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Abstract

Receiver operating characteristic (ROC) curves are widely used as a
measure of accuracy of diagnostic tests and can be summarized using
the area under the ROC curve (AUC). Often, it is useful to construct a
confidence intervals for the AUC, however, since there are a number of
different proposed methods to measure variance of the AUC, there are
thus many different resulting methods for constructing these intervals. In
this manuscript, we compare different methods of constructing Wald-type
confidence interval in the presence of missing data where the missingness
mechanism is ignorable. We find that constructing confidence intervals
using multiple imputation (MI) based on logistic regression (LR) gives
the most robust coverage probability and the choice of CI method is less
important. However, when missingness rate is less severe (e.g. less than
70%), we recommend using Newcombe’s Wald method for constructing
confidence intervals along with multiple imputation using predictive mean
matching (PMM).

Key words: ROC curve; AUC; Mann-Whitney statistic; confidence
interval; multiple imputation; predictive mean matching; missing data,
logistic regression

1 Introduction

Diagnostic tests are often used to classify subjects as either diseased or
non-diseased. Assuming that large values of test results are indicative of
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diseased status, a subject will be classified as diseased or non-diseased
if their test results are above or below a certain threshold, respectively.
Then, for a specific threshold value, the performance of the test can be
evaluated using measures such as sensitivity and specificity, where sen-
sitivity is the probability of a true positive or true positive rate (TPR)
(i.e. given a positive test result, the subject actually has the disease) and
specificity is the probability of a true negative or true negative rate (TNR)
(i.e. given a negative test results, the subject is actually non-diseased).
A more comprehensive way to measure the accuracy of a diagnostic test
is to use the receiver-operating characteristic (ROC) curve (Pepe, 2003),
which graphically compares specificity and sensitivity levels; specifically,
the ROC curve is a plot of sensitivity against 1 - specificity across all possi-
ble cutoff values. When comparing two diagnostic tests to one another, if
the ROC curve for one test is located uniformly higher than the other test
across all possible thresholds, the test is said to be strictly more accurate
and therefore preferred over the other test. It is, however, not straight
forward to compare two ROC curves that intersect at some location other
than the end points.

One common way to summarize the ROC curve is to compute the
area under the ROC curve (AUC). The AUC ranges in value from 0.5
(essentially a meaningless test) to 1 (a perfect test) and can be interpreted
as the probability that a randomly chosen diseased subject has a higher
test value than that of a randomly chosen healthy subject (given higher
test value is indicative of the disease) (Hanley and McNeil, 1982). The
AUC is, in most cases, calculated empirically by calculating the area under
the sample ROC curve, and it is often of interest to present an interval
estimate of the AUC rather than simply a point estimate.

There exist a number of methods that have been proposed to compute
an interval estimator for the AUC. Many of these have been derived based
on the equivalence relation between the AUC and Wilcoxon’s rank-sum
test statistic (Hollander et. al., 2014) such as Bamber (1975), Hanley
and McNeil (1982), DeLong et. al. (1988), Mee (1990), and Newcombe
(2006). Other proposals, such as Reiser and Guttman (1986) and New-
combe (2006), developed confidence interval estimators of the AUC by
assuming a parametric distribution for the test scores and deriving the
interval in that manner. Cortes and Mohri (2005) suggested a confi-
dence interval method using a combinatoric approach and Obuchowski
and Lieber (2002) introduced an exact method, which can be used when
the estimated AUC is close to 1.

These methods can be easily applied when the true disease status and
the test values for all subjects in the sample are known. However, in
practice, data may be incomplete. This often happens when the true
disease status of subjects is unknown, which commonly occurs when a
patient does not go through a so-called ”gold standard test” that, in
many cases, is invasive and/or expensive. Missing data can also occur
on patients’ test scores for many different reasons including they simply
did not have the test performed. When observations with missing values
are removed from analysis (i.e. complete case analysis), the estimator is
potentially subject to bias, and when bias is caused specifically by missing
disease status, this is referred to as verification bias.
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Many corrected estimators of AUC have been proposed to adjust bi-
ases caused by missing values. Begg and Greenes (1983), Alonzo and
Pepe (2005), He et. al. (2009), along with others, came up with AUC
estimators correcting verification bias directly (i.e. “direct approach”). In
order to construct confidence intervals based on those methods, bootstrap
techniques are used. Alternatively, confidence interval methods for com-
plete data settings can be used after applying multiple imputation (MI)
techniques to the incomplete dataset (i.e “MI approach”) as in Harel and
Zhou (2006), which sought to correct the verification bias for measuring
sensitivity and specificity, and Harel and Zhou (2007a). To address the
problem of missing biomarker values, Long et. al. (2011a) and Long
et. al. (2011b) came up with a robust approach and an approach using
nonparametric MI, respectively. All the estimators correcting for bias in-
troduced here are based on the assumption that the data are missing at
random (MAR) (Rubin, 1976), and exploit the covariates to predict the
missing values.

Although quite a few estimators have been proposed, relatively little
work has been done reviewing the performance of the confidence interval
methods for the AUC in the presence of missing data. In this article, we
compare the performance of several Wald-type interval estimators for the
AUC in datasets where missing data exist. In our example, the incom-
plete data will be true disease statuses, and it will be assumed that the
missingness mechanism is MAR.

2 Wald-type confidence interval methods
for the AUC

Consider a test such that higher test scores are associated with a higher
probability that the subject is diseased and vice versa. By definition, the
AUC (θ) is the integral of the TPR of the theoretical ROC curve by its
false positive rate (FPR = 1 - TNR), that is, θ =

∫∞
−∞ TPR(t)dFPR(t),

where TPR(t) and FPR(t) are the TPR and FPR for a threshold value t.
As the AUC can be interpreted as the probability that a randomly cho-
sen diseased subject has higher biomarker value than a randomly chosen
healthy subject’s biomarker value (plus half of the probability of ties is
added, if any), it can also be expressed as: θ = P [Y > X] + 1

2
P [Y = X],

where X and Y are the biomarker of the randomly chosen non-diseased
and diseased subjects respectively. So it is straightforward to have an
unbiased estimator of the AUC as:

θ̂ =

∑nY
i=1

∑nX
j=1{I(yi > xj) + 1

2
I(yi = xj)}

nY nX
,

where xj and yi are the test scores for the j-th and i-th individual in the
non-diseased and diseased group, respectively, and j = 1, ..., nX and i =
1, ..., nY .

As the variance estimation of the AUC is not obvious, various variance
estimators of the AUC have been proposed. Given a variance estimator,
confidence intervals (CI’s) can be built in several ways. The simplest and
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the most commonly used form is the Wald-type interval. This type of
CI relies on large sample theory and evaluates the standard error at a
point estimate to have upper and lower bounds. Another popular method
for CI construction is the score-type (Wilson and Hilferty, 1929) interval.
This method is also an asymptotic approach, but the standard errors are
evaluated at the candidates of the confidence bounds, not at the point
estimate only. Other types of confidence interval constructions include
likelihood-ratio method and exact methods.

Despite some drawbacks with Wald-type intervals, such as inappropri-
ateness to use when the sample is small or when the population parameter
for proportional data are extreme, this type of interval is computationally
simple and applicable to almost all types of variance estimators. Addi-
tional assumptions should be posed to get other types of intervals other
than Wald-type intervals under missing data settings. In this article, we
consider the Wald-type CI’s only, presenting some of them below.

2.1 Bamber’s method

Bamber (1975) presented the variance estimator of θ̂ using the equivalence
relation between the Mann-Whitney statistic (U) and the AUC (θ) that
θ = U

nXnY
and the variance of Û (Noether, 1967):

V̂ (θ̂) =
1

4(nX − 1)(nY − 1)

[
p(X 6= Y ) + (nX − 1)bXXY + (nY − 1)bY Y X

− 4(nX + nY − 1)(θ̂ − 1

2
)2

]
,

where p(X 6= Y ) =
∑nY
i=1

∑nX
j=1 I(yi 6=xj)
nY nX

, bXXY =∑nY
i=1[ui.(ui.−1)+vi.(vi.−1)−2ui.vi.]

nX (nX−1)nY
, bY YX =

∑nX
j=1[u.j(u.j−1)+v.j(v.j−1)−2u.jv.j ]

nY (nY −1)nX
,

v.j =
∑nY
i=1[I(yi > xj) + 1

2
I(yi = xj)], u.j = nY − v.j , vi. =

∑nX
j=1[I(yi >

xj) + 1
2
I(yi = xj)], ui. = nX − vi. and X1, X2, Y1 and Y2 are random

variables sampled independently without replacement from X and Y.
Here bXXY and bY YX are an unbiased estimator ofBXXY = P (X1, X2 <

Y )+P (Y < X1, X2)−P (X1 < Y < X2)−P (X2 < Y < X1) and BY YX =
P (Y1, Y2 < X) + P (X < Y1, Y2) − P (Y1 < X < Y2) − P (Y2 < X < Y1),
respectively.

Using this variance estimator, a 1 − α CI for the AUC can be con-

structed as θ̂ ± zα
2

√
V̂ (θ̂), where zα

2
is the upper α

2
percentile of the

standard normal distribution.

2.2 Hanley-McNeil’s method I

Hanley and McNeil (1982) extended the ideas in Bamber (1975) to simpler
variance estimators. Unlike Bamber’s variance estimator, those of Hanley
and McNeil (and Newcombe as well discussed in later subsection) are not
unbiased by using nX and nY in the denominator. As Bamber (1975) did
for his method, we will use nX−1 and nY −1 instead in the denominator to
make the estimators unbiased for this method and for the later methods
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(2.2 - 2.4). The under-coverage of the methods in Hanley and McNeil
(1982), which were discussed in Newcombe (2006) is partly due to the
underestimation of the variance.

Another shortcoming of the variance formula in Hanley and McNeil
(1982) is that it is appropriate only when the biomarker is sufficiently
continuous so that there are no ties between the diseased and the non-
diseased. In many cases, however, the biomarkers are discrete, or even
when they are continuous, ties often happen by rounding values to signif-
icant digits. In our simulation study, we apply a generalized formula that
incorporates the tie situations.

Then the revised variance estimator is as follows:

V̂ (θ̂) =
1

(nX − 1)(nY − 1)

[
θ̂(1− θ̂)− 1

4
p(Y = X) + (nY − 1)(Q̂1 − θ̂2)

+ (nX − 1)(Q̂2 − θ̂2)

]
,

where Q̂1 =
∑nX
j=1[

∑nY
i=1{I(yi>xj)+

1
2
I(yi=xj)}]2

nXn
2
Y

is an estimator of Q1 =

P (Y1, Y2 > X) + 1
2
P (Y1 > Y2 = X) + 1

2
P (Y2 > Y1 = X) + 1

4
P (Y1 =

Y2 = X), or the probability that biomarkers of two randomly chosen dis-
eased subjects, possibly the same subjects, are greater than or equal to
that of a randomly chosen non-diseased subject with half the weight to

the equality. Similarly, Q̂2 =
∑nY
i=1[

∑nX
j=1{I(yi>xj)+

1
2
I(yi=xj)}]2

n2
X
nY

is an esti-

mator of Q2 = P (Y > X1, X2) + 1
2
P (Y = X1 > X2) + 1

2
P (Y = X2 >

X1) + 1
4
P (Y = X1 = X2). (The mathematical proof that the revised

estimator is an unbiased estimator is provided in the Appendix.)

The Wald-type interval is given as θ̂ ± zα
2

√
V̂ (θ̂).

2.3 Hanley-McNeil’s method II

Hanley and McNeil (1982) further simplified the variance estimator by
assuming that X and Y are exponentially distributed:

V̂ (θ̂) =
1

(nX − 1)(nY − 1)

[
θ̂(1− θ̂)− 1

4
p(Y = X) + (nY − 1)(Q̂1 − θ̂2)

+ (nX − 1)(Q̂2 − θ̂2)

]
,

where Q̂1 = θ̂

2−θ̂ and Q̂2 = 2θ̂2

1+θ̂
.

2.4 Newcombe’s Wald method

Newcombe (2006) suggested a modification to the Hanley-McNeil’s method
II by replacing both nX and nY in the numerator with N = nX+nY

2
. Then

the variance estimator becomes:

V̂ (θ̂) =
θ̂(1− θ̂)

(nX − 1)(nY − 1)

[
2N − 1− 3N − 3

(2− θ̂)(1 + θ̂)

]
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2.5 DeLong’s method

Based on the method in Sen (1960), DeLong et. al. (1988) derived a co-
variance matrix estimator of θ̂ which makes possible nonparametric com-
parisons of two or more ROC curves. Still the idea can be applied to
construct a Wald-type CI for the area under a single ROC curve:

V̂ (θ̂) =
ŝ10

nX
+
ŝ01

nY
,

where ŝ10 = 1
nX−1

∑nX
j=1[

v.j
nY
− θ̂]2 and ŝ01 = 1

nY −1

∑nY
i=1[ vi.

nX
− θ̂]2. Us-

ing this variance estimator, a Wald-type CI can be constructed as: θ̂ ±

zα
2

√
V̂ (θ̂).

3 Missing data and multiple imputation

A common problem in applied statistics is incomplete data. Incomplete
data occur in many medical, social, and demographic analyses and leads
to difficulties in performing inference. One way of handling the miss-
ing data problem is multiple imputation (Rubin, 2004, Harel and Zhou,
2007b). MI is a Monte Carlo technique that involves three steps: impu-
tation, analysis and combining of results. First, the missing values are
filled in by m simulated values to create m completed datasets where m
is commonly larger than 5. The imputation model consists of selecting a
plausible probability model on both observed and missing values to sim-
ulate values for the missing observations. The imputation model should
be selected to be compatible with the analysis to be performed on the im-
puted datasets where the analysis model is determined by the statistical
problem in question. Following this, each of the m imputed datasets is
analyzed separately using some complete data statistical method of inter-
est. This is then followed by the results of each of the m analyses being
combined (Rubin, 2004) to produce point and/or interval estimates that
incorporate both between and within imputation variability.

3.1 Missingness mechanism assumptions

Define the missingness mechanism to be R ,which is a random variable
that is a 1 if the value is missing and 0 otherwise. In order to perform
MI, assumptions about the missingness mechanism must be made. The
simplest missingness assumption is that the data are missing completely
at random (MCAR). This type of missingness implies that the probability
of an observation does not depend on the observed or unobserved values in
the data. Data are said to be missing at random (MAR) if the probability
of missingness does not depend on the unobserved data (Little and Rubin,
2002). If the probability of missingness is related to unobserved values in
the dataset, the missingness is said to be missing not at random (MNAR).
In this case, to perform MI, the missingness mechanism must be explicitly
modeled. In the case of MAR and MCAR, if the parameters of the data
model and the parameters of the missing data model are distinct, then
missingness mechanism, R, does not need to be modeled and the missing
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data mechanism is referred to as ignorable. In this manuscript, we focus
solely on data whose missingness mechanism is ignorable.

3.2 Multiple imputation techniques

One common, but simple method for performing MI is to model the data
as if it comes from a multivariate normal distribution. Once this model is
fit, imputed values are drawn from the posterior predictive distribution us-
ing data augmentation (DA) which is a kind of MCMC algorithm (Schafer,
1997). A stand alone statistical package named “NORM” (NORM, 1999)
is available for performing this MI method. Additionally, there is a pack-
age for performing this method (Novo, 2013) in R (R, 2017).

While the previous method is based on multivariate normal distri-
bution, in many applied statistical problems the adequate imputation
model is not multivariate normal. For example, a dataset concerning
the Alzheimer’s disease (AD) that we will analyze in Section 6 contains
the variable outcome with a value of 1 if the patient has AD or 0 if the
patient does not have the disease. Bernaards et. al. (2007) explored using
a multivariate normal model when the data clearly violated that assump-
tion, namely in the presence of a binary variable. In that manuscript,
they imputed under the multivariate normal model and used a variety
of rounding techniques to convert the continuos imputed values back to
binary variables. Here, we implement one of these methodologies in our
analysis specifically the adaptive rounding approach. Adaptive rounding
is a rounding procedure where the threshold value for rounding to zero or
one is based on normal approximation to the binomial distribution. The
adaptive rounding threshold is given by ω̄−

√
ω̄(1− ω̄)Φ−1(ω̄) where ω̄ is

the imputed variable obtained from the multivariate normal imputation
procedure, and Φ(·) is the cumulative density function of the standard
normal distribution. For more information on rounding in multiple impu-
tation see Demirtas (2009).

Multivariate imputation by chained equations (MICE) (White et. al.,
2011, van Buuren, 2012, van Buuren et. al., 2017) is another widely used
MI method. In MICE’s sequential process, a joint distribution for the im-
putation models does not need to be explicitly specified, and thus makes
this method very flexible (Allison, 2009). Despite the lack of theoretical
justification as to whether MICE’s sequential model converges to the dis-
tributions of the missing variables, it was demonstrated to perform well
in many simulation settings (van Buuren et. al., 2006). Zhu and Raghu-
nathan (2016) claim that under certain conditions such as valid model
specification or good fit of distribution to data, sequential regression ap-
proach may work well even with models that are incompatible with the
conditional distributions.

While there are numerous ways to implement MICE, in this paper we
focus on predictive mean matching (PMM) (Little, 1988) and logistic re-
gression approach (LR) (Rubin, 2004) since the variable with missingness
in our simulation study is dichotomous. Here, the MICE framework is
implemented in R via the “mice” package (van Buuren and Groothuis-
Oudshoorn, 2011).
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3.3 Multiple imputation combining rules

Once MI is performed, each of the m imputed datasets are analyzed to
produce estimates (Q̂i) of the quantity of interest (Q) and estimates (V̂i)
of the associated variance (V ), where i = 1, 2, ...,m. Assuming that
the sampling distribution of Q is normally distributed then, according
to Rubin’s combining rules, Q−Q̄√

W+m+1
m

B
∼ tν , where Q̄ = 1

m

∑m
i=1 Q̂i,

W = 1
m

∑m
i=1 V̂i, B = 1

m−1

∑m
i=1(Q̂i−Q̄)2, and ν = (1+ m

m+1
W
B

)2(m−1).

3.4 Making inference about the AUC with MI

MI techniques can be employed to fill in the missing values to make an
inference on the AUC. From the multiple (m) sets of imputed data,
two vectors of statistics are obtained: θ̂ =

{
θ̂(i)|i = 1, 2, ...,m

}
and

V̂ =
{
V̂ (θ̂)(i)|i = 1, 2, ...,m

}
, where θ̂(i) and V̂ (θ̂)(i) are the estimate

and the variance estimate of the AUC for the ith imputed data. The
variance estimates of the AUC can be obtained by applying one of the
methods mentioned in Section 2. Given that the sample size is large,
the sample AUC’s are asymptotically normal. Then these vectors are

combined to form a 95% CI, θ̄ ± tν,.975

√
V̂∗, where θ̄ = 1

m

∑m
i=1 θ̂(i),

V̂∗ = W + m+1
m

B, W = 1
m

∑m
i=1 v̂ar(θ̂)(i), B = 1

m−1

∑m
i=1(θ̂i − θ̄)2, and

ν = [1 + ( m
m+1

)W
B

]2(m− 1).

4 Simulation Study

Simulation-based methods are quite often used to evaluate performance in
incomplete data settings. For example, Mitra and Reiter (2016), Demirtas
and Hedeker (2008), Bernaards et. al. (2007), Demirtas (2007), Demirtas
and Hedeker (2007), and Demirtas et. al. (2007) are a few of the numer-
ous examples of such research. Here we follow these examples and use
simulation-based methods to study the performance of different Wald-
type confidence intervals for the AUC in the presence of missing data.
Specific details of the simulation follow.

We generated simulated data with 8 variables: disease status (D),
biomarker (T), 5 covariates (Z = (Z1, Z2, Z3, Z4, Z5)′), and missingness
indicator (R). Given a set of random covariates (Z), D, T, and R were
randomly drawn according to the parameters: the prevalence rate (φ), the
AUC (θ), and the rate of missing observations (or the missing coverage,
ρ) sequentially. The generating scheme for D, T, and R is largely from
Alonzo and Pepe (2005). Three different sample sizes, 50, 100, and 200,
were considered for each case. For each combination of parameters and
sample size, a simulation with 10,000 replicates was performed. This
simulation study was done using the software R 3.4.2 (R Core Team,
2017). The code is provided as supplementary material.

After creating random data, 95% CI’s were constructed using 3 differ-
ent MI techniques (PMM, LR, and NORM) and 5 different CI methods.
The complete data were also analyzed for comparison with the MI. Then
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they were evaluated by measuring the coverage probability, the left and
right non-coverage probability, and the average confidence interval length.

4.1 Distributional assumptions

The covariates are assumed to be multivariate normal: Z ∼MVN(µZ ,ΣZ),
where µZ is a vector containing the means of 5 covariates, and ΣZ is a 5
by 5 covariance matrix of Z.

The disease status, D, is 1 for diseased subjects and 0 for non-diseased
subjects. It was generated by random Bernoulli draw with prevalence
rate φ, which is a function of linear combination of Z’s: D|Z ∼ Bern(φ),
where logit(φ) = α0 + α′1Z.

The biomarker, T, is normally distributed with its mean conditional on
the values of the disease status and the covariates: T |D,Z ∼ N(µT , σ

2
T ),

where µT = β0 + β1D + β′2Z + β′3DZ where β′2 and β′3 are vectors of
regression coefficients both containing 5 elements.

The missingness indicator on disease status, R, is 1 for non-observed
subjects and 0 for observed subjects. If a subject has either a biomarker
value within upper q1-th quantile, or at least one of the covariates is within
its q2-th quantile, then he/she always goes through the golden standard
test to verify his/her true disease status. Otherwise, the probability of
non-verification was set as 0 < γ < 1; P (R = 0|T > tq1 or Zi > zq2i for
some 1 ≤ i ≤ 5) = 1, P (R = 1|T ≤ tq1 and Zi ≤ zq2i for all 1 ≤ i ≤ 5) = γ,
where tq1 denotes the q1-th quantile of the distribution of T and zq2i
denotes the q2-th quantile of the distribution of Zi.

4.2 Parameter specification

We set the mean of Z as µZ = 05, where k5 denotes a column vector
(k, k, k, k, k)′ for some number k, and the covariances of Z as

ΣZ =

( 1 0 0.3 0.4 −0.4
0 1 0.2 0.2 0

0.3 0.2 1 0.7 −0.5
0.4 0.2 0.7 1 −0.2
−0.4 0 −0.5 −0.2 1

)
.

α0 is set as 0 to have E(φ) = 0.5, and as 1.6111 to have φ ∈ 0.70000 ±
9.0× 10−6 with 95% confidence. We also set α1 = 15, β0 = 0, β2 = 0.15,
β3 = 0.055, and σ2

T = 1.
By setting σ2

T as a constant, rather than a function of D, the biomarker
values are assumed to be almost homoscedastic between the diseased and
the non-diseased groups. The reason why homoscedasticity is addressed is
because heteroscedasticity inflates the variance of the sampling distribu-
tion of the AUC, and thus lowers the coverage probabilities of the CI’s. In
our simulation study, the variability of the biomarker, T , is slightly higher
for the disease group than that for the non-diseased group. However, the
disparity in variance between the groups is minor and therefore we did
not consider the two groups of biomarkers to be heteroscedastic.

Given those parameters and α0 = 0, β1 = 0.8089, 1.4486, 1.9767 and
2.9670 give the desired values of AUC (θ) = 0.8, 0.9, 0.95 and 0.99. For
α0 = 1.6111, the values of β1 = 0.8319, 1.4729, 2.0019 and 2.9939 make θ
to be 0.8, 0.9, 0.95 and 0.99.
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If we set γ = 0.9, q1 = 0.85, and q2 = 0.9, the missing percentage (ρ)
is roughly 50%. If we set γ = 0.95, q1 = 0.9, and q2 = 0.9, the missing
coverage (ρ) is roughly 70%. If we set γ = 0.95, q1 = 0.99, and q2 = 0.99,
the missing coverage (ρ) is roughly 90%.

To analyze complete data, the missingness indicator (R) was ignored.
To get CI’s for incomplete data, MI techniques were applied to the same
data with missingess indicator (R) considered. Imputations were per-
formed m = 10 times with 5 iterations each for all cases. For NORM im-
putation, a non-informative prior for the multivariate normal distribution
was assumed and the iterations started from estimates by the expectation-
maximization (EM) algorithm.

For each of 72 different settings (i.e. four AUC values, two prevalence
rates, three missingness rates, and three sample sizes), 10,000 simulation
replicates were performed for each of three imputation methods (PMM
(MICE), LR (MICE), and NORM).

4.3 Evaluation

We evaluate the performance of CI’s by measuring coverage probability
(CP), left and right non-coverage probability (LNCP and RNCP), and
the confidence interval length (CIL). Coverage probability is defined as the
proportion of CI’s that capture the population AUC and the proportion of
CI’s of which upper (or lower) limit lies below (or above) the population
AUC is the LNCP (or RNCP). For calculating the CIL the confidence
intervals were truncated above at 1 and below at 0. Each evaluation
measure is presented by being averaged across some parameters and/or
across simulation replicates if necessary.

For CP, the smaller the error (i.e. difference between the actual and
nominal CP) is, the better performing the CI’s are. Given the same
confidence level, shorter CIL’s are preferred. LNCP and RNCP are con-
sidered good if they are balanced. To additionally see the stability of
the coverage statistic, that is, to see if there is a chance that seemingly
good average CP happens to result from averaging extremely small and
large CP’s, we also measured the mean absolute error of the CP (MAE):

MAE =
∑ns
i=1

|CPi−CP |
ns

, where CP is the nominal coverage probability,

CPi is the actual coverage probability of the ith setting, and ns is the
number of settings.

5 Results

For each imputation technique, CI method and missing coverage (ρ), the
average CP, the MAE of CP and the average CIL were calculated. Table 1
shows the results when ρ = 70%. (Results for values of ρ = 50% and
ρ = 90% can be seen in Tables 4 and 5, respectively, in the appendix).
Table 2 presents the results about the average LNCP and RNCP for ρ =
70%. (LNCP and RNCP results for ρ = 50% and ρ = 90% can be found
in Tables 6 and 7, respectively, in the appendix.) For each table, the first
five rows correspond to the full dataset that has no missing values, the
second five rows are for complete case analysis (i.e. naive analysis), and
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the remaining rows are for incomplete datasets after applying multiple
imputation by PMM, LR, and NORM, respectively.

The average CP and the average CIL are also shown in Figure 1 by
AUC levels (θ), MI techniques (compared with analysis on data that have
no missing value), the prevalence rate (φ) and the missing coverage (ρ).
Then the performances across different values of sample size (n) when
ρ = 70% are presented in Figure 2.

We first look at the results for the complete datasets, and see how
the performance changes when we do complete case analysis for incom-
plete data. Then we move on to different imputation techniques for the
incomplete data with moderate level of missingness (ρ = 70%).

Table 1: Performance of CI’s for each imputation and CI method when ρ = 70%
MI CI CP MAE (CP) CIL

θ = 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99

co
m

p
le

te

Bm .938 .917 .890 .767 .012 .033 .060 .183 .187 .126 .079 .022
HM1 .942 .920 .895 .795 .008 .030 .055 .155 .192 .130 .082 .024
HM2 .936 .923 .919 .880 .015 .027 .034 .075 .186 .128 .084 .028
NW .949 .943 .940 .892 .004 .010 .017 .068 .195 .137 .091 .030
DL .937 .914 .888 .787 .013 .036 .062 .163 .188 .127 .080 .023

n
ai

ve

Bm .692 .575 .488 .287 .258 .375 .462 .663 .320 .169 .084 .017
HM1 .806 .673 .568 .327 .144 .277 .382 .623 .398 .218 .116 .027
HM2 .793 .668 .574 .347 .157 .282 .376 .603 .371 .206 .112 .027
NW .847 .742 .640 .355 .103 .208 .310 .595 .408 .238 .134 .034
DL .749 .623 .531 .313 .201 .327 .419 .637 .354 .181 .090 .019

P
M

M

Bm .925 .923 .931 .953 .025 .027 .020 .021 .352 .290 .241 .175
HM1 .929 .920 .916 .905 .022 .030 .034 .051 .345 .275 .223 .155
HM2 .929 .922 .922 .914 .023 .028 .028 .047 .346 .277 .226 .158
NW .933 .930 .935 .944 .020 .022 .015 .023 .355 .289 .237 .168
DL .926 .916 .912 .896 .024 .034 .038 .060 .341 .272 .221 .153

L
R

Bm .960 .962 .964 .964 .023 .028 .034 .035 .337 .308 .290 .274
HM1 .961 .963 .965 .967 .023 .029 .034 .036 .338 .309 .291 .275
HM2 .961 .963 .965 .966 .023 .029 .034 .036 .337 .309 .291 .275
NW .962 .964 .967 .968 .024 .030 .035 .037 .340 .311 .293 .275
DL .960 .962 .965 .966 .023 .028 .034 .036 .336 .308 .290 .274

N
O

R
M

Bm .902 .901 .863 .785 .048 .053 .095 .179 .367 .314 .270 .211
HM1 .910 .887 .804 .624 .040 .066 .151 .326 .363 .290 .238 .176
HM2 .903 .875 .790 .622 .047 .077 .164 .328 .355 .286 .237 .177
NW .916 .904 .852 .754 .036 .055 .108 .208 .375 .311 .263 .201
DL .907 .883 .797 .610 .043 .069 .156 .340 .359 .286 .235 .173
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Table 2: Non-coverage probabilities of CI’s for each imputation and CI method
when ρ = 70%

MI CI LNCP RNCP
θ = 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99

co
m

p
le

te

Bm .049 .075 .105 .232 .014 .008 .005 .001
HM1 .047 .074 .101 .205 .011 .006 .003 .000
HM2 .051 .069 .077 .120 .013 .008 .004 .000
NW .040 .052 .059 .108 .011 .005 .002 .000
DL .051 .079 .108 .212 .013 .007 .004 .000

n
a
iv

e

Bm .150 .290 .394 .619 .025 .011 .009 .009
HM1 .151 .272 .366 .597 .007 .001 .000 .000
HM2 .164 .278 .361 .577 .007 .001 .000 .000
NW .111 .203 .295 .569 .006 .001 .000 .000
DL .170 .296 .387 .607 .009 .001 .000 .000

P
M

M

Bm .031 .026 .018 .005 .026 .031 .031 .022
HM1 .032 .027 .018 .005 .023 .034 .046 .070
HM2 .032 .025 .014 .002 .023 .035 .045 .064
NW .029 .022 .013 .002 .022 .029 .033 .034
DL .033 .028 .019 .005 .025 .037 .050 .079

L
R

Bm .012 .005 .001 .000 .012 .015 .015 .016
HM1 .011 .005 .001 .000 .012 .015 .014 .013
HM2 .011 .004 .000 .000 .012 .015 .015 .014
NW .011 .004 .000 .000 .012 .014 .013 .012
DL .012 .005 .001 .000 .013 .015 .015 .014

N
O

R
M

Bm .007 .002 .001 .000 .071 .077 .115 .194
HM1 .012 .004 .001 .000 .062 .091 .176 .356
HM2 .012 .004 .001 .000 .069 .103 .190 .358
NW .006 .001 .000 .000 .062 .077 .128 .226
DL .013 .004 .001 .000 .065 .095 .183 .370
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Figure 1: CP and CIL by MI techniques, CI methods, φ and ρ
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Figure 2: CP and CIL by MI methods, CI methods and n when ρ = 70%
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5.1 Performance of CI’s for complete data

Focusing on the top section of Table 1 labeled “complete”, one can see
that for each CI method, CP decreases away from the nominal value (0.95)
as θ approaches 1 with its mean absolute error increasing. Among the CI
methods, Newcombe’s Wald (NW) method has CP noticeably closer to the
nominal CP and mean absolute error of CP less than any other methods
for all AUC levels. However, since when the true AUC is 0.99, the CP
significantly deviates from the nominal value even for NW method, Wald-
type intervals are worth using when AUC is less than equal to 0.95.

Further, as we see in Table 2, LNCP’s are larger than RNCP’s with
the imbalance being all the more evident when θ approaches 1. This is
because the symmetric property of Wald-type intervals makes the upper
and lower limit over- and underestimated as the standard error decreases
as the AUC moves from 0.5 to 1.

5.2 Performance of CI’s for incomplete data

Again focusing on Table 1, the CP’s for complete case analysis are, as
expected, substantially farther away from the nominal CP (0.95) than
those for the complete data. The CIL’s for complete case analysis are
on average longer than those for complete data mostly due to loss of
information related to the missing data (Figure 1).

Next, focusing on results where MI techniques were applied to incom-
plete data, it is easy to see that the MI methods vastly outperform the
naive complete case analysis particularly when the value of the AUC ap-
proaches 1. For instance, when AUC is 0.99, the CP for naive analysis
range from 0.287 to 0.355 whereas the worst MI procedure (NORM) has
CP’s ranging from 0.610 to 0.785.

While the NORM imputation technique certainly outperforms the
naive analysis it is inferior to both PMM and LR in terms of CP. PMM
has coverage probabilities that range from 0.896 up to 0.953, much bet-
ter than NORM and naive analysis, but still underperforming the LR. LR
slightly overestimates coverage probability with all CP’s between 0.96 and
0.97 and shows remarkable accuracy in CP across different values of the
AUC. Counterintuitively, the CI’s constructed with LR and PMM out-
perform even the complete data in terms of CP when the AUC is near 1
as seen from Figure 1. For example, the CP of PMM ranges from 0.896
to 0.953 for θ = 0.99, while that of the complete data does from 0.767 to
0.892.

The performance of NORM is the worst in terms of both CP and
CIL. The longest average CIL with the lowest average CP makes NORM
the most inefficient approach. Horton et. al. (2003) pointed out that
rounding may cause bias in MI and that it might be better to leave the
imputed values as they are. A large bias of NORM is responsible for its
high imbalance between LNCP and RNCP.

CI’s for the complete data have better CP’s for a larger sample; how-
ever, the opposite is true for NORM imputation, which has worse CP’s
for a larger sample as Figure 2 shows. When a point estimate is biased, as
is the case here, large sample sizes worsen the under-coverage by reducing
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the standard error estimates.
Figure 3 illustrates the mean squared error (MSE) of the point esti-

mates. We observe that the MSE of naive estimators gets smaller when
AUC gets smaller. Because naive estimators overestimate the AUC (θ)
under the missingniss mechanism where diseased subjects are more likely
to verify their disease status, the bias of naive estimator is bounded by
1− θ, which goes to 0 as θ gets larger. While on the contrary the MI es-
timators do not necessarily overestimate the AUC, the magnitude of bias
can be larger than that of the naive estimator. Also the variance of MI
estimators is expected to be larger than that of the naive estimator, un-
der certain settings, the naive estimator outperforms the MI estimators in
terms of MSE. However, under moderate levels of AUC (θ = 0.8, 0.9) with
moderate level of missingness (ρ = 0.5, 0.7), MI, especially LR, reasonably
performs well in terms of MSE.

Figure 3: The MSE (mean squared error) of AUC estimates by MI techniques,
φ and ρ.

In terms of CIL performance between PMM and LR, PMM tends to
yield shorter intervals than LR does, as the population AUC (θ) gets
larger. For example, when ρ = 0.70 and θ = 0.99, the CIL for PMM for

16



range from 0.153 to 0.175 whereas the range of CIL’s for LR is from 0.274
to 0.275. This difference is much less dramatic for smaller values of AUC.
For instance, when ρ = 0.70 and θ = 0.80, the CIL of PMM ranges from
0.341 to 0.355 whereas with LR the CIL ranges from 0.336 to 0.340.

Finally, from Figure 1, we observe that LR gives CP most robust to
different settings and closest to the nominal CP. That is, for every values
of phi and ρ being considered except (φ, ρ) = (0.7, 0.9), CP of LR stay
close to the nominal CP. While CIL’s of LR are longer than that of PMM,
under moderate settings, i.e. ρ < 0.9, θ ≤ 0.95, its CIL’s are comparable
to those of PMM. However, when ρ = 0.5 (Table 4 in the appendix), NW
method with PMM gives the best CP and CIL.

6 Real data example

To explore the pattern of different CI methods for the AUC when using MI
on a real dataset, we examined a group of patients collected by 30 past and
present national Alzheimer’s Disease Centers (ADCs) and managed by the
National Alzheimer’s Coordinating Center (NACC) from September 2005
to May 2016.

This longitudinal dataset contains a total of 33,900 subjects with the
demographic, clinical (the Uniform Data Set, UDS) and neuropathologic
(the Neuropathology Data Set, NP) data collected on subjects, each sub-
ject having up to 11 visits. We considered only observations from the
initial visits and one of the ADCs. Among these 1014 subjects, 93.4%
are not known to have AD and thus their disease status is considered
missing, where we defined subjects as diseased if their Alzheimer’s disease
neuropathologic change (ADNC) score is 1, 2 or 3 (low, intermediate and
high ADNC each), and as non-diseased if their ADNC score is 0. Among
those who know their AD status of the sample, 83.6% of subjects have
AD.

As a diagnostic test of AD, the Clinical Dementia Rating (CDR) can
be used which measures patients’ cognitive status with respect to mem-
ory, orientation, judgement and problem-solving, community affairs, home
and hobbies, and personal care. Each attribute takes on values from 0 to
3 in increments of 0.5 or 1.0, and their sum (CDRSUM), ranges from
0.0 to 18.0. Supplementary variables were also considered for MI of the
AD status: age (AGE), sex (SEX), race according to National Institutes
of Health (NIH) definitions (RACE), body mass index (BMI), systolic
blood pressure (BPSYS), resting heart rate (HRATE), total number of
medications reported (NUMMED), years of smoking (SMOKYRS), fam-
ily history (FAMHIST, 1 if one of the first-degree family has cognitive
impairment, 0 otherwise), years of education (EDUCYRS), the total score
of Mini-Mental State Examination (MMSE), the total score of Geriatric
Depression Score (GDS), and Unified Parkinson’s Disease Rating Scale
(PDNORMAL). Some of the supplementary variables also have missing
values. The descriptive statistics of the variables are summarized in Ta-
ble 3.

The naive estimate (θ̂na) of the AUC for the subset is 0.5893, when ig-
noring the subjects whose AD status is not known. To correct for the veri-
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Table 3: Descriptive statistics of the sample data
variable type min Q1 median mean Q3 max # missing
CDRSUM continuous 0 0 1.5 3.3 4.5 18 0 (0%)
CDRSUM (AD) 0 0.5 3.5 5.3 8.1 18 0 (0%)
CDRSUM (not AD) 0 0.5 2.5 3.6 3.5 18 0 (0%)

AGE continuous 29 64 72 71.1 79 102 0 (0%)
BMI continuous 16.5 23.1 25.9 26.5 29 50.6 194 (20.5%)
BPSYS continuous 80 122 133 134.3 145 213 277 (29.3%)
HRATE continuous 39 60 67 67.8 74 116 300 (31.7%)
NUMMED continuous 0 3 4 4.9 7 22 3 (0.3%)
SMOKYRS continuous 0 0 0 8.3 10 76 164 (17.3%)
EDUCYRS continuous 0 14 16 15.8 18 25 1 (0.1%)
MMSE continuous 0 21.5 27 24.3 29 30 139 (14.7%)
GDS continuous 0 0 1 2.2 3 15 107 (11.3%)

variable type distribution # missing
AD binary AD: 56 (5.5%), not AD: 11 (1.1%) 947 (93.4%)
SEX binary male: 433 (42.7%), female: 581 (57.3%) 0 (0.0%)
RACE binary White: 879 (86.7%), Other 134 (13.2%) 1 (0.01%)
FAMHIST binary present: 425 (41.9%), not present: 511 (50.4%) 78 (7.7%)
PDNORMAL binary normal: 374 (36.9%), not normal: 442 (43.6%) 198 (19.5%)

min: minimum, Q1: 1st quartile, Q3: 3rd quartile, max: maximum,
# missing: number of missing values

fication bias of the estimate, imputations using MICE (PMM and LR) and
NORM were performed m = 10 times each. All the supplementary vari-
ables mentioned above were considered in the imputation models. RACE
was forced into a binary variable (White versus Other) as multi-categorical
variables are not applicable in NORM. Each dataset was analyzed us-
ing five variance estimators (Bamber’s method (Bm), Hanley-McNeil’s
method I (HM1), Hanley-McNeil’s method II (HM2), Newcombe’s Wald
method (NW), and DeLong’s method (DL)) and by applying Rubin’s
combining rule, the CI’s were constructed.

The point estimates of the AUC after MI are 0.5473, 0.5926, and
0.5247 for PMM, LR, and NORM respectively. The interval estimates are
presented in Figure 4.

Based on the assumption that the probability of AD verification is
not dependent on the value of AD status, the point estimate by each MI
technique has values lower than or similar to the naive estimate. We can
also notice that the CI’s, and more specifically their variance estimates,
seem to be affected more by the imputation techniques than by the CI
methods.
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Figure 4: Confidence interval plots of the AUC for CDRSUM as a test of
Alzheimer’s disease. The blue dotted line is the naive estimate, the black dots
in the middle each CI are the bias-corrected estimates by the imputation tech-
niques.

7 Discussion

In this paper, we considered several different methods for constructing
Wald-type confidence intervals for the area under the ROC curve in the
presence of missingness on disease status indicators with the missingness
mechanism assumed to be ignorable. Several different methods of multi-
ple imputation were considered for handling the missing data, including
MICE (PMM and LR) and NORM, as a way to deal with the verification
bias problem that arises in some biomedical research where the true dis-
ease status is often missing. We demonstrated through a simulation study
that Wald-type CI’s, especially NW method, work reasonably well when
the true AUC is moderate (θ = 0.8, 0.9, 0.95), that using multiple imputa-
tion to handle the missing data greatly outperform a naive complete case
analysis confidence interval. Based on the results we recommend using MI
with LR and the choice of CI method is less important. However, when
missingness rate is less severe (< 70%), we recommend using NW and MI
with PMM.

Such findings are based on some simulation assumptions which may
be different from reality to a great degree. However, it is not difficult
to analyze data by modifying formulas and to search optimal combina-
tion under more realistic settings. For example, we assumed the missing
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mechanism to be ignorable and the biomarker values to be nearly ho-
moscedastic. As a solution to the non-ignorable missingness, Harel and
Zhou (2006) mentioned that appropriate missingness model can be set up
and can be applied in the imputation step, keeping the analysis step and
combination step unchanged. Further, Demirtas and Schafer (2003) and
Demirtas (2005), discuss pattern mixture models for imputation when the
missingness mechanism is determined to be non-ignorable. Secondly, the
simulation parameters can be set up more comprehensively to find the
best method. While our simulation study assumed almost homoscedastic-
ity, there can be biomarkers with significantly different dispersion between
groups. In such situation, one can easily design a new simulation study
that differentiates the variance of the biomarker.
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Appendix. Proofs

We show that modifications to the Hanley-McNeil’s Wald method yields
unbiased estimates. First we show how the Hanley-McNeil’s variance
formula can be derived. Then we prove that the variance estimator is
unbiased.
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A Derivation of Hanley-McNeil’s variance
formula

Recall that θ, Q1, and Q2 are defined as follows:

θ =P (Y > X) +
1

2
P (Y = X),

Q1 =P (Y1, Y2 > X) +
1

2
P (Y1 > Y2 = X)

+
1

2
P (Y2 > Y1 = X) +

1

4
P (Y1 = Y2 = X),

Q2 =P (Y > X1, X2) +
1

2
P (Y = X1 > X2)

+
1

2
P (Y = X2 > X1) +

1

4
P (Y = X1 = X2).

We also denote that

Hi,j = H(Yi, Xj) =


1, if Yi > Xj .
1
2
, if Yi = Xj .

0, otherwise.

- Unbiased estimator of the AUC
Let the AUC estimator be defined as:

θ̂ =
1

nXnY

∑
i,j

Hi,j . (1)

Then, E(θ̂) = 1·P (Y > X)+ 1
2
·P (Y = X) = θ. Thus θ̂ = 1

nXnY

∑
i,j Hi,j

is an unbiased estimator of θ.

- Variance of the AUC estimator
From the equation (1), the variance can be derived as:

V (θ̂) =
1

(nXnY )2

[∑
i,j

V (Hi,j) +
∑
i6=k

∑
j

Cov(Hi,j , Hk,j)

+
∑
i

∑
j 6=h

Cov(Hi,j , Hi,h) +
∑
i 6=k

∑
j 6=h

Cov(Hi,j , Hk,h)

]
,
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where

V (Hi,j) =E(H2
i,j)− E(Hi,j)

2

={P (Y > X) +
1

22
P (Y = X)} − θ2

=θ − 1

4
P (Y = X)− θ2,

Cov(Hi,j , Hk,j) =E(Hi,jHk,j)− E(Hi,j)E(Hk,j)

={12 · P (Y1, Y2 > X) + 1 · 1

2
· P (Y2 > Y1 = X)

+
1

2
· 1 · P (Y1 > Y2 = X) +

1

22
· P (Y1 = Y2 = X)}

− θ2

=Q1 − θ2,

Cov(Hi,j , Hi,h) =E(Hi,jHi,h)− E(Hi,j)E(Hi,h)

=Q2 − θ2, and

Cov(Hi,j , Hk,h) =E(Hi,jHk,h)− E(Hi,j)E(Hk,h)

=θ2 − θ2

=0.

Then we have:

V (θ̂) =
1

nXnY

[
θ(1− θ)− 1

4
P (Y = X)

+ (nY − 1)(Q1 − θ2) + (nX − 1)(Q2 − θ2)

] (2)

When the biomarkers are measured continuously enough so that there
is no tie, the variance formula (2), reduces to what Hanley and McNeil
suggested (3):

V (θ̂) =
1

nXnY

[
θ(1− θ) + (nY − 1)(Q1 − θ2)

+ (nX − 1)(Q2 − θ2)

] (3)

, where Q1 = P (Y1, Y2 > X) and Q2 = P (Y > X1, X2).

B Unbiasedness of the modified Hanley-
McNeil’s variance estimator

Let the variance estimator be:

V̂ (θ̂) =
1

(nX − 1)(nY − 1)

[
θ̂(1− θ̂)− 1

4
p(Y = X)

+ (nY − 1)(Q̂1 − θ̂2) + (nX − 1)(Q̂2 − θ̂2)

]
,

(4)
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where

Q̂1 =
1

nXn2
Y

nX∑
j=1

[ nY∑
i=1

Hi,j

]2

Q̂2 =
1

n2
XnY

nY∑
i=1

[ nX∑
j=1

Hi,j

]2

, and

p(Y = X) =
1

nXnY

nX∑
j=1

nY∑
i=1

I(yi = xj)

- Unbiased estimator of Q1, Q2, P (Y = X)
Q̂1, Q̂2, and p(Y=X) are an unbiased estimator ofQ1, Q2, and P(Y=X),

respectively.

- Proof
Let {(i, k)|i, k = 1, 2, ..., nY } be partitioned as:

Aj ={(i, k)|Yi, Yk > Xj},
Bj ={(i, k)|Yi > Yk = Xj},
Cj ={(i, k)|Yk > Yi = Xj},
Dj ={(i, k)|Yi = Yk = Xj}, and

Ej ={(i, k)|Yi < Xj or Yk < Xj}

Then

Q̂1 =
1

nXn2
Y

nX∑
j=1

[ nY∑
i=1

Hi,j

]2

=
1

nXn2
Y

nX∑
j=1

nY∑
i=1

nY∑
k=1

Hi,jHk,j

=
1

nXn2
Y

nX∑
j=1

[
nY∑

(i,k)∈Aj

Hi,jHk,j +

nY∑
(i,k)∈Bj

Hi,jHk,j

+

nY∑
(i,k)∈Cj

Hi,jHk,j +

nY∑
(i,k)∈Dj

Hi,jHk,j +

nY∑
(i,k)∈Ej

Hi,jHk,j

]

=
1

nXn2
Y

nX∑
j=1

[
nY∑

(i,k)∈Aj

1 · 1 +

nY∑
(i,k)∈Bj

1 · 1

2
+

nY∑
(i,k)∈Cj

1

2
· 1

+

nY∑
(i,k)∈Dj

1

2
· 1

2
+

nY∑
(i,k)∈Ej

0

]
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E[Q̂1] =
1

nXn2
Y

E

[
nX∑
j=1

nY∑
(i,k)∈Aj

1 +

nX∑
j=1

nY∑
(i,k)∈Bj

1

2
+

nX∑
j=1

nY∑
(i,k)∈Cj

1

2

+

nX∑
j=1

nY∑
(i,k)∈Dj

1

4

]

=
1

nXn2
Y

{nXnY 2P (Y1, Y2 > X) +
1

2
nXnY

2P (Y1 > Y2 = X)

+
1

2
nXnY

2P (Y2 > Y1 = X) +
1

4
nXnY

2P (Y1 = Y2 = X)}

=P (Y1, Y2 > X) + P (Y1 > Y2 = X)

+ P (Y2 > Y1 = X) + P (Y1 = Y2 = X)}
=Q1

Q̂2 can be shown to be unbiased in a similar way. Also E[p(Y = X)] =
E[ 1

nXnY

∑nX
j=1

∑nY
i=1 I(yi = xj)] = 1

nXnY
nXnY P (Y = X) = P (Y = X).

- Unbiased estimator of V (θ̂)

V̂ (θ̂) defined in (4) is an unbiased estimator of V (θ̂).

- Proof

E[V̂ (θ̂)] =
1

(nX − 1)(nY − 1)
E

[
θ̂(1− θ̂)− 1

4
p(Y = X)

+ (nY − 1)(Q̂1 − θ̂2) + (nX − 1)(Q̂2 − θ̂2)

]

=
1

(nX − 1)(nY − 1)

[
E[θ̂(1− θ̂)]− E[

1

4
p(Y = X)]

+ (nY − 1)E[Q̂1 − θ̂2] + (nX − 1)E[Q̂2 − θ̂2]

]

=
1

(nX − 1)(nY − 1)

[
θ − θ2 − 1

4
P (Y = X)

+ (nY − 1)(Q1 − θ2) + (nX − 1)(Q1 − θ2)

− (nX + nY − 1)V (θ̂)

]

=
nXnY V (θ̂)− (nX + nY − 1)V (θ̂)

(nX − 1)(nY − 1)

=
(nX − 1)(nY − 1)V (θ̂)

(nX − 1)(nY − 1)

=V (θ̂)
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Appendix. Additional Tables

Table 4: Performance of CI’s for each imputation and CI method when ρ = 50%
MI CI CP MAE (CP) CIL

θ = 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99

co
m

p
le

te

Bm .934 .917 .889 .763 .014 .033 .061 .184 .187 .126 .079 .022
HM1 .938 .921 .896 .791 .010 .030 .054 .157 .192 .130 .082 .023
HM2 .932 .925 .918 .877 .017 .026 .035 .076 .185 .128 .084 .028
NW .945 .943 .940 .888 .005 .010 .017 .070 .195 .137 .091 .030
DL .934 .915 .889 .783 .015 .035 .062 .165 .187 .127 .080 .023

n
ai

ve

Bm .846 .757 .681 .479 .287 .385 .469 .659 .279 .165 .091 .020
HM1 .886 .796 .723 .516 .177 .299 .403 .629 .316 .185 .103 .024
HM2 .866 .785 .734 .559 .188 .304 .395 .608 .289 .169 .097 .025
NW .909 .856 .805 .584 .149 .251 .349 .597 .320 .198 .117 .032
DL .865 .771 .698 .499 .239 .347 .437 .642 .300 .173 .094 .021

P
M

M

Bm .935 .933 .940 .955 .064 .100 .119 .127 .271 .203 .150 .082
HM1 .938 .933 .939 .953 .062 .105 .130 .153 .271 .198 .143 .074
HM2 .937 .937 .948 .976 .061 .102 .125 .150 .268 .198 .145 .077
NW .943 .946 .958 .981 .058 .096 .115 .133 .276 .207 .153 .082
DL .935 .930 .937 .950 .064 .109 .134 .158 .268 .196 .142 .073

L
R

Bm .960 .973 .982 .991 .036 .046 .054 .059 .261 .214 .182 .152
HM1 .962 .975 .983 .993 .036 .047 .054 .060 .263 .216 .183 .153
HM2 .961 .976 .984 .992 .036 .047 .054 .059 .261 .215 .184 .153
NW .964 .979 .987 .995 .037 .049 .055 .060 .265 .219 .187 .155
DL .960 .973 .982 .993 .036 .046 .054 .060 .260 .214 .182 .152

N
O

R
M

Bm .900 .886 .845 .792 .118 .145 .193 .255 .317 .270 .235 .188
HM1 .910 .873 .782 .614 .114 .158 .235 .373 .319 .254 .208 .158
HM2 .899 .853 .764 .617 .121 .170 .250 .379 .307 .246 .206 .159
NW .913 .890 .834 .750 .110 .146 .201 .278 .325 .269 .228 .178
DL .907 .868 .775 .600 .117 .161 .241 .386 .314 .250 .205 .155
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Table 5: Performance of CI’s for each imputation and CI method when ρ = 90%
MI CI CP MAE (CP) CIL

θ = 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99

co
m

p
le

te

Bm .936 .917 .888 .766 .014 .033 .062 .184 .187 .126 .080 .022
HM1 .939 .921 .896 .794 .011 .029 .054 .156 .192 .130 .082 .024
HM2 .933 .925 .919 .879 .017 .026 .036 .076 .185 .128 .084 .028
NW .946 .943 .940 .890 .005 .010 .017 .071 .195 .137 .091 .030
DL .934 .915 .888 .786 .016 .035 .062 .164 .187 .127 .080 .023

n
ai

ve

Bm .449 .364 .274 .107 .501 .586 .676 .843 .344 .178 .088 .018
HM1 .626 .483 .351 .121 .324 .467 .599 .829 .490 .296 .169 .041
HM2 .628 .487 .357 .121 .322 .463 .593 .829 .485 .293 .167 .041
NW .647 .500 .360 .121 .303 .450 .590 .829 .506 .311 .180 .045
DL .518 .415 .311 .113 .432 .535 .639 .837 .372 .199 .104 .022

P
M

M

Bm .799 .693 .636 .617 .151 .257 .314 .333 .506 .479 .454 .410
HM1 .799 .684 .615 .568 .151 .266 .335 .382 .498 .470 .444 .395
HM2 .804 .688 .619 .574 .146 .262 .331 .376 .503 .473 .446 .396
NW .806 .698 .636 .605 .144 .252 .314 .345 .509 .481 .455 .407
DL .795 .678 .609 .560 .155 .272 .341 .389 .495 .466 .440 .392

L
R

Bm .883 .871 .865 .862 .072 .087 .095 .101 .574 .560 .551 .539
HM1 .884 .872 .866 .863 .072 .087 .094 .099 .576 .561 .552 .540
HM2 .884 .872 .866 .862 .072 .087 .094 .100 .575 .561 .552 .539
NW .884 .872 .866 .863 .072 .087 .094 .099 .576 .561 .552 .540
DL .883 .872 .865 .862 .072 .087 .095 .100 .575 .560 .551 .539

N
O

R
M

Bm .694 .642 .594 .559 .256 .308 .356 .391 .323 .289 .259 .207
HM1 .693 .635 .574 .502 .257 .315 .376 .448 .320 .282 .251 .196
HM2 .688 .624 .559 .487 .262 .326 .391 .463 .315 .278 .246 .193
NW .701 .649 .599 .559 .249 .301 .351 .391 .327 .292 .261 .207
DL .688 .629 .566 .489 .262 .321 .384 .461 .315 .278 .247 .193
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Table 6: Non-coverage probabilities of CI’s for each imputation and CI method
when ρ = 50%

MI CI LNCP RNCP
θ = 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99

co
m

p
le

te

Bm .052 .075 .105 .236 .014 .008 .005 .001
HM1 .050 .073 .100 .209 .011 .007 .004 .001
HM2 .054 .066 .077 .122 .014 .008 .005 .000
NW .044 .051 .058 .112 .012 .006 .002 .000
DL .053 .077 .107 .217 .013 .007 .004 .001

n
a
iv

e

Bm .094 .196 .284 .496 .026 .011 .007 .007
HM1 .099 .193 .265 .471 .011 .002 .000 .000
HM2 .115 .203 .254 .428 .015 .004 .001 .000
NW .075 .134 .184 .402 .012 .002 .000 .000
DL .110 .212 .286 .486 .013 .003 .001 .000

P
M

M

Bm .044 .050 .048 .041 .018 .013 .009 .002
HM1 .044 .051 .048 .040 .016 .013 .010 .005
HM2 .044 .046 .038 .018 .017 .014 .012 .004
NW .039 .040 .032 .015 .015 .011 .007 .001
DL .046 .053 .049 .042 .017 .014 .011 .006

L
R

Bm .027 .015 .007 .000 .011 .009 .009 .006
HM1 .026 .014 .006 .000 .010 .009 .008 .004
HM2 .025 .011 .004 .000 .011 .010 .010 .005
NW .024 .011 .004 .000 .011 .008 .007 .003
DL .027 .014 .007 .000 .011 .009 .009 .005

N
O

R
M

Bm .004 .001 .000 .000 .090 .108 .151 .205
HM1 .007 .002 .000 .000 .081 .122 .214 .383
HM2 .007 .002 .000 .000 .092 .142 .233 .381
NW .004 .001 .000 .000 .081 .106 .163 .248
DL .007 .003 .000 .000 .084 .126 .222 .398
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Table 7: Non-coverage probabilities of CI’s for each imputation and CI method
when ρ = 90%

MI CI LNCP RNCP
θ = 0.8 0.9 0.95 0.99 0.8 0.9 0.95 0.99

co
m

p
le

te

Bm .051 .074 .106 .233 .014 .008 .005 .001
HM1 .049 .073 .101 .205 .012 .007 .003 .000
HM2 .053 .067 .077 .121 .014 .008 .005 .000
NW .043 .051 .058 .110 .011 .006 .002 .000
DL .053 .077 .108 .214 .013 .007 .004 .001

n
a
iv

e

Bm .226 .323 .421 .608 .006 .007 .012 .004
HM1 .183 .289 .399 .608 .002 .000 .000 .000
HM2 .183 .285 .392 .608 .001 .000 .000 .000
NW .164 .272 .390 .608 .001 .000 .000 .000
DL .202 .302 .407 .608 .005 .001 .000 .000

P
M

M

Bm .004 .001 .000 .000 .103 .211 .268 .286
HM1 .005 .001 .000 .000 .105 .223 .291 .337
HM2 .004 .001 .000 .000 .100 .219 .287 .331
NW .004 .001 .000 .000 .099 .209 .270 .300
DL .005 .001 .000 .000 .109 .229 .297 .345

L
R

Bm .001 .000 .000 .000 .025 .037 .041 .044
HM1 .001 .000 .000 .000 .024 .036 .040 .042
HM2 .001 .000 .000 .000 .024 .036 .041 .043
NW .001 .000 .000 .000 .024 .036 .041 .043
DL .001 .000 .000 .000 .025 .036 .041 .043

N
O

R
M

Bm .036 .012 .005 .002 .178 .250 .304 .345
HM1 .040 .014 .005 .002 .177 .257 .325 .404
HM2 .042 .014 .005 .001 .180 .267 .340 .419
NW .034 .010 .003 .001 .174 .247 .303 .347
DL .041 .015 .006 .002 .181 .261 .332 .417
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