ1,n

· · · ) · · · )
︸ ︷︷ ︸

cβn−1,n

(· · · (
︸ ︷︷ ︸

2cβn−1,n−1

) · · · )
︸ ︷︷ ︸

2cγn−1,n

(· · · (
︸ ︷︷ ︸

cβn−1,n

) · · · )
︸ ︷︷ ︸

cβn,n

.

In type Cn with i = n, set

Sn(α) = ) · · · )
︸ ︷︷ ︸

cγ1,1

(· · · (
︸ ︷︷ ︸

cβ1,n−1

) · · · )
︸ ︷︷ ︸

cγ1,n

(· · · (
︸ ︷︷ ︸

cγ1,1

· · · ) · · · )
︸ ︷︷ ︸

cγn−1,n−1

(· · · (
︸ ︷︷ ︸

cβn−1,n−1

) · · · )
︸ ︷︷ ︸

cγn−1,n

(· · · (
︸ ︷︷ ︸

cγn−1,n−1

) · · · )
︸ ︷︷ ︸

cγn,n

.

In each case successively cancel all ()-pairs in Si(α) to obtain a sequence of the form

) · · · )(· · · ( which we call the i-signature of α denoted by Sc
i (α).
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Remark 2.13. Roughly, left brackets correspond to roots β ∈ Φi such that β+αi is a root

and right brackets correspond to roots β ∈ Φi such that β −αi is a root (or β = αi) except

when i = n, where some subtleties arise.

Definition 2.14. Let i ∈ I and α ∈ Kp(∞) with α =
∑

(β)∈R cβ(β) ∈ Kp(∞).

• Define wt(α) = −
∑

β∈Φ+ cββ.

• Define εi(α) = number of uncanceled ‘)’ in Si(α).

• Define ϕi(α) = εi(α) + 〈α∨
i ,wt(α)〉.

The following two rules hold except in the case where g is of type Cn and i = n.

• Let β be the root corresponding to the rightmost ‘)’ in Sc
i (α). Define

eiα = α− (β) + (β − αi).

Note that if β = αi, we interpret (0) as the additive identity in Kp(∞). Furthermore,

if no such ‘)’ exists, then eiα = 0, where 0 is a formal object not contained in Kp(∞).

• Let γ denote the root corresponding to the leftmost ‘(’ in Sc
i (α). Define,

fiα = α− (γ) + (γ + αi).

If no such ‘(’ exists, set fiα = α+ (αi).

If g is of type Cn, then en and fn are defined as follows.

• Let β be the root corresponding to the rightmost ‘)’ in Sc
n(α). Define enα as follows,

for k ∈ {1, . . . , n− 1}. If no such β exists, then enα = 0.

(1) If β = γk,n and cγk,n = cβk,n−1
+ 1, then enα = α− (β) + (βk,n−1).

(2) If β = γk,n and cγk,n > cβk,n−1
+ 1, then enα = α− 2(β) + (γk,k).

(3) If β = γk,k, then enα = α− (β) + 2(βk,n−1).

(4) If β = γn,n, then enα = α− (β).

• Let γ denote the root corresponding to the leftmost ‘(’ in Sc
n(α). Define fnα as

follows, for k ∈ {1, . . . , n}. If no such γ exists, then fnα = α+ (γn,n).

(1) If γ = βk,n−1 and cγk,n = cβk,n−1
− 1, then fnα = α− (γ) + (γk,n).

(2) If γ = βk,n−1 and cγk,n < cβk,n−1
− 1, then fnα = α− 2(γ) + (γk,k).

(3) If γ = γk,k, then fnα = α− (γ) + 2(γk,n).

Example 2.15. Let Kp(∞) be of type C3 and let α ∈ Kp(∞), where

α = 4(β1,2) + 2(γ1,3) + 2(γ1,1) + (γ2,2) + (γ2,3) + (γ3,3).

We consider the action of f3, so we must first compute the bracketing sequence:

cγ1,1 cβ1,2
cγ1,3 cγ1,1 cγ2,2 cβ2,2

cγ2,3 cγ2,2 cγ3,3

S3(α) = )) (((( )) (( ) ) ( )

Sc
3(α) = )) (( .

Hence f3α = 2(β1,2) + 2(γ1,3) + 3(γ1,1) + (γ2,2) + (γ2,3) + (γ3,3).
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Example 2.16. Let Kp(∞) be of type C3 and let α ∈ Kp(∞), where

α = 2(β1,2) + 2(γ1,3) + 3(γ1,1) + (γ2,2) + (γ2,3) + (γ3,3).

To compute f3α we first need the relevant bracketing sequence, which is

cγ1,1 cβ1,2
cγ1,3 cγ1,1 cγ2,2 cβ2,2

cγ2,3 cγ2,2 cγ3,3

S3(α) = ))) (( )) ((( ) ) ( )

Sc
3(α) = ))) ( .

Hence f3α = 2(β1,2) + 4(γ1,3) + 2(γ1,1) + (γ2,2) + (γ2,3) + (γ3,3).

Proposition 2.17 ([10]). Using the operators defined in Definition 2.14, the set Kp(∞) is

a crystal isomorphic to B(∞).

3. The isomorphism

Our isomorphism Ψ is given as a reversible algorithm to construct an element of Kp(∞)

from an element of T (∞). We prove that Ψ preserves the crystal structure by using the

fact that under the Middle-Eastern reading the bracketing sequence for marginally large

tableaux factors by row. Throughout we restrict to types Bn and Cn.

Theorem 3.1. Define Ψ: T (∞) −→ Kp(∞) by the following process. Fix T ∈ T (∞) and

let R1, . . . , Rn denote the rows of T starting at the top. Set Ψ(T ) =
∑n

j=1Ψ(Rj), where

Ψ(Rj) is defined as follows. If T is of type Bn:

(1) each pair
(

n , n

)

maps to 2(βj,n);

(2) each 0 maps to (βj,n);

(3) if j = n, then each n maps to 2(βn,n).

If T is of type Cn:

(4) each pair
(

n , n

)

maps to (γj,j);

(5) if j = n, then each j maps to (γn,n).

For all remaining boxes:

(6) j maps to (βj,j) + (γj,j+1);

(7) each pair
(

k , k

)

, where j < k < n, maps to (βj,k) + (γj,k+1);

(8) each unpaired k maps to (βj,k−1), for k ∈ {j + 1, . . . , n};

(9) each unpaired k maps to (γj,k), for k ∈ {n, . . . , j + 1}.

Then Ψ is a crystal isomorphism.

The proof of Theorem 3.1 will occupy the rest of this section.

Example 3.2. Let T be the marginally large tableau of type B3 from Example 2.8. By

Theorem 3.1,

Ψ(T ) = 2(β1,1) + (β1,2) + (β1,3) + 2(γ1,3) + 2(γ1,2) + 3(β2,2) + (β2,3) + 2(γ2,3) + 4(β1,3).
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Then
cβ1,3

2cβ1,2
2cγ1,3 cβ1,3

cβ2,3
2cβ2,2

2cγ2,3 cβ3,3

S3(Ψ(T )) = ) (( )))) ( ( (((((( )))) ))))

Sc
3(Ψ(T )) = ) )) ,

so f3Ψ(T ) = Ψ(T ) + (β3,3), which agrees with

Ψ(f3T ) = 2(β1,1) + (β1,2) + (β1,3) + 2(γ1,3) + 2(γ1,2) + 3(β2,2) + (β2,3) + 2(γ2,3) + 5(β1,3).

Example 3.3. Consider type C3 and

T =
1 1 1 1 1 1 1 2 2 3 3 3 3 3 3 2 2
2 2 2 3 3 3
3 3

.

Then
readME(T ) = 2 2 3 3 3 3 3 3 2 2 1 1 1 1 1 1 1 3 3 3 2 2 2 3 3

br3(T ) = ) ) ( ( ( ( ) ) ( ) (

brc3(T ) = ) ) ( ( ( ,

so

f3T =
1 1 1 1 1 1 1 2 2 3 3 3 3 3 3 2 2
2 2 2 3 3 3
3 3

.

We now apply the isomorphism from Theorem 3.1 to T and f3T to get

Ψ(T ) = 4(β1,2) + 2(γ1,1) + 2(γ1,3) + (γ2,2) + (γ2,3) + (γ3,3), and

Ψ(f3T ) = 2(β1,2) + 3(γ1,1) + 2(γ1,3) + (γ2,2) + (γ2,3) + (γ3,3).

Note that these are the same Kostant partitions as in Example 2.15. Hence

f3Ψ(T ) = Ψ(T )− 2(β1,2) + (γ1,1) = Ψ(f3T ).

Denote by eTi and fT
i the Kashiwara operators on T (∞) from Definition 2.7, and e

Kp
i

and f
Kp
i as the operators on Kp(∞) from Definition 2.14.

Lemma 3.4. Fix i ∈ I \ {n} and a row index j. Let T ∈ T (∞) be such that the only

unshaded boxes occur in row j. If the leftmost ‘(’ in brci (T ) comes from Rj , then f
Kp
i Ψ(T ) =

Ψ(fT
i T ).

Proof. First consider i ∈ {1, . . . , n − 1} and row Rj for j < i. We are only interested in

boxes which give rise to brackets in bri(Rj) or Si

(
Ψ(Rj)

)
. Following Definition 2.7 these

boxes are the pairs
(

i− 1 , ı− 1

)

and the i , i+ 1 , ı+ 1 , and ı .

A pair
(

i− 1 , ı− 1

)

corresponds to no brackets in bri(Rj), and to (βj,i−1), (γj,i) in

Ψ(Rj), corresponding to a canceling pair of brackets in Si

(
Ψ(Rj)

)
. So the statement is true

if and only if it is true with these removed. Thus we can assume Rj has no such pairs.
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Now, assume row j of T has p, q, r, and s boxes of ı+ 1, i+ 1, i, and ı respectively:

Rj = i · · · i i+ 1 · · · i+ 1 · · · ı+ 1 · · · ı+ 1 ı · · · ı

r q p s

Define Ψ(Rj) =
∑

(β)∈R cβ(β). The general bracketing sequences for both are

bri(Rj) = )s (p )q (r , and Si

(
Ψ(Rj)

)
= )

cβj,i (
cβj,i−1 )cγj,i (cγj,i+1 .

Case 1: p > q, r > s and 1 ≤ j < i < n. By the definition of Ψ,

Ψ(Rj) = q(βj,i+1 + γj,i+2) + (p− q)(γj,i+1) + (r − s)(βj,i−1) + s(βj,i + γj,i+1)

= (r − s)(βj,i−1) + s(βj,i) + q(βj,i+1) + (s+ p− q)(γj,i+1) + q(γj,i+2).

Calculating the action of fT
i on Rj gives

fT
i Rj = i · · · i i+ 1 · · · i+ 1 · · · ı+ 1 · · · ı+ 1 ı · · · ı

r q p− 1 s+ 1

.

Then

Ψ(fT
i Rj) = q(βj,i+1 + γj,i+2) + (p− q − 1)(γj,i+1) + (r − s− 1)(βj,i−1) + (s+ 1)(βj,i + γj,i+1)

= (r − s− 1)(βj,i−1) + (s+ 1)(βj,i) + q(βj,i+1) + (s+ p− q)(γj,i+1) + q(γj,i+2).

We now apply the operator fKp
i to Ψ(Rj) to show equivalence. In Sc

i

(
Ψ(Rj)

)
the leftmost

‘(’ corresponds to βj,i−1 so

f
Kp
i Ψ(Rj) = (r − s− 1)(βj,i−1) + (s+ 1)(βj,i) + q(βj,i+1) + q(γj,i+2) + (s+ p− q)(γj,i+1)

= Ψ(fT
i Rj).

Case 2: p > q, r ≤ s, and 1 ≤ j < i < n. By the definition of Ψ,

Ψ(Rj) = q(βj,i+1 + γj,i+2) + (p− q)(γj,i+1) + (s− r)(γj,i) + r(βj,i + γj,i+1)

= r(βj,i) + q(βj,i+1) + q(γj,i+2) + (r + p− q)(γj,i+1) + (s− r)(γj,i).

By the definition of fT
i , we have

fT
i Rj = i · · · i i+ 1 · · · i+ 1 · · · ı+ 1 · · · ı+ 1 ı · · · ı

r q p− 1 s+ 1

.

Then

Ψ(fT
i Rj) = q(βj,i+1 + γj,i+2) + (p− q − 1)(γj,i+1) + (s− r + 1)(γj,i) + r(βj,i + γj,i+1)

= r(βj,i) + q(βj,i+1) + q(γj,i+2) + (r + p− q − 1)(γj,i+1) + (s− r + 1)(γj,i).
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On the other hand, in Sc
i

(
Ψ(Rj)

)
the leftmost ‘(’ corresponds to γj,i+1 so

f
Kp
i Ψ(Rj) = r(βj,i) + q(βj,i+1) + q(γj,i+2) + (r + p− q − 1)(γj,i+1) + (s− r + 1)(γj,i)

= Ψ(fT
i Rj).

Furthermore,

bri(Rj) = )s (p−q (r and Si

(
Ψ(Rj)

)
= )r )s−r (r+p−q,

so both brci (Rj) and Sc
i

(
Ψ(Rj)

)
have s ‘)’ and r + p− q ‘(’.

Case 3: p ≤ q, r > s, and 1 ≤ j < i < n. By the definition of Ψ,

Ψ(Rj) = p(βj,i+1 + γj,i+2) + (q − p)(βj,i) + (r − s)(βj,i−1) + s(βj,i + γj,i+1)

= (r − s)(βj,i−1) + (s + q − p)(βj,i) + p(βj,i+1) + p(γj,i+2) + s(γj,i+1).

By the definition of fT
i , we have

fT
i Rj = i · · · i i+ 1 · · · i+ 1 · · · ı+ 1 · · · ı+ 1 ı · · · ı

r − 1 q + 1 p s

.

Then

Ψ(fT
i Rj) = p(βj,i+1 + γj,i+2) + (q − p+ 1)(βj,i) + (r − s− 1)(βj,i−1) + s(βj,i + γj,i+1)

= (r − s− 1)(βj,i−1) + (s+ q − p+ 1)(βj,i) + p(βj,i+1) + p(γj,i+2) + s(γj,i+1).

On the other hand, in Sc
i

(
Ψ(Rj)

)
the leftmost ‘(’ corresponds to βj,i−1 so

f
Kp
i Ψ(Rj) = (r − s− 1)(βj,i−1) + (s+ q − p+ 1)(βj,i) + p(βj,i+1) + p(γj,i+2) + s(γj,i+1)

= Ψ(fT
i Rj).

Case 4: p ≤ q, r ≤ s, and 1 ≤ j < i < n. By the definition of Ψ,

Ψ(Rj) = p(βj,i+1 + γj,i+2) + (q − p)(βj,i) + (s− r)(γj,i) + r(βj,i + γj,i+1)

= (r + q − p)(βj,i) + p(βj,i+1) + p(γj,i+2) + r(γj,i+1) + (s− r)(γj,i).

If r = 0, then fi will act on the rightmost i in Ri of T (see Case 6 for details on this

situation). When r > 0, by the definition of fT
i , we have

fT
i Rj = i · · · i i+ 1 · · · i+ 1 · · · ı+ 1 · · · ı+ 1 ı · · · ı

r − 1 q + 1 p s

.

Then

Ψ(fT
i (Rj) = p(βj,i+1 + γj,i+2) + (q − p+ 1)(βj,i) + (s− r + 1)(γj, i) + (r − 1)(βj,i + γj,i+1)

= (r + q − p)(βj,i) + p(βj,i+1) + p(γj,i+2) + (r − 1)(γj,i+1) + (s− r + 1)(γj,i).
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On the other hand, in Sc
i

(
Ψ(Rj)

)
the leftmost ‘(’ corresponds to γj,i+1 so

f
Kp
i Ψ(Rj) = (r + q − p)(βj,i) + p(βj,i+1) + p(γj,i+2) + (r − 1)(γj,i+1) + (s− r + 1)(γj,i)

= Ψ(fT
i Rj).

We now establish the result for i ∈ {1, . . . , n− 1} and row j = i. The general bracketing

sequences for both are given here:

bri(Ri) = )s (p )q (r , Si

(
Ψ(Ri)

)
= )

cβi,i .

Following Definition 2.14, since there is no ‘(’ in Si

(
Ψ(Ri)

)
the action of fKp

i will always be

to add (βi,i).

Case 5: p > q, and 1 ≤ j = i < n. If p > q, then the leftmost ‘(’ comes from an

i+ 1 so fT
i Ri sends an i+ 1 to a i . Since p > q this does not change the number of

(

i+ 1 , i+ 1

)

pairs, so Ψ(fT
i Ri) = Ψ(Ri) + (βi,i) = f

Kp
i Ψ(Ri).

Case 6: p ≤ q, and 1 ≤ j = i < n. If p ≤ q, then the leftmost ‘(’ comes from a

i so fT
i Ri sends an i to an i+ 1 . Since p ≤ q this does not change the number of

(

i+ 1 , i+ 1

)

pairs, so Ψ(fT
i Ri) = Ψ(Ri) + (βi,i) = f

Kp
i Ψ(Ri).

Lemma 3.5. Fix a row index j ∈ I. Let T ∈ T (∞) be such that the only unshaded boxes

occur in row j. If the leftmost ‘(’ in brcn(T ) comes from Rj , then f
Kp
n Ψ(T ) = Ψ(fT

n T ).

Proof. Consider fn and T to be of type Bn. We need only consider the n , 0 , and n

boxes, since a pair
(

n− 1 , n− 1

)

corresponds to no brackets in brn(Rj), and to (βj,n−1),

(γj,n) in Ψ(Rj), which gives a canceling pair of brackets in Sn

(
Ψ(Rj)

)
. Assume row j of T

has p n boxes, z 0 boxes, and q n boxes:

Rj = n · · · n 0 n · · · n

q z p

.

The bracketing sequences are:

brn(Rj) = )2p )z (z (2q , Sn

(
Ψ(T )

)
= )

cβj,n (
2cβj,n−1 )2cγj,n (

cβj,n .

Case 1: p ≥ q, z = 0, and 1 ≤ j < n.

By the definition of Ψ,

Ψ(Rj) = 2q(βj,n) + (p− q)(γj,n).

If q = 0, then fn will act on the n in Rn of T (see Case 5 for more details in this situation).

If q > 0 then, by the definition of fT
n ,

fT
n Rj = n · · · n 0 n · · · n

q − 1 1 p

.
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Since p ≥ q there is one less
(

n , n

)

, one more 0 , and one more unpaired n , so

Ψ(fT
n Rj) = 2(q − 1)(βj,n) + (βj,n) + (p− q + 1)(γj,n),

= (2q − 1)(βj,n) + (p− q + 1)(γj,n).

On the other hand, in Sc
n

(
Ψ(Rj)

)
the leftmost ‘(’ corresponds to βj,n so

fKp
n Ψ(Rj) = (2q − 1)(βj,n) + (p − q + 1)(γj,n) = Ψ(fT

n Rj).

Case 2: p < q, z = 0, and 1 ≤ j < n. By the definition of Ψ,

Ψ(Rj) = (q − p)(βj,n−1) + 2p(βj,n).

By the definition of fT
n , we have

fT
n Rj = n · · · n 0 n · · · n

q − 1 1 p

.

The number of
(

n , n

)

pairs is unchanged, there is one less unpaired n and one more

0 , so

Ψ(fT
n Rj) = (q − p− 1)(βj,n−1) + (βj,n) + 2(p)(βj,n)

= (q − p− 1)(βj,n−1) + (2p + 1)(βj,n).

On the other hand, in Sc
n

(
Ψ(Rj)

)
the leftmost ‘(’ corresponds to βj,n−1 so

fKp
n Ψ(Rj) = (q − p− 1)(βj,n−1) + (2p + 1)(βj,j) = Ψ(fT

n Rj).

Case 3: p ≥ q, z = 1, and 1 ≤ j < n. By the definition of Ψ,

Ψ(Rj) = (2q + 1)(βj,n) + (p− q)(γj,n).

By the definition of fT
n , we have

fT
n Rj = n · · · n 0 n · · · n

q 0 p+ 1

.

There is one less 0 and one more unpaired n , so

Ψ(fT
n Rj) = 2q(βj,n) + (p− q + 1)(γj,n).

On the other hand, in Sc
n

(
Ψ(Rj)

)
the leftmost ‘(’ corresponds to βj,n so

fKp
n Ψ(Rj) = 2q(βj,n) + (p− q + 1)(γj,n) = Ψ(fT

n Rj).

Case 4: p < q, z = 1 and 1 ≤ j < n. By the definition of Ψ,

Ψ(Rj) = (q − p)(βj,n−1) + (2p+ 1)(βj,n).
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By the definition of fT
n , we have

fT
n Rj = n · · · n 0 n · · · n

q 0 p+ 1

.

There is one less 0 , one less unpaired n , and one more
(

n , n

)

pair, so

Ψ(fT
n Rj) = (q − p− 1)(βj,n−1) + (2p + 2)(βj,n)

On the other hand, in Sc
n

(
Ψ(Rj)

)
the leftmost ‘(’ corresponds to βj,n−1 so

fKp
n Ψ(Rj) = (q − p− 1)(βj,n−1) + (2p+ 2)(βj,n) = Ψ(fT

n Rj).

Case 5: j = n. The bracketing sequences are

brn(Rn) = )2p )z (z (2q, Sn

(
Ψ(Rn)

)
= )cβn,n .

Since there is no ‘(’ in Sn

(
Ψ(Rn)

)
, fKp

n will add (βn,n) to Ψ(Rn).

If z = 1, then the leftmost ‘(’ in brn(Rn) comes from the 0 so fT
n (Ri) sends the 0 to

n . According to Ψ we then have that

Ψ(fT
n Rn) = Ψ(Rn) + (βn,n) = fKp

n Ψ(Rn).

If z = 0, then the leftmost ‘(’ comes from an n so fT
n Rn sends an n to an 0 . Again

Ψ(fT
n Rn) = Ψ(Rn) + (βn,n) = fKp

n Ψ(Rn).

Now, consider T to be of type Cn. Assume row j of T has p n boxes and q n boxes,

Rj = n · · · n n · · · n

q p

.

The bracketing sequences are:

brn(Rj) = )p (q , Sn

(
Ψ(Rj)

)
= )cγj,j (

cβj,n−1 )cγj,n (cγj,j .

Case 6: p ≥ q, and 1 ≤ j < n. By the definition of Ψ,

Ψ(Rj) = q(γj,j) + (p− q)(γj,n).

If q = 0 then fn will act on the n in Rn of T (see Case 9 for more details in this situation).

When q > 0 by the definition of fT
n we have

fT
n Rj = n · · · n n · · · n

q − 1 p+ 1

.

There are two more unpaired n and one less
(

n , n

)

, so

Ψ(fT
n Rj) = (q − 1)(γj,j) + (p− q + 2)(γj,n).
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On the other hand, in Sc
n

(
Ψ(Rj)

)
the leftmost ‘(’ corresponds to γj,j so

fKp
n Ψ(Rj) = (q − 1)(γj,j) + (p − q + 2)(γj,n) = Ψ(fT

n Rj).

Case 7: q > p+ 1, and 1 ≤ j < n. By the definition of Ψ,

Ψ(Rj) = (q − p)(βj,n−1) + p(γj,j).

By the definition of fT
n , we have

fT
n Rj = n · · · n n · · · n

q − 1 p+ 1

.

There is one more
(

n , n

)

pair and two less unpaired n , so

Ψ(fT
n Rj) = (q − p− 2)(βj,n−1) + (p + 1)(γj,j).

On the other hand, in Sc
n

(
Ψ(Rj)

)
the leftmost ‘(’ corresponds to βj,n−1 so

fKp
n Ψ(Rj) = (q − p− 2)(βj,n−1) + (p+ 1)(γj,j) = Ψ(fT

n Rj).

Case 8: q = p+ 1, and j < n. By the definition of Ψ,

Ψ(Rj) = (q − p)(βj,n−1) + p(γj,j).

By the definition of fT
n , we have

fT
n Rj = n · · · n n · · · n

q − 1 p+ 1

.

Since q − p = 1 the number of
(

n , n

)

pairs is unchanged. There is one less n and one

more n , so

Ψ(fT
n Rj) = (q − p− 1)(βj,n−1) + (γj,n) + p(γj,j).

On the other hand, in Sc
n

(
Ψ(Rj)

)
the leftmost ‘(’ corresponds to βj,n−1 so

fKp
n Ψ(Rj) = (q − p− 1)(βj,n−1) + (γj,n) + p(γj,j) = Ψ(fT

n Rj).

Case 9: j = n. The only positive root that can be in Ψ(Rn) is (γn,n), so there is no ‘(’ in

Sn

(
Ψ(Rn)

)
and, by Definition 2.14, fKp

n adds a (γn,n). The leftmost ‘(’ in brn(T ) comes from

an n , so fT
n sends an n to an n . Hence Ψ(fT

n Rn) = Ψ(Rn) + (γn,n) = f
Kp
n Ψ(Rn).

Proof of Theorem 3.1. It suffices to show that for all i we have f
Kp
i Ψ(T ) = Ψ(fT

i T ). By

the definition of the bracketing sequences and of Ψ, we have

bri(T ) factors as bri(R1)bri(R2) · · · bri(Rn), and

Si

(
Ψ(T )

)
factors as Si

(
Ψ(R1)

)
Si

(
Ψ(R2)

)
· · · Si

(
Ψ(Rn)

)
.
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Suppose that the leftmost ‘(’ in brci (T ) comes from row Rj. There will always be an

uncanceled bracket coming from row i so we may assume j ≤ i. By applying Lemma 3.4

or Lemma 3.5 to each Rj , the leftmost ‘(’ in Si

(
Ψ(T )

)
comes from Si

(
Ψ(Rj)

)
, and also

Ψ
(
fT
i Rj

)
= f

Kp
i Ψ(Rj). The result follows.

4. Stack notation

This work extends results from [3, 11] in types An and Dn to types Bn and Cn. The type

An result can be described using the multisegments from [6, 8, 13] which are a diagrammatic

notation that makes the crystal structure apparent. In [11] this was extended to type Dn

by introducing a stack notation for Kostant partitions in which the crystal structure can

easily be read off. We now define a similar stack notation for types Bn and Cn.

In type Bn we associate positive roots to “stacks” with

βj,k =

k
...

j

, γℓ,m =

m
...

n−1
n n
n−1
...

ℓ

,

for 1 ≤ j ≤ k ≤ n and 1 ≤ ℓ < m ≤ n.

In type Cn we associate positive roots to “stacks” with

βj,k =

k
...

j

, γℓ,m =

m
...

n−1
n

n−1
...

ℓ

, γh,h =

n
n−1 n−1

...

h h

,

for 1 ≤ j ≤ k < n, 1 ≤ ℓ < m ≤ n, and 1 ≤ h ≤ n.

Then the sequences of roots Φi from Definition 2.12 are exactly those positive roots where

we can either add or remove an i from the top of the corresponding stack and still have

either a valid stack, an empty stack, or in type Cn with i = n where we have two valid stacks

side by side. Once the stacks are ordered as in Definition 2.12, the bracketing sequence is

created by placing a left bracket for each i that can be added to the top of a stack, and a

right bracket for each i that can be removed from the top. Note that if both happen then

the root corresponding to the stack appears twice in Definition 2.12, in which case the ‘)’

is placed over the left copy and the ‘(’ over the right copy. If there is a leftmost uncanceled

‘(’ the crystal operator fi adds an i to the top of the corresponding stack (or, in the case of

i = n in type Cn, may combine two stacks together and attach an n at the top). Otherwise

fi creates a new stack consisting of just i.
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Remark 4.1. Being able to add or remove an i from the top of a stack is different from

being able to add or remove an αi from the corresponding root. For instance, in type B3, if

β = α1+α2+2α3, then β−α1 is a root, but there is no 1 at the top of the stack corresponding

to β, so β is not in ΦB
1 . Similarly, in type C3, although

2
3
2
1
is a stack, α1 + 2α2 + α3 is not

in ΦC
1 because the stack for 2α1 + 2α2 + α3 is

3
2 2
1 1

, not
1
2
3
2
1

.

Example 4.2. Consider type C3 and α ∈ Kp(∞) given in stack notation by

α = 2
1

2
1

2
1

3
2
1

3
2
1

3
2 2
1 1

3
2 2
1 1

3
2 2

2
3 3 .

The corresponding 3-signature is

3
2 2
1 1

3
2 2
1 1

2
1

2
1

2
1

3
2
1

3
2
1

3
2 2
1 1

3
2 2
1 1

3
2 2

3
2

3
2 2 3

S3(α) = ) ) ( ( ( ) ) ( ( ) ) ( )

Sc
3(α) = ) ) ( .

Thus the action of f3 on α adds a 3 to top of a 2
1 . This gives

f3α = 2
1

2
1

3
2
1

3
2
1

3
2
1

3
2 2
1 1

3
2 2
1 1

3
2 2

2
3 3 .

Example 4.3. Consider type C3 and α as in Example 2.16. In stack notation,

α = 2
1

2
1

3
2
1

3
2
1

3
2 2
1 1

3
2 2
1 1

3
2 2
1 1

3
2 2

3
2 3 .

Recalculating the 3-signature using stack notation gives

3
2 2
1 1

3
2 2
1 1

3
2 2
1 1

2
1

2
1

3
2
1

3
2
1

3
2 2
1 1

3
2 2
1 1

3
2 2
1 1

3
2 2

3
2

3
2 2 3

S3(α) = ) ) ) ( ( ) ) ( ( ( ) ) ( )

Sc
3(α) = ) ) ) ( .

Since the leftmost ‘(’ comes from a
3
2 2
1 1

, we should add a 3 to the top of this stack, which

gives
3 3
2 2
1 1

. That is not the stack of a single root, but should be thought of as two copies of
3
2
1
, which is the stack of a root. The result is

f3α = 2
1

2
1

3
2
1

3
2
1

3
2
1

3
2
1

3
2 2
1 1

3
2 2
1 1

3
2 2

3
2 3 .
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