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Abstract  18 

The St. Lucie estuary ecosystem in South Florida has been noted to be contaminated with 19 

metals and pesticides. Our earlier studies showed that aquatic organisms, especially benthic species in 20 

the St. Lucie estuarine ecosystem are at high risk of copper (Cu) exposures. The objectives of this 21 

study are to conduct tests with separate groups of organisms exposed to 7 field-collected sediment 22 

samples from the St. Lucie River according to standard procedures to evaluate toxicity and tissue 23 

concentrations of Cu and zinc (Zn). Short term and long term whole sediment acute toxicity tests were 24 

conducted with Ampelisca abdita and Mercenaria mercenaria.  Analysis of sediment chemical 25 

characteristics showed that Cu and Zn are most concern because their concentrations in 86% of the 26 

sediments were higher than the threshold effect concentrations for Florida sediment quality assessment 27 

and the NOAA SQuiRTsnational Cu sediment quality guidelines. There was no significant effect on 28 

survival of the tested organisms. Elevated Cu and Zn concentrations in the test organisms were found. 29 

Dry weight of the tested organisms was inversely related to Cu and Zn concentrations in sediments and 30 

organisms. The effects on organism weight and Cu and Zn uptake raise a concern about the organism 31 

population dynamics of the ecosystem because benthic organisms are primary food sources in the St. 32 

Lucie system and are continuously exposed to the Cu and Zn contaminated sediments for their life 33 

cycle. The present study also indicates that Cu and Zn exposures via sediment ingestion were more 34 

important than pore water exposure.  35 

 36 
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Introduction  39 

The St. Lucie Estuary (SLE) watershed is composed of five major drainage basins and several 40 

smaller basins in the northern portion of St. Lucie County, Florida. It contains the most concentrated 41 

citrus agriculture acreage in South Florida. The SLE is located on the Martin/St. Lucie County line. The 42 

inner SLE is comprised of the North Fork and the South Fork of the St. Lucie River (SLR) and has a 43 

total surface area of 6.4 square miles. The two forks converge to form a single middle estuary with a 44 

surface area of 4.7 square miles. The middle estuary extends east from approximately 5 miles until it 45 

meets the Indian River Lagoon, which opens to the Atlantic Ocean at the St. Lucie Inlet.  A heavier 46 

concentration of citrus agriculture (~60%) land use potentially affects the drainage basins into the North 47 

Fork compared to the South Fork (~45%) of the SLR.  In 1972, the Florida Trustees recognized the 48 

ecological importance of the North Fork of the St. Lucie River by designating it an Aquatic 49 

Preserve/Outstanding Florida Water.  50 

Copper has a long history of use in agriculture (e.g., citrus groves) as a fungicide and fertilizer in 51 

south Florida (Alva et al. 1995).  In the early 1900’s copper containing fertilizers for citrus groves 52 

accounted for as much as 34 kg Cu/ha annually and fungicidal sprays contributed an additional 10kg 53 

Cu/ha annually. Surface soils (0-15 cm) for mature citrus groves contained as much as 540kg Cu/ha.  54 

Increased levels of copper in South Florida soils have been a result of repeated applications of copper 55 

over several decades to agricultural areas and soil copper concentrations increase proportional age of 56 

citrus production (Reuther and Smith, 1952). According to the U.S. Department of Agriculture in 2005, 57 

over 500,000 kg of copper (as copper hydroxide, copper sulfate or basic copper) were applied to 58 

grapefruit, orange, tangelo, tangerine and temple crops on 259,563 ha in Florida (USDA 2006). These 59 

quantities do not reflect use of Cu on other citrus crops or the use of copper sulfate and chelated Cu 60 

formulations (e.g., Cutrine-Plus, Komeen, etc.) as algaecides-herbicides, which are permitted by the 61 



Florida Department of Environmental Protection (FDEP) for control of nuisance planktonic and 62 

filamentous algal and vascular plants (Leslie, 1990). Note that Cu also does leach from boats into both 63 

fresh- and salt-water (e.g., harbors and marinas) because it is a component of antifouling pants. More 64 

recently, statewide pesticide usage data (based on total lbs a.i. applied) compiled by the Florida 65 

Department of Agriculture and Consumer Services (FDACs 2010) from 2007-2009 for 14 crops and 169 66 

active ingredients (a.i.) ranked copper hydroxide (1,176,500 lbs. a.i. applied) number 5 out of 10 67 

pesticides and the most applied fungicide (number 1 out of 10 fungicides).  68 

A comparison of aqueous Cu concentrations in agriculture and non-agriculture watersheds shows 69 

higher concentrations in runoff where agriculture was practiced compared to runoff near non-agriculture 70 

land (Dietrich et al., 2001).  Copper loads in surface runoff are related to total Cu in soils, soil 71 

properties, metal characteristics and environmental factors, especially in sandy soils (He et al., 2006). 72 

Enrichment of Cu in runoff will adversely affect receiving surface water quality (Moore et al., 1998).  73 

As a result of the use of copper in agriculture in St. Lucie County, it appears that concentrations of 74 

copper (and other contaminants, such as Zn) from drift and/or from surface runoff of contaminated soils 75 

(or soil erosion) may also produce exposures that adversely affect saltwater benthic communities, when 76 

the Cu-contaminated soils reach and become incorporated as part of the sediments of the St. Lucie River 77 

system. Sediment chemistry data indicate that Florida coastal sediments in several areas are 78 

contaminated with metals (Long and Morgan 1990, Delfino et al. 1991, FDEP 1994), especially Cu 79 

(Haunert 1988, Trefry and Trocine 2011, Trocine and Trefry 1993, 1996).  80 

Our early laboratory results indicate that copper-contaminated Florida agricultural soils that are 81 

flooded likely promote the release of Cu from soils producing adverse effects on freshwater organisms 82 

(Hoang et al. 2008a, 2009a, b). In addition, we showed high potential ecological risks to aquatic species 83 

as a result of Cu exposures in sediment and water and high probability of exceedences of the Florida 84 



Department of Environmental Protection Sediment Quality Assessment Guideline values for the 85 

Threshold Effect Concentration and the Probable Effect Concentration (FDEP SQAGs TECs and PECs) 86 

for Cu (FDEP 2003) in the St. Lucie River (Schuler et al. 2008). More recently, Carriger and Rand 2013 87 

(in press) also showed high ecological risks of Cu in this system to aquatic organisms. The objectives of 88 

the present study are to conduct whole sediment toxicity studies with the clam (Mercenaria mercenaria) 89 

and the benthic amphipod (Ampelisca abdita) exposed to field-collected sediment samples from the St. 90 

Lucie River to evaluate uptake (bioconcentration) and toxicity of Cu and Zn. 91 

 92 

Materials and Methods  93 

Sediments used in the present study (n=7; 6 test and 1 reference site) were collected by the 94 

National Oceanic and Atmospheric Administration (NOAA) from the St. Lucie River, south Florida, 95 

USA and transferred to the Ecotoxicology and Risk Assessment Laboratory (ERAL) of Florida 96 

International University on April 5-7, 2011 for toxicity testing (Figure 1). ERAL is a NELAC-97 

accredited laboratory facility for fresh- and salt-water toxicity testing. Sediment samples were labeled 98 

NOA2581 (reference site in the South Fork of the SLE) along with six test sites as NOA2569, 99 

NOA2334, NOA2640, NOA2639, NOA 2333, and NOA2570 (sites in the North Fork of the SLE). Prior 100 

to aquatic testing, sediments were physically characterized and background concentrations of metals and 101 

organic pollutants were analyzed. The sediments were also analyzed for acid volatile sulfide (AVS) and 102 

simultaneously extracted metals (SEM). Using the AVS/SEM ratio, we can predict the bioavailability of 103 

metals (Berry et al. 1996).  104 

Two separate types of studies were conducted with the 7 field-collected sediment samples to 105 

evaluate mortality, growth and accumulation; one study with the tube-dwelling amphipod (A. abdita), 106 

which is a common standard saltwater benthic test species used for whole-sediment toxicity and 107 



bioaccumulation tests and one study with the hard shell clam (M. mercenaria) which is a native species 108 

in the St. Lucie system. Exposures to the field-collected sediments in both studies were in a flow-109 

through water system to ensure consistent water quality conditions (e.g., low ammonia concentrations). 110 

Flow-through systems were calibrated prior to testing to ensure correct water placements in test 111 

chambers over each 24-hour time period.  Saltwater for the flow-through system was obtained from a 112 

saltwater well (with Biscayne Bay water) which was air-sparged, carbon-filtered and UV-sterilized with 113 

a salinity of 31ppt and a pH of 8.0-8.5.   114 

Toxicity tests with A. abdita were 10 days in duration and were conducted according to the 115 

methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with 116 

marine invertebrates (U.S. EPA. 1994).  A. abdita were obtained from a commercial supplier. An initial 117 

subsample of the A. abdita population was used for length and weight measurements and tissue analyses 118 

(Cu, Zn) for background data. There were 10 organisms per replicate with 8 replicates per sediment 119 

sample site. Organisms (10) were randomly distributed in each test chamber with 350ml of water and 120 

150 ml of sediment (8 test chambers /site; 80 organisms exposed/site) in the water bath of the flow-121 

through water system (2 test chamber water volume turnovers/24h). Water quality monitoring for the 122 

tests included salinity, ammonia and pH measurements at test initiation and at test termination. 123 

Temperature and dissolved oxygen were measured daily. Salinity, ammonia, and pH were measured 124 

using a YSI conductivity/salinity meter (YS Inc, Yellow Springs, Ohio, USA), an Accumet® Ammonia 125 

Electrode (Fisher Scientific, Pittsburgh, PA, USA), and an Accumet pH meter (Vernon Hills, Illinois, 126 

USA), respectively. Water temperature and dissolved oxygen concentrations were measured using a YSI 127 

dissolved oxygen meter (YS Inc., Yellow Springs, Ohio, USA). Mortality of A. abdita was measured at 128 

test termination along with growth (dry weight and length) of surviving organisms. The quality criterion 129 

for control survival was 80%. Tissue concentrations (whole body) of Cu and Zn were measured at test 130 



initiation and again at test termination. To increase the detection limits for Cu and Zn, surviving 131 

organisms from all replicates were combined for each treatment and digested with HNO3 acid using a 132 

Hotblock and based on the U.S. EPA Method 3050B (U.S. EPA 1996a) for tissue Cu and Zn analyses. 133 

Analysis of Cu, Zn, and other minerals were conducted with an inductively coupled plasma 134 

spectrometer (Thermo Scientific Inc. 5225 Verona Road, Madison, WI 53711).  135 

In addition, a 28-day bioconcentration study was conducted similarly to U.S. EPA Ecological 136 

Effects Test Guidelines (U.S. EPA, 1996b) except that sediment was the source of the contaminants (not 137 

water exposure). The hard shell clam (M. mercenaria), an economically important native species in the 138 

SLR system was the test species and only a 28-day uptake phase (without a depuration phase) was used.  139 

M. mercenaria juveniles were obtained from a commercial supplier.  An initial subsample of the M. 140 

mercenaria juvenile population was used for weight measurements and tissue analyses of Cu and zinc. 141 

There were 50 organisms per replicate with 2 replicates per sediment sample site used. Organisms (50) 142 

were randomly distributed to an 18L test chamber with 12L of water and 3-4 cm of sediment (2 test 143 

chambers /site; 100 organisms exposed/site) in a flow-through water system (4 tank water volume 144 

turnovers/24h). Water quality monitoring for the test included salinity, conductivity, and pH 145 

measurements for the first 3 days, daily and again at the end of the test. Temperature and dissolved 146 

oxygen were measured daily. Mortality was measured on days 3, 7, 14, 21 and 28. Tissue samples (n=4) 147 

were also collected  and measured on days 3, 7, 14, 21 and 28 of surviving organisms for Cu and Zn. 148 

The quality criterion for control survival was 80%. Overlying and porewater samples were also 149 

collected when the tissue samples were collected for analyses of Cu, Zn and dissolved organic carbon 150 

(DOC). Porewater was collected by centrifuging the sediments at 2500g and 4° for 30 minutes (Ankley 151 

et al. 1991). The samples were filtered with 0.45 µm filters prior to analysis. DOC was analyzed with a 152 

Shimadzu TOC-5000 (Shimadzu Scientific Instruments, Columbia, MD, USA). Measurement of water 153 



quality and tissue Cu and Zn concentrations were conducted as described for the A. abdita test above. 154 

Digestion of sediment, clam, and amphipod samples for analysis of Cu and Zn were conducted at 155 

Loyola University Chicago.  156 

At the end of the study, survival, dry weights, Cu and Zn tissue concentrations were analyzed to 157 

determine whether there were statistically significant (p<0.05) treatment-related effects (responses) of 158 

the test substance.  The ANOVA F-test was used to test the null hypothesis; that the effects of all 159 

sediments including the reference sediment are the same. Tissue Cu and Zn concentrations at the end of 160 

the tests or at time intervals during the test (M. mercenaria test only) were compared with initial Cu and 161 

Zn concentrations (background) using Dunnett’s procedure. Multiple correlations between dry weight, 162 

tissue Cu and Zn concentrations, sediment Cu and Zn concentrations were conducted to determine 163 

cause-effects (response) relationship. All statistical analysis was conducted using SAS (version 9.2). 164 

 165 

Results and discussion  166 

Sediment characteristics and chemistry  167 

Characteristics of the sediments are shown in Table 1. In general, the cation exchange capacity 168 

was high which suggests that the sediments have high potential to retain metals. Results of AVS and 169 

total SEM are shown in Table 1. AVS for sediments NOA2333, NOA2334, NOA2569 and NOA2570 170 

were below the detection limits. The total SEM/AVS ratios for these sediments were estimated based on 171 

the detection limits of AVS for those samples. The ratio of total SEM/AVS for all sediments was greater 172 

than 1 which suggests that metals in the sediments are more bioavailable to benthic organisms (Ankley 173 

et al.1996, McGrath et al. 2002). 174 

Concentrations of metals and minerals in the sediments from the sites are shown in Table 2a. 175 

Concentrations of the metals and minerals varied from site to site. Among the toxic metals, Cu and Zn 176 



were of most concern because concentrations of both metals exceeded (with Cu 6 out of 7 sediments; 177 

with Zn 5 out of 7 sediments) the sediment quality assessment guideline (SQAGs) threshold effect 178 

levels (TELs) for coastal and marine waters set by the Florida Department of Environmental Protection 179 

(FDEP) for Cu (18.7 mg/kg) and Zn (124 mg/kg, dw) (MacDonald et al.1996). Cu concentrations of the 180 

6 sediments also exceeded the informal quick screening marine sediment value (effect range low (ERL) 181 

concentration = 34 mg/kg) used for the NOAA SQuiRTs (Buchman, 1999; Long et al. 1995). Zn 182 

concentrations were equal to or greater than the ERL (150 mg/kg) for 3 sediments. Neither copper nor 183 

zinc concentrations exceeded the NOAA SQuiRTs ERM (effects range median) values which are 184 

representative of concentrations above which effects frequently occur (Cu ERM = 270 mg/kg; Zn ERM 185 

= 410 mg/kg). Concentrations of the other toxic metals (e.g., As, Cd, Cr, Ni, Pb) in the sediments were 186 

not detected or were less than the FDEP TEC SQAGs and the NOAA SQuiRTs ERLs. In a sediment 187 

survey in 1982 from the St. Lucie Estuary (SLE) the mean concentration of Cu and Zn were 41 188 

(maximum: 229 mg/kg) and 67 (maximum: 235 mg/kg) mg/kg, respectively (Haunert, 1988). Metal 189 

concentrations were related to particle size and organic content; as the quantity of clay- and silt-sized 190 

particles increased the concentrations of these metals increased. The sediment in the central part of the 191 

North Fork of the SLE had the highest concentrations of organic material with the highest 192 

concentrations of metals.  In 1992, a sediment survey in the Indian River Lagoon, system also showed 193 

high concentrations of Cu above background in sediments and clams (Trocine and Trefry, 1993, 1996). 194 

In a follow-up sediment survey in 2006-2007, the mean concentrations of Cu (44mg/kg; maximum: 162 195 

mg/kg) and Zn (95 mg/kg; maximum: 231 mg/kg) increased from the 1992 survey (Trefry and Trocine, 196 

2011).  197 



Minimal concentrations of chlorinated organic pollutants were detected in the sediments (7) 198 

from the sites except for DDT metabolites (e.g., p,p-DDD) (Table 2b). The total concentrations of DDTs 199 

in 3 out of the 7 sediments were higher than the NOAA SQuiRTs ERL concentration (1.58 mg/kg, dw). 200 

At the end of the M. mercenaria bioconcentration study, sediments samples were collected for 201 

Cu and Zn analysis. In general, Zn and Cu concentrations at the beginning (day 0) and the end (day 28) 202 

of the study were not significantly different except for NOA 2581 and 2639, Cu and Zn concentrations 203 

at the end of the study appeared to be higher than those at the beginning (Table 3). This result indicates 204 

that Cu and Zn did not desorb to the overlying water. The high percent of silt, clay, and organic matter 205 

in the sediments explains why little Cu and Zn release occur during the study.  Zn and Cu concentrations 206 

in the sediments were also significantly correlated, revealing that Zn and Cu would come from the same 207 

source.  208 

 209 

Water quality and chemistry  210 

Water quality conditions for both studies were within U.S. EPA test guideline requirements.  For 211 

the A. abdita test, the 10-d average temperature, DO, pH, and salinity of the overlying water during the 212 

test were 21 ± 1° C, 7.1 ± 1.2 mg/L, 8.26 ± 0.07, and 30 ± 1 ppt, respectively. Ammonia concentration 213 

ranged from 0.4 to 1 mg/L which were less than the U.S. EPA criteria at a pH of 8.26 (3.4 mg/L). 214 

Concentrations of dissolved Cu in the overlying and pore water were at the background level (6 µg/L Cu 215 

in saltwater used for testing). Concentration of dissolved Zn in the overlying and pore waters ranged 216 

from the background level (6 µg/L Zn) to 33µg/L Zn. These results may be explained by the high 217 

percent of silt, clay, and organic matter in the sediments, resulting in negligible desorption of Cu and Zn 218 

from the sediments to water. These results also suggest low bioavailability of Cu and Zn in pore water. 219 

Concentrations of dissolved organic matter in the overlying water were low (< 5mg/L). For the M. 220 



mercenaria study, the 28-d average  temperature, DO, pH, and salinity of the overlying water were 24 ± 221 

0.1° C, 6.6 ± 0.2 mg/L, 8.24 ± 0.11, and 30 ± 1 ppt, respectively. Similar to the A. abdita study, 222 

concentrations of dissolved Cu and Zn in the overlying and pore water were at the background levels, 223 

suggesting low Cu and Zn bioavailability.  Concentrations of DOM in the overlying water were also low 224 

(< 4mg/L).  225 

 226 

Effects on survival, Cu and Zn uptake, and growth  227 

            Since concentrations of Cu and Zn exceeded both the Florida sediment quality guidelines and the 228 

NOAA SQuiRTs and the other toxic metals (e.g., As, Cd, Cr, Ni, Pb) were below these numerical 229 

values, the discussion in this section considers only Cu and Zn. Results of organism survival are shown 230 

in Table 4. Mortality of A. abdita and M. mercenaria ranged from 14% (NOA2333) to 28% (NOA2581) 231 

and 0% (NOA2639, NOA2570) to 4% (NOA2569), respectively. In general, there was no significant 232 

difference between mortality of the tested organisms for the field-collected reference and contaminated 233 

sediments. Although the results of SEM and AVS indicate metal bioavailability, the high organic matter 234 

content in the sediments most likely decreased Cu and Zn bioavailability and toxicity. No mortality was 235 

reported in a similar study conducted by Rule (1985) with M. mercenaria and sediments collected from 236 

the Port of Hampton Roads, Virginia which had similar total sediment concentration of Zn, Pb, Ni, and 237 

Cu (3 µmol/g) compared to the present study.  238 

Concentrations of Cu and Zn in M. mercenaria tissue ranged from 9 (background) to 35 mg/kg 239 

dw and 102 (background) to 271 mg/kg dw, respectively (Table 5). In general, Cu and Zn 240 

concentrations in M. mercenaria tissue were higher on days 3 through 28 than the background 241 

concentrations (day 0). In addition, sediment Cu and Zn concentrations were positively correlated with 242 

tissue Cu and Zn concentrations (Table 9). These results indicate that M. mercenaria accumulated Zn 243 



and Cu from the sediments. As discussed above, results of the sediment chemistry (e.g., total SEM/AVS 244 

> 1) indicate metal bioavailability. This might explain the Cu and Zn accumulation in M. mercenaria. 245 

Rule (1985) also found that M. mercenaria accumulated Zn from the sediments which had a similar Zn 246 

sediment concentration to the present study. However, Zn accumulation by M. mercenaria in the Rule 247 

(1985) study was approximately half the Zn accumulation in the present study but Zn bioavailability in 248 

the present study was higher than in the Rule (1985) study.   249 

          Cu and Zn concentrations in M. mercenaria tissue in the present study did not increase over time. 250 

This is in contrast with our earlier studies with freshwater Florida apple snails (Pomacea paludosa) 251 

where apple snails accumulated Cu from sediment overtime (Hoang et al. 2008b, Hoang et al. 2011). Cu 252 

and Zn concentrations in M. mercenaria shell were also below the detection limits but in general, 253 

negligible Cu and Zn concentrations were detected in apple snail shells as well (Hoang et al. 2008b).  254 

          Zn and Cu concentrations in A. abdita varied from site to site and ranged from 111 (NOA2569) to 255 

355 mg/kg dw (NOA2581) and 65 (background) to 364 mg/kg dw (NOA2570), respectively (Table 6). 256 

In general, Cu concentrations in A. abdita were higher at the end of the study than at the beginning of 257 

the study for all sites. There was a positive correlation between the A. abdita tissue Cu concentration 258 

and sediment Cu concentration (Table 10).  Results of the present study indicate that A. abdita 259 

accumulated Cu from the sediments during the 10 day study. Results of the sediment chemistry suggest 260 

Cu bioavailability and therefore explain the Cu accumulation in A. abdita. The final tissue results 261 

obtained for A. abdita in the present study were similar to the tissue Cu concentrations found in our 262 

earlier 10 day study with the freshwater benthic amphipod, Hyalella azteca exposed to Cu-contaminated 263 

soils from citrus agricultural sites near the St. Lucie watershed (Hoang et al. 2009b). Hoang et al. 2009b  264 

showed that Cu tissue (whole body) concentrations ranged from 128 to 294mg/kg after 10 days 265 

exposure when initial Cu soil concentrations ranged from 5-234 mg/kg from these citrus agricultural 266 



sites. Note that in this A. abdita study, Cu tissue concentrations were up to 6 times the initial Cu tissue 267 

concentrations following only 10 days of exposure and similar to the response of  the freshwater 268 

amphipod, H. azteca following 10 day exposures. Furthermore, the tissue results for both freshwater and 269 

saltwater benthic species, following exposures to Cu in sediment, raise some interesting issues for 270 

burrowing and tube dwelling in faunal benthic species which have habitats in close contact with 271 

sediment (pore water) for part or most of their life cycle. The influence on Cu uptake in these benthic 272 

species on upper trophic level diets and species has not been extensively investigated. 273 

          Also note that accumulated metal within and between invertebrate taxa, vary considerably, even 274 

in the absence of anthropogenic pollution (Rainbow, 2002). For trace metals like zinc and copper, which 275 

play essential roles in metabolism of most invertebrate, the quantity necessary to perform these 276 

functions may also vary widely within and between invertebrate taxa.  For aquatic organisms used in 277 

toxicity tests, it is also critical to know the background holding, culture and water quality conditions 278 

because if test organisms are obtained from different aquaculture sources the trace metal concentrations 279 

in their tissues and organs may be different and will obviously reflect prior water quality and diet they 280 

were exposed to.  Background tissue concentrations (day 0) of zinc (Table 6) for A. abdita were as high 281 

as concentrations at the end of the 10d treatment and therefore precluded any comparisons of zinc tissue 282 

concentrations. In addition, to being cautious when obtaining organisms from aquaculture sources for 283 

aquatic toxicity testing, the use of field-collected species requires even greater awareness for use in  284 

toxicity testing especially for the evaluation of hazards and risks.    285 

             The dry weight of M. mercenaria and A. abdita are shown in Tables 7 and 8, respectively. Dry 286 

weight of M. mercenaria shell, tissue, and whole body from days 0-28 ranged from 194 to 355 287 

mg/organism, 5 to 8 mg/organism, and 198 to 552 mg/organism, respectively. In general, dry weight 288 

was not affected by sediment exposure up to day 21. However, there was a slight negative correlation 289 



between M. mercenaria tissue weight and Cu and Zn concentrations in the sediments at the end of the 290 

study (day 28) (Table 9). This suggests that Cu and Zn concentrations in the sediments may have started 291 

to produce an effect on M. mercenaria growth (as measured by dry weight) after 28 days exposure and 292 

that in the experimental design the uptake (exposure) phase was too short and it should have been 293 

extended.  Clams that live in these sediments will be continuously exposed to Cu and Zn for most of 294 

their life cycle in the in the St. Lucie system, with little time for depuration and recovery, hence the 295 

effect might be greater. Results of the present study thus raise concern about the population dynamics of 296 

bivalves in the St. Lucie ecosystem.  297 

          The St. Lucie estuarine ecosystem has been documented as a Cu-contaminated system for decades 298 

(Long and Morgan 1990, Delfino et al. 1991, FDEP 1994). The cause of Cu contamination is likely due 299 

to Cu release from the sandy soils of nearby citrus agriculture farms through surface runoff.  Cu will 300 

continuously be used in citrus agriculture, with a long season of application thus increasing the Cu load 301 

and release from soils into runoff water, adding more Cu into the St. Lucie estuary and the Everglades 302 

ecosystems (Hoang et al. 2008a, Hoang et al. 2009a). This is also based on an exposure analyses of 303 

copper concentrations in water and sediment in south Florida aquatic systems for over 15 years from 304 

1990-2008, which shows high Cu concentrations in aquatic systems and potential risks to mollusks in 305 

the North and South forks of the SLR and in the SLE (Carriger and Rand, in press).     306 

          Dry weight of A. abdita was negatively correlated with tissue Cu concentration (Table 10). This 307 

suggests that tissue Cu concentrations affected A. abdita’s growth.  Since water concentrations of Cu 308 

and Zn were at typical background levels, the effects of Cu and Zn on M. mercenaria tissue weight and 309 

A. abdita weight would be due to exposure via sediment ingestion. Furthermore, tissue Cu and Zn 310 

concentrations were correlated with both sediment Cu and Zn concentrations, suggesting that Cu and Zn 311 

simultaneously entered the organisms. Ingestion of Cu- and Zn-bound to organic matter in sediments 312 



was thus a major exposure route. Several studies have demonstrated that metal exposure to clams and 313 

amphipods via food and sediment ingestion was more important than pore water exposure (Eriksson and 314 

Sundelin 2002, Labreche et al. 2002, Forbes et al. 1998).  315 

         316 

Summary and conclusions  317 

The present study showed that sediments collected from the St. Lucie estuarine system contained 318 

Cu and Zn concentrations that exceeded both the Florida State sediment quality criteria and NOAA 319 

SQuiRTs sediment values.  The total concentration of DDTs in 3 out of the 7 sediments was also higher 320 

than the NOAA SQuiRTs sediment values. M. mercenaria and A. abdita exposed to the St. Lucie 321 

sediments resulted in Cu accumulation in A. abdita and Cu and Zn accumulation in M. mercenaria. The 322 

present study also indicated that Cu and Zn exposures via sediment ingestion were most likely an 323 

important route of exposure. However, there was no effect of the contaminated sediments on organism 324 

survival.  325 

Elevated Cu and Zn concentrations in the tissues and the effects on the weight of both M. 326 

mercenaria and A. abdita raise concerns for the long-term viability of invertebrate populations, for 327 

higher trophic organisms in the St. Lucie estuarine ecosystem and the population dynamics of the 328 

ecosystem because these are only two organisms that are primary food resources in the St. Lucie system 329 

which are exposed to the contaminated sediments for either part or their entire life cycles. The 330 

significance of these results can only be fully realized when studies are conducted with other organisms 331 

exposed to a greater number field-collected sediments from a larger number of sediment sites. These 332 

studies gain in importance in lieu of the continued input of these metals into the environment.    333 

 334 

 335 
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