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Abstract 

The present study characterized the chronic effect of binary-metal mixtures of cadmium (Cd) and 

zinc (Zn) on Daphnia magna.  The titration design was chosen to characterize the 21-d chronic 

effects of the binary-metal mixtures on survival, growth, reproduction, and metal accumulation 

in D. magna. Using this design, increasing concentrations of Zn (10, 20, 40, 80, 120, 160 and 

200µg/L) were titrated against a constant concentration of 1.5µg/L Cd. The results demonstrated 

that Cd was highly toxic to D. magna. In a mixture with Cd and Zn, sublethal concentrations of 

10 and 20µg/L Zn were insufficient to protect D. magna from chronic Cd toxicity, while 

mixtures containing 40, 80, and 120µg/L Zn provided strong protective effects to D. magna at all 

endpoints and resulted in less-than-additive effects. At higher Zn concentrations, such as 160 and 

200µg/L, Zn appeared to contribute to the toxicity. The less-than-additive effects observed in the 

Cd-Zn mixture can be explained by the decrease in body Cd concentration when increasing Zn 

concentration in the exposure media. Embryos analyzed for morphological alterations in the Cd-

Zn mixtures demonstrated severe developmental defects. The effect of Cd on undeveloped 

embryos while both Zn and Cd are present in the organisms raises a question of whether the 

competitive binding mechanism of Zn and Cd is still happening at the cellular level in the 

organisms. The results of the present study are useful for the development of the Biotic Ligand 

Model and environmental quality guidelines for metal mixtures. This article is protected by 

copyright. All rights reserved 

 

Keywords:  metal toxicity; metal mixture toxicity; reproductive toxicity; embryotic 
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INTRODUCTION 

 In nature, aquatic ecosystems are generally contaminated with mixtures of multiple 

metals. Studies have investigated metal mixture effects for decades [1] but a great portion of 

those studies have only invested large efforts in understanding acute toxicity. For example, in 

recent meta-analyses conducted by Norwood et al. [2] and Vijver et al. [3] only 35% and 9% of 

the studies respectively, reported chronic toxicity. A recent metal mixture evaluation conducted 

by Meyer et al. [1] indicated the need for chronic mixture studies since the lack of chronic 

toxicity data in the literature makes it difficult to arrive at meaningful deductions concerning the 

interactions of metals in long-term exposures. As a result, studies investigating chronic toxicity 

of metal mixtures at sublethal concentrations are essential to improve scientific understanding of 

interactions between metals and organisms and long-term metal mixture toxicity.  

Of interest in the present study is the chronic mixture toxicity of cadmium (Cd) and zinc 

(Zn). Cadmium and Zn are two metals that are commonly found in aquatic environments [4] 

especially near metal-mining and/or metal-processing facilities. Cadmium is a trace non-essential 

metal that has no biological function and is very toxic to aquatic life [5, 6]. Cadmium enters the 

aquatic environment from both natural sources (chemical weathering of soils and bedrock) and 

anthropogenic sources (mining, leachate from contaminated sites, and industrial wastewater 

discharges etc.) [7]. Zinc on the other hand, is an essential nutrient for biotic life, but is also toxic 

at high concentrations [8, 9]. Zinc is introduced into aquatic environments through various 

anthropogenic (manufacturing of brass and other alloys, automobile equipment, medical tools, 

domestic appliances, pharmaceuticals, construction, and synthesis of animal feed and fertilizers), 

and natural sources (chemical weathering of rocks and minerals) [10].  A
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The acute toxicity of metal mixtures on aquatic organisms is not consistent. Studies 

examining the effect of Cd and Zn mixtures across  Daphnia species, and freshawater shrimp and 

copepods have shown additive (noninteractive) and nonadditive (interactive) effects [2, 11-13]. 

Norwood et al. [2] proposed that the variability in organism responses might just be due to 

concentration-dependent, and inter/intraspecific species differences in sensitivity. In addition, 

random variability in organism responses may have led to inaccurate interpretation of mixture 

toxicity assessments as demonstrated by De Laender et al. [14]. If both metal alone and metal 

mixture toxicity tests are not simultaneously conducted, truly nonadditive (less-than-additive or 

greater-than-additive) effects might be misinterpreted as additive effects, or vice versa. As a 

result, in the present study, it was crucial and essential that both Zn alone and Cd-Zn mixture 

tests were conducted concurrently to avoid misleading toxicity interpretations.  

 The objective of the present study is to characterize the chronic effect of Cd and Zn 

mixtures using a titration experimental design as used by Meyer et al. [13]. The measured 

endpoints include: survival, reproduction, growth, and metal accumulation in D. magna when 

exposed to Zn alone and to mixtures of Cd-Zn at sublethal concentrations.  

MATERIALS AND METHODS 

Test organisms 

Laboratory cultured Daphnia magna from the Ecotoxicology and Risk Assessment 

Laboratory at the Loyola University Chicago’s Institute of Environmental Sustainability (IES) 

were utilized in this study. Daphnia magna cultures were maintained in 1L glass beakers (30 per 

beaker). Beakers were filled with 900-1000 ml reconstituted moderately hard water (MHW) 

made from 16-18MΩ MilliQ water and laboratory grade chemicals (CaSO4.2H2O, MgSO4, 

NaHCO3, and KCl) based on the U.S.EPA method for chronic toxicity testing [15]. The water A
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quality measures for the culture media were as follows: hardness ranged from 80 to 84 mg/L as 

CaCO3, alkalinity ranged from 55 to 61 mg/L as CaCO3, pH ranged from 7.19 to 7.89, and 

dissolved oxygen (DO) ranged from 6.87 to 8.32 mg/L. Cultures were maintained at a 

temperature ranging from 21.2 to 25.6°C and at a light:dark photoperiod of 16h:8h. Daphnia 

magna culture water was changed on Mondays, Wednesdays, and Fridays. Dissolved oxygen, 

pH, and temperature were recorded following subsequent water changes. Dissolved oxygen and 

temperature were measured with a DO instrument: model YSI 550A, and pH was measured with 

a Fisher Scientific accumet portable laboratory meter: model AP110. Cultured D. magna were 

fed 6ml of an algae suspension (Raphidocelis subcapitata, formerly known as Selenastrum 

capricornutum) at a concentration of 3x107 cells/ml, and 3ml YCT (a food suspension of yeast, 

cereal leaves and trout chow) at a concentration of 1.7- 1.9 mg solids/L daily. The algae and 

YCT were cultured and prepared in the Loyola University Chicago’s Ecotoxicology and Risk 

Assessment Laboratory based on the U.S. EPA Method [15]. 

Metal alone and binary-metal toxicity tests 

The titration method was used in this study to characterize the chronic toxicity of Cd-Zn 

mixtures on D. magna. The titration design was chosen because it affords the detection of graded 

changes in organism responses, across graded increases in metal concentrations [13]. Using this 

design, nominal Cd concentration was kept constant at 1.5µg/L across all treatments and nominal 

Zn concentrations varied (10, 20, 40, 80, 120, 160 and 200 µg/L). Concentrations of Cd and Zn 

were chosen based on screening chronic toxicity tests conducted in our laboratory (unpublished 

data). A control (MHW) was also used. To compare with the mixture effect, a chronic Zn alone 

test with concentrations equal to the Zn concentrations in the mixture test was conducted. A 

twenty-one day (21) static renewal toxicity test method was used in the present study [16]. To A
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avoid potential interference of organism health effect, the Zn alone and mixture tests were 

conducted simultaneously using neonate D. magna coming from the same batch (5th brood). 

Tests were conducted with 48 h test solution renewals in an aquatic toxicology testing room 

located in the Loyola IES. The aquatic toxicology testing room was set at a temperature of 21°C 

and a photoperiod of light:dark = 16h:8h. The exposure media were prepared from stock 

solutions that were prepared from lab grade metal salts (CdSO4 and ZnCl2). The Zn alone 

toxicity test consisted of 7 treatments with 4 replicates each while the binary-metal toxicity test 

consisted of 8 treatments with  4 replicates each which included a Cd alone treatment. Replicates 

were comprised of 600ml polypropylene cups containing 10 neonate D. magna (<24 h old) in 

200ml of test solution from day 0  to day 10, and 350ml test solution from day 11  to day 21 to 

compensate for D. magna growth.   

Due to the nature of the study, organisms grew over time, therefore, varying amounts of a 

suspension of Raphidocelis subcapitata with a concentration of 3x107 cells/ml and YCT of a 

concentration of 1.7 – 1.9 mg solids/L were fed daily. Food rations were adjusted depending on 

the feeding rate of the organisms. Feeding rate was low when organisms were small but 

increased when the organisms grew bigger (Table 1, Supplemental Data,). 

Mortality was recorded daily to determine effects of Zn and Cd-Zn mixture on survival of 

D. magna. A D. magna was considered dead if no mobility was observed after gentle probing 

with a pipette, and if no organ movements were observed using a 6X Bausch & Lomb magnifier 

(Bausch & Lomb). Dead organisms were removed from the test chambers and discarded. 

Reproductive output was also observed daily once D. magna became sexually mature and began 

reproducing. All neonates, both dead and alive, were separately counted, recorded, removed 

from the test chambers, and discarded. The same procedure was used if any undeveloped A
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embryos were observed in the test chambers. The embryos were collected in a 30 mL 

polypropylene beaker for morphological examination with a Zeiss ZEN imaging software model 

SteREO Discovery.v12. Reproductive rate per day was calculated as a ratio of number of 

neonates produced in a day to the number of surviving adults on the same day. Proportion of 

dead neonates was calculated as a percentage of number of dead neonates observed in a day over 

the total number of dead and live neonates counted on the same day. Proportion of undeveloped 

embryos was calculated as a percentage of the total number of embryos observed in a day over 

the total number of dead, live neonates, and undeveloped embryos counted on the same day. 

Twenty-four hours prior to the termination of the experiment, 50mL polypropylene 

digestion tubes were labelled, placed in a Fisher Drying Oven, and dried at 60°C. At the end of 

the experiment, all surviving adults in each test chamber were collected, transferred into a 

respectively labelled digestion tube, and carefully rinsed three times with DI water. All 

organisms in each replicate were jointly weighed in the digestion tube with a Metro Toledo 

Balance Model XS64, and their wet-weight was recorded. Organisms were then dried in the 

same oven at 60°C for 48 h and reweighed to determine dry weight. The average dry weight for 

each individual organism was obtained by dividing the total weight in each replicate by the 

number of surviving organisms in that replicate.  

Water quality and chemical analyses 

Two 190L batches of MHW were prepared in the Ecotoxicology and Risk Assessment 

Lab during the Cd-Zn mixtures study as described in the test organism section above. Water 

quality measures for both toxicity tests (Zn alone and Cd-Zn mixtures) were taken once a week 

on days 0, 7, 14, and 21. Dissolved oxygen and temperature were measured with a dissolved 

oxygen instrument: model YSI 550A. The pH was measured with a Fisher Scientific accumet A
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portable laboratory meter: model AP110. Hardness and alkalinity were measured by titration 

methods (Methods 2320, 2340) [17]. Hardness was titrated against 0.01 M 

ethylenediaminetetraacetic acid. Alkalinity was titrated against 0.02 N H2SO4. Water samples for 

total and dissolved metals, cations and anions were also collected weekly and at the same time 

with collection of water samples for water quality measurements. For each sample type, 

approximately 14ml of test water was collected into a 15ml polypropylene sample vial. Total 

metal samples were taken directly from the test water, but dissolved metal and cation and anion 

samples were filtered through Whatman polyvinyldifluoride filters with a pore diameter of 

0.45µm. Water samples for total and dissolved metals were preserved with one drop of 

concentrated nitric acid, and refrigerated for later analysis. In addition, approximately 25 ml of 

test water was filtered through a new filter of the same filter type used for dissolved metal and 

cations and anions and collected into a 30 mL amber glass bottle for analysis of dissolved 

organic carbon (DOC). To determine body metal content and accumulation, surviving daphnids 

were digested with HNO3 based on U.S. EPA Method 3050B [18]. Digested solutions were used 

for analysis of metal content in surviving daphnids.  

Analyses of total metal, dissolved metal, and cation concentrations were conducted using 

a 300X NexION ICP-MS (Perkin Elmer). Concentrations of DOC were analyzed with a TOC-L 

CSH analyzer (Shimazu). An 881 Compact Ion Chromatography (Metrohm USA) was used to 

analyze concentrations of anions. Results of the QC samples showed recovery of 90 to 115% for 

total and dissolved metals; 95 to 113% for DOC, and 90 to 110% for anions.  

Data analyses 

For Zn alone test, data were compared for statistically significant differences between 

control and exposure treatments. For the mixture test in addition to comparisons between control A
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and exposure treatments, data were also compared for statistically significant differences 

between Cd alone and Cd-Zn mixture treatments.  

A one-way analysis of variance (ANOVA), along with a Tukey’s honestly significant 

difference (HSD) multiple comparisons test was used to detect treatment differences within each 

endpoint. Differences across treatments of Zn alone and their corresponding Cd-Zn mixtures 

(e.g., treatment 1 for Zn alone and treatment 2 for Cd-Zn mixture) were also analyzed using a 

one-way ANOVA. To test for interaction effects of Cd and Zn, a two-way ANOVA was used, 

treating metal exposure type as a factor (Zn alone or its corresponding Cd-Zn mixture) and the 

concentrations of zinc as another factor. To meet the requirements of homogenous variance and 

normal distribution, an arcsine square root transformation method was used for mortality, the 

proportion of dead neonates and undeveloped embryos data. Square root transformation method 

was used for total neonates, total live neonates, and reproductive rate data. Growth data were not 

transformed because the data met the requirements of homogenous variance and normal 

distribution. Time to first brood data; however were analyzed using the non-parametric method.   

The one-way and two-way ANOVAs were conducted with R-Program (Ver 3.1.1). 

Comparison for significant difference between the model coefficients of metal uptake was 

conducted using SAS (Ver 9.3.1).  An effect with a p < 0.05 is considered significant. 

RESULTS 

Water chemistry 

The average measured total and dissolved metal concentrations deviated approximately 

0-15% from the nominal concentrations (except for the two lowest Zn concentrations) in the Cd-

Zn mixtures and Zn alone treatments (Table 2, Supplemental Data). To be convenient, nominal 

concentrations are used to present the test treatments. However, measured dissolved Zn A
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concentrations in the test water of Zn alone and Cd-Zn mixture tests were used for modeling the 

relationship between water Zn concentration and body Zn and Cd concentrations (Fig. 11).  

The average and standard deviation of hardness, alkalinity, pH, DO, and temperature for 

the Zn alone test were: 88.7 ± 7.18 mg/L as CaCO3 (n=12), 61.5 ± 3.97 mg/L as CaCO3 (n=12), 

7.6 ± 0.16 (n=26), 7.3 ± 0.24 mg/L (n=26), and 22.6 ± 0.40°C (n=26) respectively. Those same 

water quality parameters for the Cd-Zn mixture test were: 90.6 ± 4.52 mg/L as CaCO3 (n=12), 

60.4 ± 3.85 mg/L as CaCO3 (n=12) 7.7 ± 0.15 (n=26), 7.7 ± 0.34 mg/L (n=26), and 22.3 ± 

0.45°C (n=26) respectively. Although organic carbon was not added into the test water, an 

average measurement of DOC concentrations of 4.44mg/L for Zn alone and 4.21 mg/L for Cd-

Zn mixture tests were found (Table 3, Supplemental Data). The DOC was suspected as coming 

from the fed diet of D. magna (YCT and algae) and our DOC analysis on the YCT samples 

confirmed this suspicion. The average concentration of Cl-, SO4
2-, F-, PO4

3-, and Br- of Zn alone 

and Cd-Zn mixture tests ranged from, 4.1 to 6.2 mg/L, 157 to 175mg/L, 0.6 to 0.7 mg/L, not 

detected to 0.26 mg/L, and not detected to 1.3 mg/L, respectively (Table 4, Supplemental Data). 

The average concentration range of Na+, K+, Ca2+, and Mg2+ of Zn alone and Cd-Zn mixture tests 

were 25.6 – 33.4, 2.1 – 3.0, 12.4 – 14.4, and 11.9 – 14.3 mg/L, respectively.  

Survival  

 The average 21-d cumulative percent mortality in the Cd-Zn mixtures containing 40, 80, 

or 120µg/L Zn were significantly lower in comparison to Cd alone (p<0.01) while the Cd-Zn 

mixtures containing 160 and 200µg/L Zn were significantly higher (p<0.01) (Fig. 1). There was 

no statistically significant difference in cumulative mortality between the Cd-Zn mixtures 

containing 10 and 20µg/L Zn and Cd alone. This indicates that when Zn is present at low 

concentrations, such as 10 and 20µg/L in a mixture with 1.5 µg/L Cd, mortality remains high and A
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the Cd effect on survival is still pronounced. However, as Zn concentrations increase in the 

mixtures (40, 80, and 120µg/L), mortality significantly decreases, reaching the lowest mortality 

at 80µg/L (Fig. 1). Therefore, at a sufficient concentration, Zn protects D. magna from the 

chronic toxicity of Cd, an evidence of a less-than-additive effect. However, given that the 

cumulative mortality was significantly different between Cd-Zn mixtures and Cd alone at higher 

Zn concentrations (i.e., 160, 200 µg/L), Zn accumulation likely exceeded the threshold for Zn-

caused toxicity to D. magna and thereby caused most or all of the observed toxicity.  

In comparing the cumulative percent mortality of Zn alone with its corresponding Cd-Zn 

mixture, the treatments containing 10, 20, or 40µg/L Zn were found to be significantly different 

(p<0.05) (Fig. 1). At these concentrations of Zn alone, there was no mortality or non-significant 

difference in mortality between the control and Zn alone treatments (Fig. 1). These results 

signify that the toxicity in those Cd-Zn mixtures would be due to Cd exposure. There was no 

statistically significant difference found in mortality between Zn alone and its corresponding Cd-

Zn mixture at the higher Zn concentrations (80 to 200 µg/L). However, given that the cumulative 

mortality in the Zn alone treatments containing 80 and 120µg/L were not significantly different 

from the control; the toxicity observed in the corresponding Cd-Zn mixtures might also have 

been due to Cd exposure. At higher Zn concentrations (160 and 200µg/L), the toxicity observed 

in the Cd-Zn mixtures was likely due to Zn exposure because there was no significant difference 

in cumulative mortality between Zn alone and its corresponding Cd-Zn mixture. 

Reproduction  

Total neonates, live neonates, and reproductive rates: The effects of the Cd-Zn mixtures on 

the reproductive effort of D. magna are as follows. The total number of neonates (p<0.05) (Fig. 

2) and the number of live neonates (p<0.05) (Fig. 3) reproduced by D. magna in the Cd-Zn A
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mixtures containing 40, 80, or  120µg/L Zn were significantly higher in comparison to Cd alone. 

Similarly, the overall reproductive rate (p<0.05) (Fig. 4), and the live neonate reproductive rate 

(p<0.05) (Fig. 5) were also significantly higher in the Cd-Zn mixtures containing 40, 80, or 

120µg/L Zn than in Cd alone. No other Cd-Zn mixture had a significantly higher number of 

neonates or reproductive rates than that of Cd alone. These results suggest that Cd-Zn mixtures 

containing 10 and 20µg/L Zn are not sufficient to protect D. magna from Cd reproductive effect. 

Daphnia magna in those mixtures did not reproduce neither a higher number of total neonates 

nor a higher number of living neonates compared to Cd alone (Figs. 2, 3), thereby reflecting the 

reduction in their respective reproductive rates (Figs. 4, 5). However, increasing Zn 

concentrations in the mixtures (40, 80, and 120µg/L) inhibited Cd reproductive effects (evidence 

of a less-than-additive effect), which translated into a significantly higher number of both total 

neonates (Fig. 2) and live neonates (Fig. 3). These are represented in the higher overall 

reproductive rate shown in Figure 4 and the higher live neonate reproductive rate reflected in 

Figure 5. On the other hand, in mixtures containing higher Zn concentrations of 160 or 200µg/L, 

less-than-additive effects were not observed. Interestingly, only the Cd-Zn mixture containing 

200µg/L Zn had significantly lower number of both total neonates (p<0.05) (Fig. 2), and living 

neonates (p<0.05) (Fig. 3) in comparison to Cd alone. Again at Zn concentrations of 160 and 

200µg/L, Zn accumulation likely exceeded the threshold for Zn-caused toxicity to D. magna and 

thereby caused most or all of the observed toxicity. Similar to the survival results, the 

reproduction results also show less-than-additive effect of Cd-Zn mixtures when the Zn 

concentrations were sufficient but did not exceed the threshold for Zn-caused impairment. 

The total number of neonates and the overall reproductive rate in Zn alone treatments 

containing 10, 20, 40, or 80µg/L showed no significant difference with the control (Figs. 2, 4). A
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Similarly, but not quite entirely, Zn alone concentrations of 10, 20, or 40µg/L were found to be 

non-toxic to D. magna reproduction of live neonates (Fig. 3) and Zn alone concentrations of 10, 

20, 40, or 80µg/L were found to be non-toxic on the live neonate reproductive rate (Fig. 5). On 

the other hand, treatments containing higher Zn alone concentrations, such as 120, 160, or 

200µg/L Zn were found to be toxic to both D. magna’s reproduction of total neonates (Fig. 2) 

and live neonates (Fig. 3), since those treatments contained a significantly lower number of live 

neonates than the control. Additionally, the overall reproductive rate in Zn alone did not reveal 

toxic manifestations in any treatment, except at the highest Zn alone concentration (200µg/L) 

(Fig. 4). Likewise, in the live neonate reproductive rate, only the Zn alone treatments containing 

120 and 200µg/L were found to be significantly affected (Fig. 5).  

Sublethal Zn alone treatments containing 10, 20, or 40µg/L had a significantly higher 

number of total neonates (p<0.05) (Fig. 2), and a significantly higher overall reproductive rate 

(p<0.05) (Fig. 4) in comparison to their corresponding Cd-Zn mixtures. These results suggest 

that the reproductive effect observed in those Cd-Zn mixtures was due to Cd exposure. The Zn 

alone treatment containing 80µg/L did not exhibit a significantly higher number of total neonates 

(Fig. 2), nor a higher overall reproductive rate (Fig. 4) in comparison to its corresponding Cd-Zn 

mixture. In addition, the reproductive effect of Zn alone was not significantly different from the 

control. Thus the observed reproductive effects in this mixture were likely still due to Cd 

exposure.  Higher concentrations of Zn alone treatments (e.g., 120 and 160µg/L Zn) were also 

found to have a significantly higher number of total neonates (Fig. 2) and a higher overall 

reproductive rate (Fig. 4) than their corresponding Cd-Zn mixtures.  The one exception was the 

Zn alone treatment at 200µg/L.  These results suggest that the observed reproductive effects in A
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the Cd-Zn mixtures containing 120 and 160µg/L in Figure 2 were due to a joint effect of both Cd 

and Zn, since Zn alone effects in those treatments were significantly lower than the control.  

The results in the analysis of total live neonates (Fig. 3) and the live neonate reproductive 

rate (Fig. 5) were similar to the results obtained in the analysis of total neonates (Fig. 2) and the 

overall reproductive rate (Fig. 4). The only difference was that the Zn alone treatment containing 

80µg/L were found to be significantly lower in comparison to the control when only live 

neonates were considered (Fig. 3). Moreover, since that same treatment was also found to 

contain a significantly higher number of live neonates than its corresponding Cd-Zn mixture 

(Fig. 3); the reproductive effect observed in the mixture was due to both Cd and Zn, a result that 

was not detected when both dead and live neonates were considered collectively (Fig. 2). Lastly, 

with respect to the live neonate reproductive rate (Fig. 5), the Zn alone treatment containing 

120µg/L was significantly lower than the control, signifying that the reproductive effect 

observed in its corresponding Cd-Zn mixture was due to both Cd and Zn. Again, this was a result 

that was not detected when total neonates were considered (Fig. 4).  

Total dead neonates and undeveloped embryos.  The present study shows  that except for 

the treatment containing 200µg/L Zn, other Cd-Zn mixtures had a significantly higher percentage 

of dead neonates than did the control (p<0.05) (Fig. 6). Moreover, the Cd-Zn mixtures containing 

10, 20, or 40 µg/L Zn had a significantly higher percentage of dead neonates compared to the Cd 

alone treatment (p<0.05), whereas Cd-Zn mixtures containing higher Zn concentrations were not 

(Fig. 6). These results indicate that Zn did not protect neonate D. magna from Cd toxicity.  

The percentage of dead neonates observed in the Cd-Zn mixtures containing 10, 20, or 

40µg/L were significantly higher than the percentage of dead neonates observed in their 

corresponding Zn alone treatments (p<0.05) (Fig.6). This suggests that Cd plays an important A
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role in producing effects in those Cd-Zn mixtures. At higher Zn concentrations there was no 

significant difference in percentage of dead neonates observed in mixtures and their 

corresponding Zn alone treatments. This suggests that the role of Cd in producing effects in these 

mixtures is not important.  

For the percentage of undeveloped embryos, all Cd-Zn mixtures and Cd alone were 

significantly different from the control with a p-value of less than 0.01 and 0.05, respectively. 

(Fig. 7). However, no Cd-Zn mixture held a significantly higher percentage of undeveloped 

embryos in comparison to Cd alone (Fig. 7).  

Except for the 80 µg/L Zn, all Cd-Zn mixtures had a significantly higher percentage of 

undeveloped embryos in comparison to their corresponding Zn alone treatments (p<0.05) (Fig. 

7). These results suggest that the effects observed in the Cd-Zn mixtures at low Zn 

concentrations (i.e., 10, 20, 40 µg/L Zn) were likely due to Cd exposure because their 

corresponding Zn alone treatments did not produce significant differences with the control (Fig. 

7). At higher Zn concentrations, Zn alone treatments produced a significantly higher percentage 

of undeveloped embryos than did the control (Fig. 7). These results suggest that the effect 

observed in mixtures with higher Zn concentrations was due to both metals. Significant impaired 

reproduction was observed in the Cd-Zn mixture with 200µg/L Zn, and its corresponding Zn 

alone (Figs. 2, 3). Therefore, no undeveloped embryos were observed in those treatments. 

The undeveloped embryos observed in the Cd-Zn mixtures were scanned for the presence 

of developmental obstructions and morphological alterations. A gravid adult D. magna from the 

laboratory culture was collected and dissected for embryos and used as a control. Compared to 

the control embryos, the embryos collected from the Cd-Zn mixtures revealed several 

morphological defects that either halted mitotic cell division (cleavage), or disrupted cellular A
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arrangement and organization which likely prevented the development of an embryo beyond 

stage 5 (Fig. 8H). 

Time to first brood. The time to first brood for Cd alone was significantly earlier (9.25 

days on average) in comparison to the control (11 days on average) (p<0.01) (Fig. 9). With 

exception to the Cd-Zn mixture containing 20µg/L Zn, the time to first brood of the other 

mixture treatments was significantly higher than that of Cd alone. In addition, there was no 

significant difference in the time to first brood between Zn alone and its corresponding Cd-Zn 

mixture except in the treatment containing 200 µg/L Zn, at which the time to first brood for the 

mixture treatment was also significantly higher than the control.  These results indicate that the 

Cd-Zn mixture containing 200µg/L Zn increased the time to first brood (Fig. 9).  

Growth effects 

The dry weights of the surviving D. magna  exposed to Cd-Zn mixtures containing 40, 

80, or 120µg/L Zn were significantly higher than the dry weight of surviving organisms in Cd 

alone (p<0.05) (Fig. 10). Furthermore, the dry weight of the surviving organisms in the other Cd-

Zn mixtures was not significantly higher in comparison to Cd alone (Fig. 10). Once more, these 

results imply that Cd-Zn mixtures containing 10 and 20µg/L Zn were not sufficient to induce 

protective effects from Zn to D. magna. However, Cd-Zn mixtures containing higher Zn 

concentrations (e.g., 40, 80, and 120µg/L Zn) strongly protected D. magna from Cd growth 

effect, reaching a peak at 80µg/L (evidence of less-than-additive effects). Conversely, a 

protective effect from Zn was not observed in the Cd-Zn mixture containing 160µg/L Zn. This 

result indicated that 160µg/L Zn exceeded the necessary concentration to protect D. magna from 

chronic Cd growth effect.  A
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The dry weights of the daphnids in the Cd-Zn mixtures containing 10, 20, 40, 80, and 

120µg/L Zn were significantly lower in comparison to the dry weight of their corresponding Zn 

alone treatments (p<0.01) (Fig. 10). These same Zn alone treatments were not significantly 

different from the control, except for the treatment containing 120µg/L Zn (p<0.05) (Fig. 10). 

Therefore, the growth effects observed in the Cd-Zn mixtures containing 10, 20, 40, and 80µg/L 

Zn were likely due to Cd exposure. However, the growth effect  observed in the Cd-Zn mixture 

containing 120µg/L Zn was most likely due to both Cd and Zn, since  the dry weight of the 

organisms in Zn alone treatment was significantly different from the control. At higher Zn 

concentration (160µg/L Zn), Zn became toxic to the organisms, and the effect observed in the 

Cd-Zn mixture was most likely due to Zn exposure.  

Metal accumulation effects 

The measured Cd concentrations in the body of surviving daphnids exposed to Cd alone 

or Cd-Zn mixtures were significantly higher than the measured Cd concentration in control 

organisms (Fig. 11). The results also showed that as Zn concentration increased in the exposure 

media of Zn alone and Cd-Zn mixture tests, Zn concentration gradually increased in the body of 

the surviving daphnids, fitting a power function (Fig. 11). Subsequently, a gradual decrease in 

body Cd concentrations followed a similar fitting power function (Fig. 11).  

The results obtained from the body analysis of the surviving daphnids from Cd-Zn 

mixtures are consistent with the hypothesis that metals compete for binding sites on the biotic 

ligand. The organisms exposed to Cd alone accumulated significantly more Cd than organisms 

exposed to a mixture of Cd-Zn (p<0.01) (Fig 11). These results enforce a strong evidence of a 

competitive accumulation effect which results in a less-than-additive effect in Cd-Zn mixtures at 

Zn concentrations less than 120µg/L. It is also interesting that the coefficient of the uptake model A
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for Zn alone (75.556) was significantly higher than that for Cd-Zn mixture (52.898) (p=0.03). 

This indicates that body Zn concentrations of daphnids were higher in Zn alone treatments than 

in Cd-Zn mixtures. These results suggest an interference of Cd on Zn uptake.   

DISCUSSION 

In general, the results of the present study are consistent with other literature studies 

indicating a protective effect of Zn from Cd toxicity. For example, Meyer et al. [1] found a less-

than-additive toxicity of Cd-Zn mixtures on D. magna. Cañizares-Villanueva et al. [19] reported 

reduced Cd toxicity on D. magna when Zn was present in a mixture after biological treatment 

with suspended cultures of Chlorella vulgaris in a 48 h assay (less-than-additive). Attar and 

Maly [20] also documented reduced Cd toxicity on D. magna after acute exposures to Cd-Zn 

mixtures. Other studies utilizing test organisms such as shrimp, flag fish, minnows, trout, and 

green algae have also reported less-than-additive toxicity between Cd and Zn mixtures [10, 21-

25]. However, at high Zn concentrations in the mixtures, Zn became toxic to the organisms. The 

less-than-additive or joint toxic effect in Cd-Zn mixtures only occurred at certain concentrations 

of Zn and must be dependent on water quality characteristics that influence the bioavailability of 

metals, such as DOC, pH, and hardness. The discussion below is in the context of the water 

quality characteristics used in the present study.  

Less-than-additive effect and competitive uptake 

Overall, results of the present study indicate that at Zn concentrations less than 160 µg/L, 

the chronic effect of Cd-Zn mixture was less-than-additive. When Zn concentration is sufficient 

(not toxic when present alone), Zn appeared to protect the organisms from the chronic toxicity of 

Cd. The mechanisms of metal mixture toxicity is not clearly understood. It is believed that the 

less-than-additive toxicity of metal mixtures in aquatic organisms is due to the competitive A
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binding mechanism at the biotic ligand [1, 26]. Metals that have stronger affinity with the biotic 

ligand would occupy more binding sites, and therefore, be accumulated more in organisms than 

other metals that have less affinity with the biotic ligand. In the present study, we found that as 

Zn concentrations gradually increased in the exposure media of the Cd-Zn mixtures, body Zn 

concentration of D. magna subsequently increased, while the body Cd concentration decreased 

(Fig. 10). This finding supports the competitive binding mechanism of metals at the biotic ligand 

and agrees with the results published by Komjarova and Blust [27]. Benson et al. [28] also found 

similar results for acute toxicity with D. magna and Cd-Zn mixtures. The decrease in body Cd 

concentration in D. magna when increasing water Zn concentration explains the less-than-

additive effect of the Cd-Zn mixtures. Typically, Zn produced protective effects against Cd 

toxicity to the organisms. The protective effect is more profound when Zn concentration is 

sufficient, for example mortality significantly decreased (Fig. 1) and reproduction (Figs. 2, 4) 

and growth (Fig. 9) significantly increased at Zn concentrations of 40, 80, and 120µg/L. At Zn 

concentrations of 10 or 20 µg/L, no significant protective effect of Zn against Cd toxicity was 

found. However, when Zn concentrations were greater than the necessary concentration to 

produce protective effects   (e.g., ≥160µg/L), Zn appeared to contribute to the toxicity. 

Although body Cd concentration decreased with increasing water Zn concentration, it 

was still significantly higher than the body Cd concentration of the control organisms. This 

indicates that Zn did not completely block Cd binding to the biotic ligand. As a result, Cd still 

entered the organisms and produced certain levels of effects. For example, mortality in the 

mixtures did not completely decrease to 0% (mixture treatments 40, 80, 120 µg/L Zn, Fig. 1); 

reproduction rates of the mixtures were lower compared to the rates of Zn alone (mixture A
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treatments 40, 80, 120 µg/L Zn, Figs. 2-5); or more dead neonates and undeveloped eggs were 

found in the mixtures than in Zn alone treatments (i.e., 10, 20, 40 µg/L Zn, Figs. 6, 7).  

Early reproduction, food consumption, and possible detoxification mechanism 

It is interesting that D. magna in the Cd alone treatment produced neonates earlier than 

did the control D. magna (Fig. 9) (our coming unpublished results of Cd-Ni study showed 

similar effects). The fundamental question becomes what is the reason the organisms produced 

neonates earlier under the Cd alone condition?  Yu and Wang [29] reported that up to 44-67% 

and 16-47% of selenium (Se) uptake by D. magna from the aqueous phase and dietary phase, 

respectively, were lost from the organisms via reproduction. The question of whether the transfer 

of a significant portion of accumulated Se to her offspring as a detoxification mechanism is still 

unanswered. In the present study, D. magna might have allocated energy towards earlier 

reproduction. In addition, when comparing the percentage of dead neonates produced in Zn alone 

and its corresponding Cd-Zn mixtures; the percentage of dead neonates produced in Cd-Zn 

mixtures containing 10, 20, or 40 µg/L Zn were significantly higher than those in Zn alone. 

Whether early reproduction with its higher percentage of dead neaonates is a mechanism to 

eliminate the adult’s body Cd is still an unanswered question. Results of the present study did 

show a significant reduction in body Cd concentrations in these mixture treatments compared to 

Cd alone (Fig. 11). Further research is necessary to answer this question. 

Our observations also showed that D. magna exposed to Cd alone did not consume much 

of the algae fed to them routinely. Consequently, lower reproduction rates and body weights in 

the Cd alone treatment compared to the control were observed in the present study. After 21 days 

of exposure, D. magna exposed to Cd alone were found to have experienced a 71.4% decrease in 

average body weights in comparison to control organisms (Fig. 10). Likewise, Bodar et al. [30] A
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exposed D. magna neonates to 1 and 5µg/L Cd and found that after 14 days of exposure, the 

body weights of D. magna in both Cd treatments had dropped to approximately 40% in 

comparison to the control. Bodar and colleagues [5] reported that Cd directly disrupted feeding 

behavior and digestive mechanisms, which resulted in altered metabolism, subsequently reducing 

food consumption. Another study by Jemec et al. [31] also found that Cd concentrations 

≥0.656µg/L significantly affected D. magna reproduction and survival. Likewise, Elnabaraway 

et al. [32] demonstrated that a sublethal Cd concentration of 2.5µg/L significantly reduced 

fecundity of reproducing D. magna in as early as 14 days of exposure. 

Effects on embryo development 

The observation of undeveloped embryos in the present study indicates the effect of Cd 

and Zn on embryo development. The effect is more likely due to Cd since a higher number of 

undeveloped embryos was found in the Cd-Zn mixtures than in Zn alone (Fig. 7). 

 Fisher et al. [33] demonstrated that metals can directly adsorb onto developing 

embryos/neonates in the brood chamber and prevent embryo development. Another recent study 

investigating Cd embryotoxicity revealed that D. magna embryos experienced severe 

morphological defects after acute exposures to 60, 80, or 100µg/L Cd [34]. Neonates were 

observed to have many deformities which ranged from caudal spine malformations, to poorly 

developed carapaces, and no antennas or eyes [34]. Although the concentrations of Cd used in 

the study by Djekoun et al. [34] were between 1 and 2 orders of magnitude higher than the 

concentration of Cd used in the present study, it is clear that with the water chemistry of the 

present study, 1.5µg/L Cd, with chronic exposure is sufficient to induce embryonic deformities. 

In examining embryonic morphological alterations, the study conducted by Mittmann et 

al. [35] was used as a reference (Fig. 8). Embryos collected from Cd alone, and the Cd-Zn A
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mixtures showed that the developing offspring experienced morphological deformities which 

translated either to the shutdown of mitotic cell division (early or late cleavage) (Fig. 8B, D); 

disruption of cellular arrangement and organization (gastrulation) (Fig. 8F, J), or complete 

prevention from further development beyond stage 5 (Fig. 8H) in comparison to the control 

embryos which displayed normal cleavage, a higher degree of cellular arrangement, 

organization, and differentiation (Fig. 8A, C, E, G, I).  

Noticeably, the results further demonstrate that embryos exposed to Cd alone only 

underwent early cleavage, giving rise to a morula (Fig. 8B, while embryos exposed to the Cd-Zn 

mixture underwent late cleavage, giving rise to a blastula (Fig. 8D), gastrulation (Fig. 8F, J), or 

development to stage 5 (Fig. 8H). Although some embryos were able to form a blastula and 

initiate gastrulation, the blastomeres were totally disorganized or deformed, and conglomerated 

into a blob of cells (Fig. 8F, J). This suggests that at some degree the blastomeres lost their 

ability to successfully communicate, and were unable to faithfully arrange and organize 

themselves. The effects of Cd on the morphological development of D. magna could be due to 

the disruption of biochemical signals that are essential to the successful development of D. 

magna embryos or it could be acting as a genotoxic agent that leads to the premature death of the 

developing embryos. Filipic and Hei [36] reported that Cd has high mutagenic activity since it 

predominantly induces large deletion mutations. In addition, Cd is able to interact with reactive 

oxygen species (ROS), disrupting cellular signaling and interfering with DNA repair [36].  

Since Cd and Zn inhibit Ca uptake, these metals might have disrupted calcium 

homeostasis, and altered Ca-dependent cellular signaling. Cytoplasmic Ca signaling is known to 

regulate genes associated with differentiation, growth, and apoptosis, and disruption of those 

signaling pathways would lead to deleterious effects, including DNA impairment, transcriptional A
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abnormalities, and malignant cellular growths [37]. Cadmium is able to inappropriately activate 

Protein Kinase C (PKC) at nM concentrations, but also reversibly, inhibit its activity at µM 

concentrations [38, 39]. In addition, Cd can also replace the Ca2+ ion on Ca-dependent signaling 

proteins and disrupt the normal functions of those proteins [40]. For example, calmodulin, 

another Ca dependent signaling protein, is able to strongly bind to, modify, and interact with 

many target proteins, including kinases and phosphatases inducing several cellular signaling 

pathways [41]. These cellular effects are central to the toxic mechanisms of Cd. 

It is interesting to mention that at concentrations of 40, 80, 120 µg/L, Zn protected adult 

D. magna from Cd toxicity (Fig. 1). The protective effect by a metal against toxic effect by 

another metal to aquatic organisms is attributed to a competitive binding mechanism at the biotic 

ligand [1, 26].  However, there was no significant reduction in the percentage of undeveloped 

embryos in the mixtures compared to Cd alone (Fig. 7).  This indicates that Zn did not have a 

protect effect on embryonic development in the mixtures. On the other hand, the percentage of 

undeveloped embryos were higher in the mixtures than their corresponding Zn alone treatment, 

signifying that Cd still plays a major role in affecting embryonic development in the mixtures. 

The effect on embryonic development could be due to accumulated Zn and Cd in D. magna. 

When looking at metal uptake at these water Zn concentrations, we found that body Zn 

concentration increased while body Cd concentrations in adult D. magna decreased (Fig. 11). 

Nevertheless, even with higher concentration of Zn accumulation in the body, low concentration 

of Cd still had a negative influence on embryonic development. This raises a question of whether 

competitive binding plays a major role in modifying impairment of embryonic development. 
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CONCLUSIONS AND SUGGESTIONS 

Given the water chemistry parameters used in the present study, with optimal water Zn 

concentrations ranging from 40 to 120 µg/L; Zn protected D. magna from the chronic toxicity of 

Cd, resulting in less-than-additive effects on survival, growth and reproduction. Zinc 

concentrations that are outside of the optimal range can either be insufficient to protect the 

organisms from Cd toxicity or join the toxic effects of Cd.  In general, when water Zn 

concentration increased, body Zn concentration increased and body Cd concentrations decreased. 

This explains the protective effect of Zn from Cd toxicity due to competitive binding mechanism 

between Cd and Zn at the biotic ligand.  However, Cd affected embryonic development of D. 

magna regardless of the presence of Zn in the water or in the organisms. This embryonic effect is 

not explained by the competitive binding mechanism at the biotic ligand and raises a question of 

whether competitive binding plays a major role in modifying impairment of embryonic 

development? More studies should be conducted to characterize the interactive mechanisms 

between metals at the cellular level in organisms. Results of the present study are useful for 

development of metal mixture BLM and environmental quality guidelines.  
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Fig. 1. 21-d cumulative mortality of D. magna due to exposure to Cd alone, Zn alone, and Cd-Zn 

mixtures containing constant Cd concentration of 1.5µg/L and varied Zn concentrations. A: significant 

differences between Cd alone and Cd-Zn mixtures (p<0.01). B: significant differences between control 

and Cd-Zn mixtures (p<0.001). C: significant differences between control and Zn alone (p<0.001). D:  

significant difference between control and Cd alone (p<0.001). *significant differences between Zn alone 

and Cd-Zn mixtures (p<0.05). . 

 

 
Fig. 2. Total neonates (dead and live) reproduced over 21-d of exposure to Cd alone, Zn alone, and Cd-Zn 

mixtures containing constant Cd concentration of 1.5µg/L and varied Zn concentrations. A: significant 

differences between Cd alone and Cd-Zn mixtures (p<0.05). B: significant differences between control 

and Cd-Zn mixtures (p<0.05). C: significant differences between control and Zn alone (p<0.05). D: 

significant difference between control and Cd alone (p<0.001).*significant differences between Zn alone 

and Cd-Zn mixtures (p<0.05). 
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Fig. 3. Total live neonates reproduced over 21-d of exposure to Cd alone, Zn alone, and Cd-Zn mixtures 

containing constant Cd concentration of 1.5µg/L and varied Zn concentrations. A: significant differences 

between Cd alone and Cd-Zn mixtures (p<0.05). B: significant differences between control and Cd-Zn 

mixtures (p<0.01). C: significant differences between control and Zn alone (p<0.05). D: significant 

difference between control and Cd alone (p<0.001). *significant differences between Zn alone and Cd-Zn 

mixtures (p<0.01). 

 

 
 

 

Fig. 4. Overall reproductive rate (dead + live neonates) of D. magna when exposed to Cd alone, Zn alone, 

and Cd-Zn mixtures containing constant Cd concentration of 1.5µg/L and varied Zn concentrations. A: 

significant differences between Cd alone and Cd-Zn mixtures (p<0.05). B: significant differences 

between control and Cd-Zn mixtures (p<0.05). C: significant differences between control and Zn alone 

(p<0.05). D: significant difference between control and Cd alone (p<0.001). *significant differences 

between Zn alone and Cd-Zn mixtures (p<0.05). 
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Fig. 5. Reproductive rate (live neonates) of D. magna when exposed to Cd alone, Zn alone, and Cd-Zn 

mixtures containing constant Cd concentration of 1.5µg/L and varied Zn concentrations. A: significant 

differences between Cd alone and Cd-Zn mixtures (p<0.05). B: significant differences between control 

and Cd-Zn mixtures (p<0.01). C: significant differences between control and Zn alone (p<0.05). D: 

significant difference between control and Cd alone (p<0.001). *significant differences between Zn alone 

and Cd-Zn mixtures (p<0.05). 

 

 

 

 
Fig. 6. Percent of dead neonates reproduced over 21-d of exposure to Cd alone, Zn

 
alone, and Cd-Zn 

mixtures containing constant Cd concentration of 1.5µg/L and varied Zn concentrations. A: significant 

differences between Cd alone and Cd-Zn mixtures (p<0.05). B: significant differences between control 

and Cd-Zn mixtures (p<0.05). C: significant differences between control and Zn alone (p<0.05). D: 

significant difference between control and Cd alone (p<0.05). *significant differences between Zn alone 

and Cd-Zn mixtures (p<0.05). 
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Fig. 7. Percent of undeveloped embryos observed over 21-d of exposure to Cd alone, Zn alone, and Cd-

Zn mixtures containing constant Cd concentration of 1.5µg/L and varied Zn concentrations. A: significant 

differences between control and Cd-Zn mixtures (p<0.01). B: significant differences between control and 

Zn alone (p<0.05). C: significant difference between control and Cd alone (p<0.05). *significant 

differences between Zn alone and Cd-Zn mixtures (p<0.05).
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 Fig. 8. Embryo development of D. magna over 10 stages.  

A: Control embryo in stage 2 of development (early cleavage), B: Embryo in stage 2 of development 

(early cleavage) of Cd alone, C: Control embryo in stage 7.3 of development (Postnaupliar segments, 

ventral view),  D: Embryo in stage 2 of development (late cleavage) for Cd-Zn mixture with 0µg/L Zn,  

E: Control embryo in stage 9 of development (appearance of compound and nauplius eye, dorsal view), F: 

Embryo in stage 3 of development (gastrulation) for Cd-Zn mixture at 20µg/L Zn, G: Control embryo in 

stage 9 of development (lateral view), H: Embryo in stage 5 of development (head formation, 

anterodorsal view) for Cd-Zn mixture at 160µg/L Zn.  I: Control embryo in stage 10 of development 

(hook-shaped abdomen, ventral view), J: Embryo in stage 3 of development (gastrulation, ventral view) 

for Cd-Zn mixture at 40µg/L Zn. 

 
Fig. 9. Time to first brood over 21-d of exposure to Cd alone, Zn alone, and Cd-Zn mixtures containing 

constant Cd concentration of 1.5µg/L and varied Zn concentrations. A: significant differences between Cd 

alone and Cd-Zn mixtures (p<0.01). B: significant differences between control and Cd-Zn mixtures 

(p<0.01). C-significant differences between control and Cd alone (p<0.01). *significant differences 

between Zn alone and Cd-Zn mixtures (p<0.01). 
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Fig. 10. Dry weight of surviving adults at test termination. A: significant differences between Cd alone 

and Cd-Zn mixtures (p<0.05). B: significant differences between control and Cd-Zn mixtures (p<0.05). C: 

significant differences between control and Zn alone (p<0.05). D: significant difference between control 

and Cd alone (p<0.001). *significant differences between Zn alone and Cd-Zn mixtures (p<0.01). 
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Fig. 11. Metal concentrations in the body of surviving daphnids exposed to Zn alone and Cd-Zn 

mixture over 21 days. A: significant differences between Cd alone and Cd-Zn mixtures (p<0.05). B: 

significant differences between control and Cd-Zn mixtures (p<0.05). C: significant differences between 

control and Cd-Zn mixtures (p<0.05). D: significant difference between control and Cd alone (p<0.001). 

E: significant differences between Zn alone and control. 
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