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Submitted to the Annals of Applied Statistics

HOW OFTEN DOES THE BEST TEAM WIN?

A UNIFIED APPROACH TO UNDERSTANDING RANDOMNESS

IN NORTH AMERICAN SPORT

By Michael J. Lopez

Skidmore College

and

By Gregory J. Matthews

Loyola University Chicago

and

By Benjamin S. Baumer

Smith College

Statistical applications in sports have long centered on how to
best separate signal (e.g. team talent) from random noise. However,
most of this work has concentrated on a single sport, and the devel-
opment of meaningful cross-sport comparisons has been impeded by
the difficulty of translating luck from one sport to another. In this
manuscript, we develop Bayesian state-space models using betting
market data that can be uniformly applied across sporting organiza-
tions to better understand the role of randomness in game outcomes.
These models can be used to extract estimates of team strength,
the between-season, within-season, and game-to-game variability of
team strengths, as well each team’s home advantage. We implement
our approach across a decade of play in each of the National Football
League (NFL), National Hockey League (NHL), National Basketball
Association (NBA), and Major League Baseball (MLB), finding that
the NBA demonstrates both the largest dispersion in talent and the
largest home advantage, while the NHL and MLB stand out for their
relative randomness in game outcomes. We conclude by proposing
new metrics for judging competitiveness across sports leagues, both
within the regular season and using traditional postseason tourna-
ment formats. Although we focus on sports, we discuss a number of
other situations in which our generalizable models might be usefully
applied.

1. Introduction. Most observers of sport can agree that game outcomes are to
some extent subject to chance. The line drive that miraculously finds the fielder’s
glove, the fumble that bounces harmlessly out-of-bounds, the puck that ricochets
into the net off of an opponent’s skate, or the referee’s whistle on a clean block
can all mean the difference between winning and losing. Yet game outcomes are not
completely random—there are teams that consistently play better or worse than the
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2 LOPEZ, MATTHEWS, BAUMER

average team. To what extent does luck influence our perceptions of team strength
over time?

One way in which statistics can lead this discussion lies in the untangling of signal
and noise when comparing the caliber of each league’s teams. For example, is team i
better than team j? And if so, how confident are we in making this claim? Central to
such an understanding of sporting outcomes is that if we know each team’s relative
strength, then, a priori, game outcomes—including wins and losses—can be viewed as
unobserved realizations of random variables. As a simple example, if the probability
that team i beats team j at time k is 0.75, this implies that in a hypothetical infinite
number of games between the two teams at time k, i wins three times as often as
j. Unfortunately, in practice, team i will typically only play team j once at time k.
Thus, game outcomes alone are unlikely to provide enough information to precisely
estimate true probabilities, and, in turn, team strengths.

Given both national public interest and an academic curiosity that has extended
across disciplines, many innovative techniques have been developed to estimate team
strength. These approaches typically blend past game scores with game, team, and
player characteristics in a statistical model. Corresponding estimates of talent are
often checked or calibrated by comparing out-of-sample estimated probabilities of
wins and losses to observed outcomes. Such exercises do more than drive water-cooler
conversation as to which team may be better. Indeed, estimating team rankings has
driven the development of advanced statistical models (Bradley and Terry, 1952;
Glickman and Stern, 1998) and occasionally played a role in the decision of which
teams are eligible for continued postseason play (CFP, 2014).

However, because randomness manifests differently in different sports, a limitation
of sport-specific models is that inferences cannot generally be applied to other com-
petitions. As a result, researchers who hope to contrast one league to another often
focus on the one outcome common to all sports: won-loss ratio. Among other flaws,
measuring team strength using wins and losses performs poorly in a small sample
size, ignores the game’s final score (which is known to be more predictive of future
performance than won-loss ratio (Boulier and Stekler, 2003)), and is unduly impacted
by, among other sources, fluctuations in league scheduling, injury to key players, and
the general advantage of playing at home. In particular, variations in season length
between sports—NFL teams play 16 regular season games each year, NHL and NBA
teams play 82, while MLB teams play 162—could invalidate direct comparisons of
win percentages alone. As an example, the highest annual team winning percentage
is roughly 87% in the NFL but only 61% in MLB, and part (but not all) of that
difference is undoubtedly tied to the shorter NFL regular season. As a result, until
now, analysts and fans have never quite been able to quantify inherent differences
between sports or sports leagues with respect to randomness and the dispersion and
evolution of team strength. We aim to fill this void.

In the sections that follow, we present a unified and novel framework for the si-
multaneous comparison of sporting leagues, which we implement to discover inherent
differences in North American sport. First, we validate an assumption that game-
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RANDOMNESS IN SPORT 3

level probabilities provided by betting markets provide unbiased and low-variance
estimates of the true probabilities of wins and losses in each professional contest. Sec-
ond, we extend Bayesian state-space models for paired comparisons (Glickman and
Stern, 1998) to multiple domains. These models use the game-level betting market
probabilities to capture implied team strength and variability. Finally, we present
unique league-level properties that to this point have been difficult to capture, and
we use the estimated posterior distributions of team strengths to propose novel met-
rics for assessing league parity, both for the regular season and postseason. We find
that, on account of both narrower distributions of team strengths and smaller home
advantages, a typical contest in the NHL or MLB is much closer to a coin-flip than
one in the NBA or NFL.

1.1. Literature review. The importance of quantifying team strength in competi-
tion extends across disciplines. This includes contrasting league-level characteristics
in economics (Leeds and Von Allmen, 2004), estimating game-level probabilities in
statistics (Glickman and Stern, 1998), and classifying future game winners in fore-
casting (Boulier and Stekler, 2003). We discuss and synthesize these ideas below.

1.1.1. Competitive balance. Assessing the competitive balance of sports leagues is
particularly important in economics and management (Leeds and Von Allmen, 2004).
While competitive balance can purportedly measure several different quantities, in
general it refers to levels of equivalence between teams. This could be equivalence
within one time frame (e.g. how similar was the distribution of talent within a sea-
son?), between time frames (e.g. year-to-year variations in talent), or from the be-
ginning of a time frame until the end (e.g. the likelihood of each team winning a
championship at the start of a season).

The most widely accepted within-season competitive balance measure is Noll-Scully
(Noll, 1991; Scully, 1989). It is computed as the ratio of the observed standard de-
viation in team win totals to the idealized standard deviation, which is defined as
that which would have been observed due to chance alone if each team were equal
in talent. Larger Noll-Scully values are believed to reflect greater imbalance in team
strengths.

While Noll-Scully has the positive quality of allowing for interpretable cross-sport
comparisons, a reliance on won-loss outcomes entails undesireable properties as well
(Owen, 2010; Owen and King, 2015). For example, Noll-Scully increases, on average,
with the number of games played (Owen and King, 2015), hindering any compar-
isons of the NFL (16 games) to MLB (162), for example. Additionally, each of the
leagues employ some form of an unbalanced schedule. Teams in each of MLB, the
NBA, NFL, and NHL play intradivisional opponents more often than interdivisional
ones, and intraconference opponents more often than interconference ones, meaning
that one team’s won-loss record may not be comparable to another team’s due to
differences in the respective strengths of their opponents (Lenten, 2015). Moreover,
the NFL structures each season’s schedule so that teams play interdivisional games
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4 LOPEZ, MATTHEWS, BAUMER

against opponents that finished with the same division rank in the standings in the
prior year. In expectation, this punishes teams that finish atop standings with tougher
games, potentially driving winning percentages toward 0.500. Unsurprisingly, unbal-
anced scheduling and interconference play can lead to imprecise competitive balance
metrics derived from winning percentages (Utt and Fort, 2002). As one final weak-
ness, varying home advantages between sports leagues, as shown in Moskowitz and
Wertheim (2011), could also impact comparisons of relative team quality that are
predicated on wins and losses.

Although metrics for league-level comparisons have been frequently debated, the
importance of competitive balance in sports is more uniformly accepted, in large part
due to the uncertainty of outcome hypothesis (Rottenberg, 1956; Knowles, Sherony
and Haupert, 1992; Lee and Fort, 2008). Under this hypothesis, league success—as
judged by attendance, engagement, and television revenue—correlates positively with
teams having equal chances of winning. Outcome uncertainty is generally considered
on a game-level basis, but can also extend to season-level success (i.e, teams having
equivalent chances at making the postseason). As a result, it is in each league’s best
interest to promote some level of parity—in short, a narrower distribution of team
quality—to maximize revenue (Crooker and Fenn, 2007). Related, the Hirfindahl-
Hirschman Index (Owen, Ryan and Weatherston, 2007) and Competitive Balance
Ratio (Humphreys, 2002) are two metrics attempting to quantify the relative chances
of success that teams have within or between certain time frames.

1.1.2. Approaches to estimating team strength. Competitive balance and outcome
uncertainty are rough proxies for understanding the distribution of talent among
teams. For example, when two teams of equal talent play a game without a home
advantage, outcome uncertainty is maximized; e.g., the outcome of the game is equiv-
alent to a coin flip. These relative comparisons of team strength began in statistics
with paired comparison models, which are generally defined as those designed to cal-
ibrate the equivalence of two entities. In the case of sports, the entities are teams or
individual athletes.

The Bradley-Terry model (BTM, Bradley and Terry (1952)) is considered to be the
first detailed paired comparison model, and the rough equivalent of the soon thereafter
developed Elo rankings (Elo, 1978; Glickman, 1995). Consider an experiment with t
treatment levels, compared in pairs. BTM assumes that there is some true ordering
of the probabilities of efficacy, π1, . . . , πt, with the constraints that

∑t
i=1 πi = 1 and

πi ≥ 0 for i = 1, . . . , t. When comparing treatment i to treatment j, the probability
that treatment i is preferable to j (i.e. a win in a sports setting) is computed as πi

πi+πj
.

Glickman and Stern (1998) and Glickman and Stern (2016) build on the BTM by
allowing team-strength estimates to vary over time through the modeling of point
differential in the NFL, which is assumed to follow an approximately normal distribu-
tion. Let y(s,k)ij be the point differential of a game during week k of season s between
teams i and j. In this specification, i and j take on values between 1 and t, where t
is the number of teams in the league. Let θ(s,k)i and θ(s,k)j be the strengths of teams
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RANDOMNESS IN SPORT 5

i and j, respectively, in season s during week k, and let αi be the home advantage
parameter for team i for i = 1, . . . , t. Glickman and Stern (1998) assume that for a
game played at the home of team i during week k in season s,

E[y(s,k)ij |θ(s,k)i, θ(s,k)j , αi] = θ(s,k)i − θ(s,k)j + αi,

where E[y(s,k)ij |θ(s,k)i, θ(s,k)j , αi] is the expected point differential given i and j’s team
strengths and the home advantage of team i.

The model of Glickman and Stern (1998) allows for team strength parameters to
vary stochastically in two distinct ways: from the last week of season s to the first
week of season s+1, and from week k of season s to week k+1 of season s. As such,
it is termed a ‘state-space’ model, whereby the data is a function of an underlying
time-varying process plus additional noise.

Glickman and Stern (1998) propose an autoregressive process to model team strengths,
whereby over time, these parameters are pulled toward the league average. Under
this specification, past and future season performances are incorporated into season-
specific estimates of team quality. Perhaps as a result, Koopmeiners (2012) identifies
better fits when comparing state-space models to BTM’s fit separately within each
season. Additionally, unlike BTM’s, state-space models would not typically suffer from
identifiability problems were a team to win or lose all of its games in a single season
(a rare, but extant possibility in the NFL).1 For additional and related state-space
resources, see Fahrmeir and Tutz (1994), Knorr-Held (2000), Cattelan, Varin and
Firth (2013), Baker and McHale (2015), and Manner (2015). Additionally, Matthews
(2005), Owen (2011), Koopmeiners (2012), Tutz and Schauberger (2015), and Wolfson
and Koopmeiners (2015) implement related versions of the original BTM.

Although the state-space model summarized above appears to work well in the
NFL, a few issues arise when extending it to other leagues. First, with point differen-
tial as a game-level outcome, parameter estimates would be sensitive to the relative
amount of scoring in each sport. Thus, comparisons of the NHL and MLB (where
games, on average, are decided by a few goals or runs) to the NBA and NFL (where
games, on average, are decided by about 10 points) would require further scaling.
Second, a normal model of goal or run differential would be inappropriate in low scor-
ing sports like hockey or baseball, where scoring outcomes follow a Poisson process
(Mullet, 1977; Thomas et al., 2007). Finally, NHL game outcomes would entail an
extra complication, as roughly 25% of regular season games are decided in overtime
or a shootout.

In place of paired comparison models, alternative measures for estimating team
strength have also been developed. Massey (1997) used maximum likelihood estima-
tion and American football outcomes to develop an eponymous rating system. A more
general summary of other rating systems for forecasting use is explored by Boulier
and Stekler (2003). In addition, support vector machines and simulation models have

1In the NFL, the 2007 New England Patriots won all of their regular season games, while the 2008
Detroit Lions lost all of their regular season games.
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6 LOPEZ, MATTHEWS, BAUMER

been proposed in hockey (Demers, 2015; Buttrey, 2016), neural networks and näıve
Bayes implemented in basketball (Loeffelholz et al., 2009; Miljković et al., 2010), lin-
ear models and probit regressions in football (Harville, 1980; Boulier and Stekler,
2003), and two stage Bayesian models in baseball (Yang and Swartz, 2004). While
this is a non-exhaustive list, it speaks to the depth and variety of coverage that sports
prediction models have generated.

1.2. Betting market probabilities. In many instances, researchers derive estimates
of team strength in order to predict game-level probabilities. Betting market informa-
tion has long been recommended to judge the accuracy of these probabilities (Harville,
1980; Stern, 1991). Before each contest, sports books—including those in Las Vegas
and in overseas markets—provide a price for each team, more commonly known as
the money line.

Mathematically, if team i’s money line is ℓi against team j (with corresponding
money line ℓj), where |ℓi| ≥ 100, then the boundary win probability for that team,
pi(ℓi), is given by:

pi(ℓi) =

{
100

100+ℓi
if ℓi ≥ 100

|ℓi|
100+|ℓi|

if ℓi ≤ −100
.

The boundary win probability represents the threshold at which point betting on
team i would be profitable in the long run.

As an example, suppose the Chicago Cubs were favored (ℓi = −127 on the money
line) to beat the Arizona Diamondbacks (ℓj = 117). The boundary win probability
for the Cubs would be pi(−127) = 0.559; for the Diamondbacks, pj(117) = 0.461.
Boundary win probabilities sum to greater than one by an amount collected by the
sportsbook as profit (known colloquially as the “vig” or “vigorish”). However, it is
straightforward to normalize boundary probabilities to sum to unity to estimate pij ,
the implied probability of i defeating j:

pij =
pi(ℓi)

pi(ℓi) + pj(ℓj)
.(1)

In our example, dividing each boundary probability by 1.02 = (0.559+0.461) implies
win probabilities of 54.8% for the Cubs and 45.2% for the Diamondbacks.

In principle, money line prices account for all determinants of game outcomes known
to the public prior to the game, including team strength, location, and injuries. Across
time and sporting leagues, researchers have identified that it is difficult to estimate
win probabilities that are more accurate than the market; i.e, the betting markets
are efficient. As an incomplete list, see Harville (1980); Gandar et al. (1988); Lacey
(1990); Stern (1991); Carlin (1996); Colquitt, Godwin and Caudill (2001); Spann
and Skiera (2009); Nichols (2012); Paul and Weinbach (2014); Lopez and Matthews
(2015). Interestingly, Colquitt, Godwin and Caudill (2001) suggested that the effi-
ciency of college basketball markets was proportional to the amount of pre-game
information available—with the amount known about professional sports teams, this
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RANDOMNESS IN SPORT 7

would suggest that markets in the NFL, NBA, NHL and MLB are as efficient as they
come. Manner (2015) merged predictions from a state-space model with those from
betting markets, finding that the combination of both predictions only occasionally
outperformed betting markets alone.

We are not aware of any published findings that have compared leagues using
market probabilities. Given the varying within-sport metrics of judging team quality
and the limited between-sport approaches that rely on wins and losses alone, we aim
to extend paired comparison models using money line information to better capture
relative team equivalence in a method that can be applied generally.

2. Validation of betting market data. We begin by confirming the accuracy
of betting market data with respect to game outcomes. Regular season game result
and betting line data in the four major North American professional sports leagues
(MLB, NBA, NFL, and NHL) were obtained for a nominal fee from Sports Insights
(https://www.sportsinsights.com). Although these game results are not official,
they are accurate and widely-used. Our models were fit to data from the 2006–2016
seasons, except for the NFL, in which the 2016 season was not yet completed.

These data were more than 99.3% complete in each league, in the sense that there
existed a valid betting line for nearly all games in these four sports across this time
period. Betting lines provided by Sports Insights are expressed as payouts, which
we subsequently convert into implied probabilities. The average vig in our data set
is 1.93%, but is always positive, resulting in revenue for the sportsbook over a long
run of games. In circumstances where more than one betting line was available for a
particular game, we included only the line closest to the start time of the game. A
summary of our data is shown in Table 1.

Sport (q) tq ngames p̄games nbets p̄bets Coverage

MLB 30 26728 0.541 26710 0.548 0.999
NBA 30 13290 0.595 13245 0.615 0.997
NFL 32 2560 0.563 2542 0.589 0.993
NHL 30 13020 0.548 12990 0.565 0.998

Table 1

Summary of cross-sport data. tq is the number of unique teams in each sport q. ngames records the
number of actual games played, while nbets records the number of those games for which we have a
betting line. p̄games is the mean observed probability of a win for the home team, while p̄bets is the
mean implied probability of a home win based on the betting line. Note that we have near total

coverage (betting odds for almost every game) across all four major sports.

We also compared the observed probabilities of a home win to the corresponding
probabilities implied by our betting market data (Figure 1). In each of the four sports,
Hosmer-Lemeshow tests of an efficient market hypothesis using 10 equal-sized bins of
games did not show evidence of a lack of fit when comparing the number of observed
and expected wins in each bin. Thus, we find no evidence to suggest that the prob-
abilities implied by our betting market data are biased or inaccurate—a conclusion
that is supported by the body of academic literature referenced above. Accordingly,
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8 LOPEZ, MATTHEWS, BAUMER

we interpret these probabilities as “true.”

3. Bayesian state-space model. Our model below expands the state-space
specification provided by Glickman and Stern (1998) to provide a unified framework
for contrasting the four major North American sports leagues.

Let p(q,s,k)ij be the probability that team i will beat team j in season s during week
k of sports league q, for q ∈ {MLB,NBA,NFL,NHL}. The p(q,s,k)ij ’s are assumed to
be known, calculated using sportsbook odds via Equation (1). In using game prob-
abilities, we have a cross-sport outcome that provides more information than only
knowing which team won the game or what the score was.

In our notation, i, j = 1, . . . , tq, where tq is the number of teams in sport q such
that tMLB = tNBA = tNHL = 30 and tNFL = 32. Additionally, s = 1, . . . , Sq and
k = 1, . . . ,Kq, where Sq and Kq are the number of seasons and weeks, respectively in
league q. In our data, KNFL = 17, KNBA = 25, KMLB = KNHL = 28, with SNFL = 10
and SMLB = SNBA = SNHL = 11.

Our next step in building a model specifies the home advantage, and one immediate
hurdle is that in addition to having different numbers of teams in each league, certain
franchises may relocate from one city to another over time. In our data set, there were
two relocations, Seattle to Oklahoma City (NBA, 2008) and Atlanta to Winnipeg
(NHL, 2011). Let αq0 be the league-wide home advantage (HA) in league q, and let
α(q)i⋆ be the team specific effect (positive or negative) for team i among games played
in city i⋆, for i⋆ = 1, . . . , t⋆q . Here, t⋆q is the total number of home cities; in our data,
t⋆MLB = 30, t⋆NBA = t⋆NHL = 31, and t⋆NFL = 32.

Letting θ(q,s,k)i and θ(q,s,k)j be season-week team strength parameters for teams i
and j, respectively, we assume that

E[logit(p(q,s,k)ij)|θ(q,s,k)i, θ(q,s,k)j , αq0 , α(q)i⋆ ] = θ(q,s,k)i − θ(q,s,k)j + αq0 + α(q)i⋆ ,

where logit(.) is the log-odds transform. Note that θ(q,s,k)i and θ(q,s,k)j reflect absolute
measures of team strength, and translate into each team’s probability of beating a
league average team. We center team strength and individual home advantage esti-
mates about 0 to ensure that our model is identifiable (e.g.,

∑tq
i=1 θ(q,s,k)i = 0 for all

q, s, k and
∑t⋆q

i⋆=1 α(q)i⋆ = 0 )
Let p(q,s,k) represent the vector of length g(q,s,k), the number of games in league

q during week k of season s, containing all of league q’s probabilities in week k of
season s. Our first model of game outcomes, henceforth referred to as the individual
home advantage model (Model IHA), assumes that

logit(p(q,s,k)) ∼ N(θ(q,s,k)X(q,s,k) + αq0Jg(q,s,k) +αααqZ(q,s,k), σ
2
q,gameIg(q,s,k)),

where θ(q,s,k) is a vector of length tq containing the team strength parameters in season

s during week k and αααq =
{
α(q)1, . . . , α(q)t⋆q

}
. Note that αααq does not vary over time
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Fig 1. Accuracy of probabilities implied by betting markets. Each dot represents a bin of implied
probabilities rounded to the nearest hundredth. The size of each dot (N) is proportional to the number of
games that lie in that bin. We note that across all four major sports, the observed winning percentages
accord with those implied by the betting markets. The dotted diagonal line indicates a completely fair
market where probabilities from the betting markets correspond exactly to observed outcomes. In each
sport, Hosmer-Lemeshow tests suggest that an efficient market hypothesis cannot be rejected.
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10 LOPEZ, MATTHEWS, BAUMER

(i.e. HA is assumed to be constant for a team over weeks and seasons). X(q,s,k) and
Z(q,s,k) contain g(q,s,k) rows and tq and t⋆q columns, respectively. The matrix X(q,s,k)

contains the values {1, 0,−1} where for a given row (i.e. one game) the value of ith

column in that row is a 1/-1 if the ith team played at home/away in the given game
and 0 otherwise. Z(q,s,k) is a matrix containing a 1 in column i⋆ if the corresponding
game was played in city i⋆, and 0 otherwise. Finally, σ2

q,game is the game-level vari-
ance, Jg(q,s,k) is a column vector of length g(q,s,k) containing all 1’s, and Ig(q,s,k) is an
identity matrix with dimension g(q,s,k) × g(q,s,k).

In addition, we propose a simplified version of Model IHA, labelled as Model CHA
(constant home advantage), which assumes that the HA within each sport is identical
for each franchise, such that

logit(p(q,s,k)) ∼ N(θ(q,s,k)X(q,s,k) + αq0Jg(q,s,k) , σ
2
q,gameIg(q,s,k)).

In Model CHA, matrices p(q,s,k), X(q,s,k), Jg(q,s,k) , and Ig(q,s,k) are specified identically
to Model IHA. As a result, for a game between home team i and away team j during
week k of season s, E[logit(p(q,s,k)ij)] = θ(q,s,k)i − θ(q,s,k)j + αq0 under Model CHA.

Similar to Glickman and Stern (1998), we allow the strength parameters of the
teams to vary auto-regressively from season-to-season and from week-to-week. In gen-
eral, this entails that team strength parameters are shrunk towards the league average
over time in expectation. Formally,

θ(q,s+1,1)|θq,s,Kq , γq,season, σ
2
q,season ∼ N(γq,seasonθ(q,s,Kq), σ

2
q,seasonItq)

for all s ∈ 1, . . . , Sq − 1, and

θ(q,s,k+1)|θ(q,s,k), γq,week, σ
2
q,week ∼ N(γq,weekθ(q,s,k), σ

2
q,weekItq)

for all s ∈ 1, . . . , Sq, k ∈ 1, . . . ,Kq − 1.
In this specification, γq,week is the autoregressive parameter from week-to-week,

γq,season is the autoregressive parameter from season-to-season, and Itq is the identity
matrix of dimension tq × tq.

Given the time-varying nature of our specification, all specifications use a Bayesian
approach to obtain model estimates. For sport q, the team strength parameters for
week k = 1 and season s = 1 have a prior distribution of

θ(q,1,1)i ∼ N(0, σ2
q,season) , for all i ∈ 1, . . . , tq.

Team specific home advantage parameters have a similar prior, namely,

α(q)i⋆ ∼ N(0, σ2
q,α) , for i ∈ 1, . . . , t⋆q .
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RANDOMNESS IN SPORT 11

Finally, letting τ2q,game = 1/σ2
q,game, τ

2
q,season = 1/σ2

q,season, τ
2
q,week = 1/σ2

q,week, and

τ2q,α = 1/σ2
q,α, we assume the following prior distributions (Gelman et al., 2006):

τ2q,game ∼ Uniform(0, 1000) αq0 ∼ N(0, 10000)

τ2q,season ∼ Uniform(0, 1000) γq,season ∼ Uniform(0, 1)

τ2q,week ∼ Uniform(0, 1000) γq,week ∼ Uniform(0, 1.5)

τ2q,α ∼ Uniform(0, 1000)

Note that we cap γq,week and γq,season at 1.5 and 1.0, respectively, corresponding to
prior beliefs in whether or not team strengths could explode within (unlikely, but
feasible) or between (highly unlikely) seasons.

One of our main interests lies in gauging the game-level equivalence of each league’s
teams; i.e., how likely was it or will it be for each team to beat other teams? In this
respect, we are interested in both looking backwards across time (descriptive) as well
as looking forwards (predictive). However, Models IHA and CHA each blend outcomes
from weeks prior to, during, and after week k to estimate team strength. While this
is ideal for measuring league parity looking backwards, it is less appropriate to make
future game predictions. As such, in each q for season Sq (the last season of our data),
we fit a series of state-space models using Model IHA, done on a weekly basis (these
are termed sequential fits, as opposed to cumulative). Formally, for k = 2, . . . ,Kq in
season Sq, we fit Model IHA only on games during k or prior. Sequential fits can be
used to provide a sense of the predictive capability of our model.

Posterior distributions of each parameter are estimated using Markov Chain Monte
Carlo (MCMC) methods. We use Gibbs sampling via the rjags package (Plummer,
2016) in the R (R Core Team, 2016) statistical computing environment to obtain
posterior distributions, separately for each q.2 Three chains—using 40,000 iterations
after a burn-in of 4,000 draws, fit with a thin of 5 —yield 8,000 posterior samples
in each q.3 Visual inspection of trace plots with parallel chains are used to confirm
convergence. To assess the underlying assumptions of Models IHA and CHA, including
our use of the logit transform on our probability outcomes, we use posterior predictive
distribution checks, as in Gelman et al. (2014). Comparisons of Models IHA and CHA
are made using the Deviance Information Criterion (DIC, Spiegelhalter et al. (2002))
and by examining each model’s posterior predictive distribution.

While we are unable to share the exact betting market data due to licensing re-
strictions, a simplified version of our game-level data, the data wrangling code, Gibbs
sampling code, posterior draws, and the code used to obtain posterior estimates and
figures are all posted to a GitHub repository, available at https://github.com/

bigfour/competitiveness.

2Alternatively, we could have fit one model and pooled information across sports. Given the large
between-league differences in structure, we opt against this approach.

32000 iterations were used for sequential fits with a burn-in of 1000.
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12 LOPEZ, MATTHEWS, BAUMER

4. Model Assessment. We begin by validating and comparing the fits of Models
IHA and CHA.

4.1. Model fit. Trace plots of αq0 , γq,season, γq,week, σq,game, σq,season, and σq,week

are shown for each q in Figures 9–12 in the Appendix. Visual inspection of these
plots does not provide evidence of a lack of convergence or of autocorrelation between
draws. These trace plots stem from Model IHA; conclusions are similar when plotting
draws from Model CHA.

Table 2 shows the deviance information criterion (DIC) for each fit in each league,
along with the difference in DIC values and the associated standard error (SE). In
each of the NHL, NBA, and NFL, fits with a team-specific HA (Model IHA) yielded
lower DIC’s (lower is better) by a statistically meaningful margin, with the most
noticeable difference in fit improvement in the NBA. DIC’s were also lower in MLB
using Model IHA, although differences were not significant.

Model IHA Model CHA Difference (SE)

MLB -8538 -8481 -56.8 (37.9)
NBA 6864 7188 -323.9 (40.5)
NFL 1135 1288 -153.2 (24.3)
NHL -18294 -18128 -165.8 (37.7)

Table 2

Deviance information criterion (DIC) by sport and model, along with the difference in DIC and the
associated standard errors (SE, in parentheses). IHA: individual home advantage, CHA: constant

home advantage

These results suggest that chance alone likely does not account for observed differ-
ences in the home advantage among teams in the NBA, NHL, and NFL. For the NFL,
this implication matches the findings of Glickman and Stern (1998), who identified
meaningful between-franchise differences in terms of playing at home. For consistency,
results that follow use model estimates from Model IHA.

4.2. Posterior predictive checks. We next address the fit of Models IHA and CHA
by looking at the posterior predictive distribution of each. Formally, we assess whether
Models IHA and CHA can use draws from their respective posterior distributions to
generate game-level data that roughly matches the observed data.

Our specific interest lies in the posterior predictive distribution of the logit of im-
plied probabilities, p(logit(p̃(q,s,k))|logit(p(q,s,k))). To draw values, we randomly sam-
ple from the joint posterior distribution of the parameters (i.e. team strength, home
field advantage, and variance parameters). Then, conditional on the drawn parame-
ters, we randomly draw from the distribution of logit(p̃(q,s,k)). Recall that in the IHA
model, this distribution is assumed to be normal with the following form:

logit(p(q,s,k)) ∼ N(θ(q,s,k)X(q,s,k) + αq0Jg(q,s,k) +αααqZ(q,s,k), σ
2
q,gameIg(q,s,k)).

We used 20 simulated sets of logit probabilities from this posterior distribution, as
well as 20 more from the posterior distribution of Model CHA.
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Figure 2 overlays each of Model IHA’s 20 posterior predictive distributions of logit
probabilities (shown in gray density curves) along with the observed distribution of
logit probabilities (shown in red). By and large, the observed distributions of logit
probabilities are similar to the simulated distributions in each sport. In particular, the
density in the tails of the posterior predictive distributions (reflecting probabilities
near 0 or 1) does not show any meaningful departure from the observed distributions.

We purposefully use a lower bandwith for the density curves in Figure 2 to highlight
interesting discrepancies between the observed and predictive distributions. In the
NBA and NFL, for example, the observed distribution is slightly lower than the
simulated distributions with logit probabilities near 0 (i.e., both teams have a win
probability of 0.5). This is likely occurring due to preference of sportsbooks to set
prices that are rounded to the nearest 5 (e.g. -105, -110, -155, etc.). As an example,
there are 33 NFL games where the home team’s boundary price is -185 (1.3% of
games), and there are 22 other prices that are observed for the home team in 15 or
more unique games. Given that Models CHA and IHA do not extract back to rounded
prices for each team, it is not surprising that our posterior predictive distributions
are smoother than the observed data. Similarly, Glickman and Stern (1998) found
discrepancies between the observed distribution of point differential in the NFL and
the posterior predictive distributions of point differential, on account of the increased
likelihood of games ending with margins of victory of 3 or 7 in the NFL. We believe
that we are observing a similar phenomenon, but based on the increased likelihood
of a sportsbook to assign rounded odds.

Next, we use posterior predictive distributions to compare the appropriateness of
Models IHA and CHA for each team, as well as to contrast each of the two models
to one another. To do this, we calculate the average discrepancy between the mean
posterior predictive distribution of each game and the observed game probability,
averaged over home team for each model. These team level results are shown in
Figure 3. Discrepencies fromModel CHA are shown in via circles, with arrows pointing
towards the average discrepency for Model IHA. The color of the arrow (blue for yes,
red for no) identifies whether, on average, Model IHA more closely matched the
observed data than Model CHA. The dashed black line in each plot at 0 on the x-axis
corresponds to home teams for whom, on average, the mean of the posterior predictive
distribution matched that shown in our observed data.

For 80% of the teams across all leagues, the posterior predictive distribution using
Model IHA more appropriately reflects the observed data. In MLB, the two models
perform nearly the same with the exception of the Colorado Rockies, whose home field
advantage is underestimated when using Model CHA (see Section 5.3). Discrepencies
in Model IHA offer a slight improvement over those from Model CHA in both the NFL
and NHL, with a marked improvement noticed in the NBA. For example, observed
home probabilities for Denver, Utah, and Golden State are underestimated using
Model CHA, while those for Brooklyn, Detroit, New York, and Philadelphia, are, on
average, overestimated. In the NHL, the posterior predictive distribution using Model
IHA more closely matches the observed data for 25 of the 30 teams.
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Fig 2. Posterior predictive distributions. Density curves of 20 posterior predictive distributions of
logit probabilities (in gray) and one curve with the observed distribution of logit probabilities (in red)
are overlaid. The bandwith of the density curves is lowered to highlight the jagged nature of sportsbook
prices. By and large, the posterior predictive distributions match the observed data.

5. Results. In this section we present our results. We discuss the implications
of our estimates of team strength and home advantage, as well as the interpretation
of our variance and autoregressive parameters. We conclude by evaluating our team
strength parameters and illustrating how they could be used for predictive purposes
and to build league parity metrics.

5.1. Team strength. Table 3 shows summary statistics of the team strength esti-
mates, approximated using posterior mean draws for all weeks k and seasons s across
all four sports leagues. Overall, there tends to be a larger variability in team strength
at any given point in time in both the NFL and NBA, with average posterior coeffi-
cient estimates tending to vary between -1.3 and 1.2 in the NBA and -1.0 and 1.0 in
the NFL (on the logit scale) about 95% of the time. For reference, a team-strength of

1.0 on the log-odds scale implies a e1.0

1+e1.0
= 73.1% chance of beating a league average

team in a game played at a neutral site. The standard deviation of team strength
is smallest in MLB, suggesting that—relative to the other leagues—team strength is
more tightly packed. Relative to MLB, spread of team strengths are about 1.3, 3.1,
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Fig 3. Posterior predictive distributions by model type. Each dot represents the average difference
between the posterior predictive distribution and the truth for each team’s home games under the
CHA model. The tip of the corresponding arrow represents the same quantity under the IHA model.
The difference is smaller under IHA for 80% of the teams.
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and 3.6 times wider in the NHL, NFL, and NBA, respectively.

League (q) N* min 2.5th Q1 Q3 97.5th max sd

MLB 9240 -0.553 -0.373 -0.134 0.126 0.337 0.473 0.182
NBA 8250 -2.202 -1.268 -0.487 0.477 1.204 1.873 0.660
NFL 5440 -1.576 -1.092 -0.402 0.416 1.030 1.906 0.559
NHL 9240 -1.034 -0.523 -0.162 0.180 0.438 0.877 0.246

Table 3

Summary of average week-level team strength parameters, taken on the log-odds scale. N*: number
of unique team strength draws (teams × seasons × weeks)

Figure 4 shows estimated team strength coefficients over time. Figures 13–16 (shown
in the Appendix) provide an individual plot for each sport, which include divisional
facets to allow easier identification of individual teams. Teams in Figures 4 and 13–
16 are depicted using their two primary colors, scraped from http://jim-nielsen.

com/teamcolors/ via the teamcolors package (Baumer and Matthews, 2017) in R.
A color key for all teams appears in Figure 17.

As in Table 3, these figures suggest that the NBA and NFL boast larger between-
team gaps in quality than the NHL and MLB, implying more competitive balance in
the latter pair of leagues. On one level, this stands somewhat in contrast to competitive
balance as measured using Noll-Scully, which alternatively argues that the NFL is
more competitively balanced than MLB (Berri, 2014). One likely explanation for this
difference is Null-Scully’s link to number of games played, which artificially makes
MLB (162 games) appear less balanced than it actually is and the NFL (16) appear
more balanced. Like Noll-Scully, we conclude that the NBA shows less competitive
balance relative to other leagues.

Our figures also illustrate several other observations. For example, the 2007 New
England Patriots of the NFL stand out as having the highest probabilities of beating
a league average team, with an average team strength of 1.91 on the log-odds scale,
observed during Week 11. In that season, New England finished the regular season 16-
0 before eventually losing in the Super Bowl. The team with the lowest probability of
beating a league average team is the NBA’s 2007–08 Miami Heat, who during week 23
had a posterior mean team strength of -2.2. That Heat team finished with an overall
record of 15-67, at one point losing 15 consecutive games. Related, it is interesting that
the team strength estimates of bad teams in the NBA (e.g. the Heat in 2007–08) lie
further from 0 than the estimates for good teams. This possibly reveals the tendency
for teams in this league to “tank”—a strategy of fielding a weak team intentionally
to improve the chances of having better selection preference in the upcoming player
draft (Soebbing and Humphreys, 2013).

Another observation is that in the NHL, top teams appear less dominant than a
decade ago. For example, there are seven NHL team-seasons in which at least one team
reached an average posterior strength estimate of 0.55 or greater; each of these came
during or prior to the 2008–09 season. In addition to increased parity, the league’s
point system change in 2005–06—which unintentionally encouraged teams to play
more overtime games (Lopez, 2013)—could be responsible. More overtime contests
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Fig 4. Mean team strength parameters over time for all four sports leagues. MLB and NFL seasons
follow each yearly tick mark on the x-axis, while NBA and NHL seasons begin during years labeled
by the preceding tick marks.
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18 LOPEZ, MATTHEWS, BAUMER

could lead to different perceptions in how betting markets view team strengths, as
overtime sessions and the resulting shootouts are roughly equivalent to coin flips
(Lopez and Schuckers, 2016).

As a final point of clarification in Figures 4, 14, and 16, the periods of time with
straight lines of team strength estimates during the 2012–13 season (NHL) and 2011–
12 season (NBA) reflect time lost due to lockouts.

5.2. Variance and autoregressive parameters. Table 4 shows the mean and stan-
dard deviation of posterior draws for γq,season, γq,week, σq,game, σq,season, and σq,week
for each q. Before discussing results from these posterior distributions, it is important
to recognize that each variance and autoregressive parameter is uniquely tied to each
sport’s relative logit scale. For example, the average posterior draw of γNBA,season and
γMLB,season are both equal to 0.62, implying that relative to each league’s distribution
of team strengths, we can expect the same amount of reversion from one season to
the next. However, given that there are larger gaps in the team strengths in the NBA,
this corresponds to larger reversions in season-level strength when considered on an
absolute scale.

League (q) γq,season γq,week σq,game σq,season σq,week

MLB 0.618 (0.031) 1.002 (0.002) 0.201 (0.001) 0.093 (0.005) 0.027 (0.001)
NBA 0.618 (0.04) 0.977 (0.003) 0.274 (0.002) 0.44 (0.02) 0.166 (0.003)
NFL 0.69 (0.042) 0.978 (0.005) 0.233 (0.008) 0.331 (0.019) 0.147 (0.006)
NHL 0.542 (0.027) 0.993 (0.003) 0.105 (0.001) 0.121 (0.006) 0.053 (0.001)

Table 4

Mean posterior draw (standard deviation) by league.

Posterior draws of σq,game suggest that the highest game-level errors in our log-
odds probability estimates occur in the NBA (median posterior draw of σNBA,game

= 0.274), followed in order by the NFL, MLB, and the NHL. Interestingly, although
Figure 4 identifies that the talent gap between teams is smallest in MLB, σMLB,game ≈
2×σNHL,game in our posterior draws. We posit that this additional game-level error in
MLB is a function of the league’s pitching match-ups, in which teams rotate through
a handful of starting pitchers of varying calibers.

We also examine the joint distribution of the variability in team strength on a
season-to-season (σq,season) and week-to-week (σq,week) basis via the contour plot in
Figure 18 (Appendix), using separate colors for each q. Figure 18 reveals that the
highest uncertainty with respect to team strength occurs in the NBA, followed in
order by the NFL, NHL, and MLB.

Even when accounting for the larger scale in outcomes, the NBA still stands out
as far as increased between-week uncertainty. There are a few possible explanations
for this. Injuries, the resting of starters, and in-season trades would seemingly have
a larger impact in a sport like basketball where fewer players are participating at a
single point in time. In particular, our model cannot precisely gauge team strength
when star players who could play are rested in favor of inferior players. Relative to
the other professional leagues, star players take on a more important role in the NBA
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(Berri and Schmidt, 2006), an observation undoubtedly known in betting markets.
That said, while there is increased variability in our estimate of NBA team strengths,
when considering differences in team talent to begin with, these absolute differences
are not as extreme (e.g., a difference in team strength of 0.05 means less in the NBA
as far as relative ranking than in the NHL).

Figure 19 (Appendix) displays the joint posterior distribution of γq,season and γq,week
via contour plots for each q. On a season-to-season basis, team strengths in each of the
leagues tend to revert towards the league average of zero as all draws of γq,season < 1
for all q. Reversion towards the mean is largest in the NHL (estimated γNHL,season

= 0.54, implying 46% reversion), followed by the NBA (38%), MLB (38% reversion),
and the NFL (31%). However, the only pair of leagues with non-overlapping credible
intervals are the NFL and NHL. Note that one reason that team strengths may revert
towards zero each year is the structure of each league’s draft, in which newly eligble
players are chosen. In expectation, the worst team in each league is most likely to get
the top selection in the following year’s draft, and so by aquiring the best perceived
talent, those worst teams are more likely to improve. Perhaps one reason that the NFL
shows the most consistency over time is that, in general, it is the worst at drafting
newly eligible players (see Lopez (2016) for comparisons in the drafting ability of each
league).

For each of the NHL, NBA, and NFL, posterior estimates of γq,week (as well as
95% credible intervals) imply an autoregressive nature to team strength within each
season. Interestingly, the NBA and NFL are the least consistent leagues on a week-to-
week basis. In MLB, however, team strength estimates quite possibly follow a random
walk (i.e., γMLB,week = 1), in which the succession of team strength is unpredictable.
Alternatively, it is also feasible that MLB team strengths could explode over time
(γMLB,week > 1), in which case these estimates would be pulled towards 0 in the long
run (across seasons, via γMLB,season).

Finally, it is worth noting that our estimates for γNFL,week and γNFL,season—0.98
and 0.69, respectively—do not substantially diverge from the estimates observed by
Glickman and Stern (1998) (0.99 and 0.82). Further, our credible intervals are nar-
rower. For example, our 95% credible interval for γNFL,season of (0.61, 0.77) is entirely
contained within the interval of (0.52, 1.28) reported by Glickman and Stern (1998).
In fairness, it is unclear if the decreased uncertainty is a function of our model spec-
ification (using log-odds of the probability of a win as the outcome, as opposed to
point differential) or because we used a larger sample (10 seasons, compared to 5).

Like Glickman and Stern (1998), we also observe an inverse link in posterior draws
of γNFL,week and γNFL,season. Given that total shrinkage across time is the composite of
within- and between-season shrinkage, such an association is not surprising (Glickman
and Stern, 1998). If one source of reversion towards the average were to increase, the
other would likely compensate by decreasing.

5.3. The home advantage. Figure 5 shows the 2.5th percentile, median, and 97.5th
percentile draws of each team’s estimated home advantage parameter, presented on
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the probability scale. These are calculated by summing draws of αq0 and α(q)i⋆ for all
i⋆. HAs are shown in descending order to provide a sense of the magnitude of differ-
ences between the home advantage provided in MLB (league-wide, a 54.0% probabil-
ity of beating a team of equal strength at home), NHL (55.5%), NFL (58.9%), and
NBA (62.0%). The two franchises that have relocated in the last decade, the Atlanta
Thrashers (NHL) and Seattle Supersonics (NBA), are also included for the games
played in those respective cities.

Figure 5 depicts substantial between-franchise differences in the home advantage
within both the NBA and NHL, with lesser between-franchise differences in MLB and
the NFL.

Interestingly, the draws of the home advantage parameters for of a few NFL fran-
chises are skewed (see Denver and Seattle, relative to Detroit), potentially the result
of a shorter regular season. Alternatively, the NFL’s HA may vary by season, game
time, or the day of the game. Anecdotally, night games (Thursday, Sunday, or Mon-
day) conceivably offer a larger HA than those played during the day (Crabtree, 2014).
Informally, NFL team-level HA estimates are similar in effect size to those depicted
by Koopmeiners (2012).

In the NBA, Denver (first) and Utah (second) post the best home advantages,
with Brooklyn showing the worst. This matches the results of Paine (2013), who
found significantly better performances when comparing Denver and Utah to the rest
of the league with respect to home and road point differential. In MLB, the Colorado
Rockies stand out for having the highest home advantage, while the remaining 29
teams boast overlapping credible intervals. We note that teams playing at home in
Denver have the largest home advantages in MLB, the NBA, and the NFL, and the
7th-highest in the NHL. We speculate that this consistent advantage across sports is
related to the home team’s acclimation to the city’s notably high altitude.

Differences between teams within the NBA have plausible impacts on league stand-
ings. An NBA team with a typical home advantage can expect to win 62.0% of home
games against a like-caliber opponent. Yet for Brooklyn, the corresponding figure is
60%, while for Denver, it is 66.1%. Across 41 games (the number each team plays
at home), this implies that Denver’s home advantage is worth an extra 1.68 wins in
a single season, relative to a league average team. Compared to Brooklyn, Denver’s
home advantage is worth an estimated 2.5 wins per year. As one important caveat,
our model estimates do not account for varying line-up and injury information. If op-
posing teams were to rest their star players at Denver, for example, our model would
artificially inflate Denver’s home advantage.

As a final note, it is interesting that in comparing leagues, the relative magnitudes
of the home advantage match the relative standard deviations in team strength (with
the NBA the highest, followed in order by NFL, NHL, MLB). To check whether
or not the home advantage parameters are independent of team strength estimates
(as implied in our model specification), we compared the average posterior draw of
the home advantage versus the average posterior team strength across all weeks and
seasons for each franchise in each sport (plot not shown). Within each sport, there
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cept, on the probability scale. We note that the magnitude of home advantages are strongly segregated
by sport, with only one exception (the Colorado Rockies). We also note that no NFL team, nor any
MLB team other than the Rockies, has a home advantage whose 95% credible interval does not contain
the league median.imsart-aoas ver. 2014/10/16 file: aoas2017.arxiv.R2.tex date: November 23, 2017



22 LOPEZ, MATTHEWS, BAUMER

was no obvious link between average team quality and that team’s home intercept, as
assessed using scatter plots with a LOESS regression line. That said, further research
may be needed to precisely define home advantage in light of varying team stregnth
estimates, as well game-level characteristics such as time (i.e., afternoon, night) and
day (i.e., weekend, weekday.)

5.4. Evaluation of team strength estimates. Ultimately, estimates from Model IHA
are designed to estimate team quality at any given point in a season while accounting
for factors such as the home advantage and opponent caliber. If these estimates more
properly assess team quality than traditional metrics (e.g., won-loss percentage or
point differential), they should more accurately link to future performance, such as
how well teams will perform over the remainder of the season. Additionally, game-
level probabilities estimated from our team strength coefficients should closely track
the observed money lines.

That said, it is admittedly unfair to use cumulative estimates of team strength
to predict past game outcomes, as future information is implicity used to inform
those same game outcomes. In this sense, sequential fits are more appropriate for
understanding the predictive capability of our state-space models.

Figure 6 shows the coefficient of determination (R2) between each team’s future
won-loss percentage in a season and each team’s (i) average team strength estimates
from sequential Model IHA’s, (ii) season-to-date cumulative point differential, and
(iii) season-to-date won-loss percentage. Within each sport, this is computed by game
number, which helps to account for league-level differences in season length. For pur-
poses of using sequential team strength estimates, we used the mean posterior draw
from fits that ended the week prior.

Across each sport, our estimates of team strength generally outperform past team
win percentage and point differential in predicting future win percentage. This gap is
most pronounced earlier in each season, which is not surprising given the instability
of won-loss percentage and point differential in a small number of games. Differences
remain throughout most of the regular season in MLB, the NHL, and the NFL.
However, by the NBA’s mid-season, won-loss ratio and point differential are similar
to our estimates of team strength in assessing future performance. By and large, this
confirms the findings of Wolfson and Koopmeiners (2015), who identified that most
of the information needed to predict the remainder of the NBA season is contained
within the first third of the year.

As a second check of predictive accuracy, we compare these predicted game-level
probabilities to known game outcomes. Table 5 highlights the area under the receiver
operating characteristic curve (AUC), which calculates the expectation that a ran-
domly drawn probability from a winning home team is greater than a randomly drawn
probability of a losing home team (higher is better). Also included is the Brier score
(lower is better), along with an accompanying p-value as implemented for calibration
accuracy in Spiegelhalter (1986).

For each of the NBA, NFL, and NHL, AUC and Brier metrics suggest that predic-
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Fig 6. Coefficient of determination with future in-season win percentage. We note the improvement
our team strength estimates offer over season-to-date win percentage and season-to-date point dif-
ferential in most sports, especially early in the season. R2 values tend to 0 as the number of future
games goes to 0.
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AUC Brier Score
League (q) observed sequential observed (p-value) sequential (p-value)

MLB 0.605 0.573 0.241 (0.996) 0.245 (0.333)
NBA 0.756 0.756 0.194 (0.803) 0.194 (0.759)
NFL 0.682 0.685 0.226 (0.34) 0.226 (0.548)
NHL 0.595 0.589 0.242 (0.88) 0.243 (0.486)

Table 5

AUC values and Brier scores (p-values) by sport. Observed probabilities use known probabilities from
betting markets, while sequential probabiltiies use predictions from posterior draws using sequential

fits of Model IHA.

tions made from sequential fits can closely approximate the observed game probabil-
ities. However, our predictions yield a lower AUC and a higher Brier score in MLB,
which likely reflects our inability to account for each game’s starting pitcher.

Although results from these predictions do not suggest an existance of an arbi-
trage opportunity (recall that sports books add a vig to each team’s price), they do
imply that both our team strength and home advantage estimates can be used to ex-
tract accurate game-level projections. Further, that there is no major deviation from
the observed data is comforting with respect to our choice of a model for the game
probabilities.

5.5. How often does the best team win? A new measure of league parity. We con-
clude by addressing our initial question about the inherent randomness of game out-
comes.4

One simple way to compare league randomness would be to contrast the observed
distribution of p(q,s,k)ij ’s between each q. However, while sportsbook odds can be
used to infer the probability of each team winning, these odds are only provided
for scheduled games. As a result, any between-league comparisons using sportsbook
odds alone would be contingent upon each league’s actual schedule, and they may
not accurately reflect differences that would be observed if all teams were to play one
another.

A second option would be to contrast our posterior draws of θ(q,s,k)i for all i, either
across time periods or at a fixed point in time, as these estimates account for league
particulars such as strength of schedule. However, such a procedure would not scale
to other sports or leagues where betting market data may be unavailable. Rather,
we would prefer a metric that can be applied generally to any competitive scenario
where paired comparison probabilities can be calculated.

To assess the equivalence of all teams in each league, we consider the likelihood
that—given any pair of teams chosen at random—the better team wins, by simu-
lating estimates of p(q,s,k)ij using posterior draws of team strength, home advantage,
and game level error. For our purposes, we define the better team to be the one, a
priori, with a higher probability of winning that game. If a contest has no inherent

4Our approach here is not unlike that of James, Albert and Stern (1993).
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randomness (consider the Harlem Globetrotters), then the better team always wins.5

Conversely, if game-level variability is large relative to the difference in team strength,
then even the inferior team might win nearly half the time.

Using our posterior draws, we approximate the distribution of game-level probabil-
ities between two randomly chosen teams using the following steps. Posterior draws
from Model IHA are used.

Given sport q with season length Kq, number of seasons Sq, and number of teams
tq,

1. Draw season s̃ from {1, . . . , Sq}, and week k̃ from {1, . . . ,Kq}.
2. Draw teams ĩ and j̃ from {1, . . . , tq} without replacement.
3. Sample one posterior draw of team strength for ĩ and j̃, θ̃(q,s̃,k̃)̃i and θ̃(q,s̃,k̃)j̃ ,

respectively, from the posterior distributions of ĩ and j̃’s team strength estimates
during season s̃ at week k̃. For simplicity, assume θ̃(q,s̃,k̃)̃i > θ̃(q,s̃,k̃)j̃ .

4. Sample one posterior draw of the HA, α̃q0 , from the posterior distribution of
αq0 , as well as one posterior draw of team ĩ’s home advantage, α̃(q)̃i∗.

5. Sample one posterior draw of the game-level variance parameter, σ̃2
q,game, and

draw a game-level error, ǫ̃q,game, from ǫ̃q,game ∼ N(0, σ̃q,game)
6. Impute the simulated log-odds of ĩ beating j̃, logit(p̃(q,s̃,k̃)̃ij̃) = α̃q0 + α̃(q)̃i∗ +

θ̃(q,s̃,k̃)̃i − θ̃(q,s̃,k̃)j̃ + ǫ̃q,game.

7. Transform logit(p̃(q,s̃,k̃)̃ij̃) into a probability to obtain a simulated estimate,
p̃q,sim, where p̃q,sim = p̃(q,s̃,k̃)̃ij̃

8. Repeat the above steps nsim times to obtain p̃q = {p̃q,1, . . . , p̃q,nsim
}.

For each q, we simulated with nsim = 1000. Additionally, to remove the effect of
each league’s HA on simulated probabilities, we repeated the process fixing α̃q0 =
α̃(q)̃i∗ = 0 for each league to reflect game probabilities played in absence of a home
advantage.

Figure 7 shows the cumulative distribution functions (CDFs) for each set of proba-
bilities in each league. The median probability of the best team winning a neutral site
game is highest in the NBA (67%), followed in order by the NFL (64%), NHL (57%),
and MLB (56%). The spread of these probabilities are of great interest. Nearly every
simulated MLB and NHL game played at a neutral site is less than a 3:1 proposition
with respect to the best team winning (75%). Meanwhile, roughly 27% of NBA and
20% of NFL neutral site match-ups are greater than this 3:1 threshold.

Factoring in each league’s home advantage works to exaggerate league-level differ-
ences. When the best team plays at home in the NBA, it is always favored to win at
least 60% of the time, with the middle 50% of games ranging from a 68% probability
to an 84% probability. Meanwhile, even with a home advantage, it is rare that the
best MLB team is ever given a 70% probability of winning, with the middle 50% of
games ranging from 57% to 63%.

5The Harlem Globetrotters are an exhibition basketball team that plays hundreds of games in a
year, rarely losing.
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Fig 7. Cumulative distribution function (CDF) of 1000 simulated game-level probabilities in each
league, for both neutral site and home games, with the better team (on average) used as the reference
and given the home advantage.
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Finally, we use the CDFs displayed in Figure 7 to quantify the cumulative difference
between each league’s game-level probabilities and a league of coin flips by estimating
the approximate area under each curve. Let RegParityq be our regular season parity
measure, such that

RegParityq = 2

∫ 1

0.5
P (p̃q ≤ x)dx ,

where we multiply by 2 in order to scale so that 0 ≤ RegParityq ≤ 1, where 1
represents complete parity (every game a coin flip) and 0 represents no parity (every
game outcome pre-determined).

For games with no home advantage, RegParityMLB = 0.87, followed by the NHL
(0.84), NFL (0.70), and NBA (0.66). When the best team has a home advantage,
parity is again the greatest in the MLB (0.79), followed by the NHL (0.73), NFL
(0.55), and NBA (0.47). These results suggest that when the best team is playing at
home, the NBA is closer to a world where every game outcome is predetermined than
to one where every game outcome is a coin flip. Meanwhile, even when giving the best
team a HA, MLB game outcomes remain lightly-weighted coin flips.

5.5.1. Parity in postseason tournaments. Notions of parity in the regular season
influence which teams make the playoffs, but each league conducts a single-elimination
postseason tournament with a different structure. To what extent do those structures
mitigate or reinforce the parity levels discussed in the previous section? We address
these questions using our team strength estimates.

First, we collect the z ∈ {8, 16} teams with the highest average team strength
estimates over the last four weeks of each season, in each sport. We then seed (in
descending order of team strength, irrespective of division or conference) and simulate
1000 postseason tournaments, in which each round consists of a best-of-7-game series,
with the higher seed having the home field advantage in each round. The results
shown in Figure 20 (in the Appendix) confirm that the relationship between seed and
tournament finish is strongest in the NBA and the NFL, and considerably weaker in
MLB and the NHL. These findings accord with our regular season parity measures.

Next, we construct a postseason tournament parity metric that acts as a pseudo-
R2. Let F = (F1, F2, . . . , Fz) be a z-dimensional random vector with the dth element
indicating the round of tournament finish of the dth seed. 6 That is, for the dth-seeded
team, Fd = 1 indicates that team finished as tournament champions, Fd = 2 implies
that team finished as runners-up, and so on. In a z-team tournament in which the
higher seeded team always wins (i.e. the seeds determine the finish), the vector F is
constant with F1 = 1, F2 = 2, F3 = F4 = 3, F5 = F6 = F7 = F8 = 4, etc., and in
general, E[Fd] = Fd = ⌈log2 d + 1⌉ for d = 1, 2, . . . , z. In the other extreme, where
the seed is irrelevant (i.e., all values of θ are equal and there is no home advantage),
E[Fd] =

∑z
d=1

1
z
· ⌈log2 d+ 1⌉ = fz, where fz is a constant that depends on z.

6We note that F depends on the vector of team strengths.
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We define a pseudo-R2 as:

PostParityz = 1−
(E[F]− fz1z)

′(E[F]− fz1z)∑z
d=1(⌈log2 d+ 1⌉ − fz)2

,

where d = 1, . . . , z iterates over the seeds, fz is the seed-weighted expected finish
round (e.g., 4.0625 for a 16-team tournament), and 1z is a vector of ones of length
z. A PostParityz value of 0 indicates that the higher seed always wins, while a
PostParityz value of 1 occurs when all seeds have the same expected finish. In a
16-team, 7-game series tournament, the NBA and NFL’s PostParity16 values (0.43
and 0.51) lag far behind those of MLB and the NHL (0.88 and 0.85, respectively).

While these simulations force all sports to use the same postseason tournament
format, reality is quite different. Accordingly, we simulate tournaments while varying
the number of teams who qualify (8 or 16) as well as the length of each postseason
series (selected odd numbers between 1 and 75). Figure 8 allows us to compare val-
ues of PostParityz for different tournament structures across all four sports. While
PostParity8 and PostParity16 values may not be directly comparable, we note that
the 1-game series played in the NFL results in parity similar to the current MLB and
NHL formats. This leaves the NBA alone as the sport whose postseason tournament
most likely coronates the strongest regular season teams. Conversely, the playoff struc-
ture in MLB, which includes a single-game wild card play-in7 and a 5-game division
series, serves to undermine advantages conferred based on seed. In order to approach
the level of parity (or lack thereof) of the NBA playoffs, MLB would have to switch
to a 16-team tournament in which each round was approximately 75-game series.
Conversely, in order to the achieve the level of parity in the other three sports, the
NBA would have to reduce the number of playoff teams to 8, and play a single-game
tournament.

Postseason parity cuts both ways: a tournament in which the higher seeds always
win is potentially less interesting, but a tournament in which seeds don’t matter
might compromise the competitiveness of late-season games for playoff teams. This
represents a philosophical choice for commissioners. The NBA has clearly chosen a
postseason structure that—relative to other sports—largely ensures that the best
teams will win most of the time. We suspect that this arrangement is comforting
for players and team executives, since the hard work of building a good team is
remunerated with postseason success. On the other hand, early-round games may
suffer from lack of interest, since fans may consider the outcomes predetermined.
Conversely, MLB (and to a slightly lesser extent the NFL and NHL) postseason
structure serves to maximize fan interest (recall the outcome uncertainty hypothesis),
while offering few postseason rewards (other than entry) for regular season success.
This may be an acceptable trade-off, since the regular season is so long and relatively
few teams make the playoffs. Still, it may be profoundly frustrating to players and
team executives.

7We did not include the wild card game in our simulations.
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Fig 8. Parity measures for simulated playoff tournaments. Each line shows how our pseudo-R2 parity
metric changes as a function of tournament series length for both 8- and 16-team tournaments in
each sport. We note that in order for MLB to achieve the same lack of parity as the NBA, it would
have to play 75-game series in a 16-team tournament. Conversely, the NBA would have to switch to
an 8-team, single-game tournament to match the parity of the other three sports.

6. Conclusion.

6.1. Summary. We propose a modified Bayesian state-space framework that can
be used to estimate both time-varying strength and variance parameters in order to
better understand the underlying randomness in competitive organizations. We apply
this model to the NBA, NFL, NHL, and MLB.

Our first finding relates to the relative equivalence of the four leagues. At a single
point in time, team strength estimates diverge substantially more in the NBA and
NFL than in the NHL and MLB. In the latter two leagues, contests between two
randomly chosen teams are closer to a coin-flip, in which each team has a reasonable
shot at winning. Understanding this underlying randomness would appear to be cru-
cial for decision makers in these leagues. At critical moments in a team’s evolution,
such as the a trade deadline, free agency period, or the decision to fire a coach, we
recommend that team officials look past wins and losses to better understand team
strength in the context of their league. As one easy example, it is insufficient to eval-
uate a baseball or hockey team based on their performance in the postseason alone,
given that so many of those contests are nearly 50-50 outcomes.

Our next finding relates to the relative equivalence of the home advantage in each
league, with the NBA well ahead of the pack, with teams averaging a 62.0% chance of
winning versus a like-caliber opponent. We also show that the home advantage varies
most significantly between venues within each of the NBA and the NHL. In the NBA,
for example, the league’s best team home advantage is worth a few wins per year, in
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expectation, over the league’s worst home advantage. Moreover, with the exception
of the Colorado Rockies, it is not clear that any MLB or NFL team has a statistically
significant home effect.

Finally, we identify that team strengths derived from sequential fits are nearly
as accurate for predictive purposes as the observed game probabilities, as judged
by both links to future team performance and game-level outcomes. We conclude
by using team strength draws to propose two parity metrics, one for regular season
comparisons and another for postseason contrasts.

6.2. Discussion. There are several options for applying or extending our model.
Generally, the conditions needed to apply our framework are minimal; only paired
events, outcome probabilities, and some unit of time are needed.

As alternative examples in sports, comparisons between divisions of teams in the
same organization (as in English soccer) or between the top leagues of the same
sport (as in European soccer) would follow a similar structure to the one provided.
Alternatively, in any sporting league, modeling the impact of structural changes (such
as free agency, expansion or scoring system updates) would be straightforward to test
by adding covariates to our models. Note that team sports are not required for our
model to apply: a similar framework could assess the caliber of tennis players, whose
relative strengths fluctuate over time both within and across seasons. Competitive
balance questions within amateur sport (for example, conferences in NCAA football,
or even across all intercollegiate sports) would follow a similar design.

There are also several ways our model could generalize to other competitive spheres
of life. Assessing player and team strength in the increasing popular (and visible)
world of online gaming could be a future application. Online trivia leagues (e.g. the
Learned League) also pit players organized into divisions by ability in head-to-head
competition—their relative strengths could be modeled in our framework. Given that
political elections have only one outcome, traditional prediction models are difficult
to judge and calibrate. However, since our framework does not require outcomes, and
expansive betting market data that tracks candidates’ probabilities over time exists,
applying our models to political elections is another possible extension. Comparisons
in the volitility of candidate support over time, either between states, countries, or
election cycles, may be feasible.

Additionally, researchers of the NBA, NFL, NHL, and MLB could explore several
hypotheses using our provided team strength estimates. One option would be to test
how each league’s scheduling quirks impact won-loss standings. For example, what is
the consequence of the unbalanced schedule used in the NFL, relative to a balanced
design? Given each league’s schedule, how likely is it for the best team to qualify
for postseason play? Finally, one could use time-varying estimates of team strength
to consider the existence of tanking, in which teams—in order to secure a better
draft position—are better off losing games later in the season. While this has been
demonstrated in basketball using betting market data (Soebbing and Humphreys,
2013), it would also be worth looking at tanking in other leagues, or if team interest
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in tanking corresponds to the perceived talent available in the upcoming draft.
Opportunities to improve our model are also plentiful. Both Models IHA and CHA

make use of the logit transform with game-level probabilities. Although our posterior
predictive checks do not seem to indicate that this assumption is unjustified, alterna-
tive transformations may be considered. We implemented a version of Model IHA that
used the arcsin-sqrt transformation—the variance-stabilizing transformation for bino-
mial proportions—and found nearly identical results with both game-level probability
predictions and team strength estimates.

To estimate predictions from the sequential fits, we repeatedly applied our MCMC
algorithm in each week. In place, sequential Monte Carlo samplers (Gilks and Berzuini,
2001; Del Moral, Doucet and Jasra, 2006) would have been more efficient. In the sports
of soccer and hockey, one improvement would consider three-way lines that include
the probability of a tie game. Specifically, soccer betting markets use a vector of
probabilities (win, loss, tie). To account for these complexities, Firth (2017) proposed
a generalized Bradley-Terry model to simultaneously model both wins and draws, one
that could likewise start with imputed game probability vectors. Finally, a comparison
of team strengths estimated by our model, as well as those fit by Glickman and Stern
(1998) and Koopmeiners (2012), could more acutely identify the impact of using
betting market data relative to point differential and won-loss outcomes.

To maintain consistency with the NFL’s calendar, we considered time on a weekly
basis; more refined approaches may be appropriate in other sports. As an example,
investigation into starting pitchers in baseball—who change daily—could lead to novel
findings. Additionally, another model specification could consider the possibility that
time-varying estimates of team strength follow something other than an autoregressive
structure. One alternative assumption, for example, is a stochastic volatility process
(Glickman, 2001). In this respect, our model can be considered a starting point for
those looking to dig deeper in any sport without losing an ability to make cross-league
or cross-sport comparisons.
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Fig 11. Trace plots of NFL parameters
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Fig 12. Trace plots of NHL parameters
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Fig 13. Team strength coefficients over time for Major League Baseball.
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Fig 14. Team strength coefficients over time for the National Basketball Association.
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Fig 15. Team strength coefficients over time for the National Football League.
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Fig 16. Team strength coefficients over time for the National Hockey League.
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Fig 17. Team-color mappings used throughout the paper. (Baumer and Matthews, 2017)
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Fig 18. Contour plot of the estimated season-to-season and week-to-week variability across all four
major sports leagues. By both measures, uncertainty is lowest in MLB and highest in the NBA.

Fig 19. Contour plot of the estimated season-to-season and week-to-week autoregressive parameters
across all four major sports leagues.

imsart-aoas ver. 2014/10/16 file: aoas2017.arxiv.R2.tex date: November 23, 2017



RANDOMNESS IN SPORT 47

p
e
rf

e
c
t 
p
a
ri

ty

p
re

d
e

s
ti
n

a
ti
o

n
P

s
e

u
d

o
−

R
^2

=
 0

.8
8

1

p
e
rf

e
c
t 
p
a
ri

ty

p
re

d
e

s
ti
n

a
ti
o

n
P

s
e

u
d

o
−

R
^2

=
 0

.5
1

6

p
e
rf

e
c
t 

p
a
ri

ty

p
re

d
e
s
ti
n
a
ti
o
n

P
s
e
u
d
o
−

R
^
2

=
 0

.4
3
4

p
e
rf

e
c
t 

p
a
ri

ty

p
re

d
e
s
ti
n
a
ti
o
n

P
s
e
u
d
o
−

R
^
2

=
 0

.8
4
4

N
F

L
N

H
L

M
L
B

N
B

A

1
2

4
8

1
6

1
2

4
8

1
6

12345 12345

T
o

u
rn

a
m

e
n
t 
S

e
e

d
 (

d
)

Tournament Finish (Fd, round)

2
5
0
0

5
0
0
0

7
5
0
0

1
0
0
0
0

N

S
im

u
la

te
d

 1
6

−
T
e

a
m

 T
o
u
rn

a
m

e
n
ts

, 
2
0
0
6
−

2
0
1
6

Fig 20. Relationship between seed and finish in simulated 16-team, 7-game series playoff tournaments.
One thousand tournaments were simulated for each sport in each year. The horizontal dotted gray
line represent how the tournaments would play out with perfect parity, while the stepped gray line
represents tournaments that play out in perfect accordance with seed.

imsart-aoas ver. 2014/10/16 file: aoas2017.arxiv.R2.tex date: November 23, 2017


	How Often Does the Best Team Win? A Unified Approach to Understanding Randomness in North American Sport
	Author Manuscript
	Recommended Citation

	Odyssey Cover Sheet.pub

