
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Chemistry: Faculty Publications and Other 
Works 

Faculty Publications and Other Works by 
Department 

3-25-2013 

Apparent Alkyl Transfer and Phenazine Formation via an Aryne Apparent Alkyl Transfer and Phenazine Formation via an Aryne 

Intermediate Intermediate 

Daniel Becker 
Loyola University Chicago, dbecke3@luc.edu 

Andria M. Panagopoulos 
Loyola University Chicago 

Doug Steinman 
Loyola University Chicago 

Alexandra Goncharenko 
Loyola University Chicago 

Kyle Geary 
Loyola University Chicago 

See next page for additional authors 

Follow this and additional works at: https://ecommons.luc.edu/chemistry_facpubs 

 Part of the Chemistry Commons 

Author Manuscript 
This is a pre-publication author manuscript of the final, published article. 

Recommended Citation Recommended Citation 
Becker, Daniel; Panagopoulos, Andria M.; Steinman, Doug; Goncharenko, Alexandra; Geary, Kyle; 
Schleisman, Carlene; Spaargaren, Elizabeth; and Zeller, Matthias. Apparent Alkyl Transfer and Phenazine 
Formation via an Aryne Intermediate. Journal of Organic Chemistry, 78, 8: 3532–3540, 2013. Retrieved 
from Loyola eCommons, Chemistry: Faculty Publications and Other Works, http://dx.doi.org/10.1021/
jo302795w 

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department 
at Loyola eCommons. It has been accepted for inclusion in Chemistry: Faculty Publications and Other Works by an 
authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. 
© 2013 American Chemical Society 

https://ecommons.luc.edu/
https://ecommons.luc.edu/chemistry_facpubs
https://ecommons.luc.edu/chemistry_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/chemistry_facpubs?utm_source=ecommons.luc.edu%2Fchemistry_facpubs%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/131?utm_source=ecommons.luc.edu%2Fchemistry_facpubs%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1021/jo302795w
http://dx.doi.org/10.1021/jo302795w
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/


Authors Authors 
Daniel Becker, Andria M. Panagopoulos, Doug Steinman, Alexandra Goncharenko, Kyle Geary, Carlene 
Schleisman, Elizabeth Spaargaren, and Matthias Zeller 

This article is available at Loyola eCommons: https://ecommons.luc.edu/chemistry_facpubs/41 

https://ecommons.luc.edu/chemistry_facpubs/41


Apparent Alkyl Transfer and Phenazine Formation 

via an Aryne Intermediate 
 

Andria M. Panagopoulos,§a Doug Steinman,§ Alexandra Goncharenko,§ Kyle Geary,§ 

Carlene Schleisman,§ Elizabeth Spaargaren,§ Matthias Zeller,‡ and Daniel P. Becker§*  
  
§
Department of Chemistry, Loyola University Chicago, 1032 W. Sheridan Road, 

Chicago, IL 60660, United States, 
‡
Department of Chemistry, 1 University Plaza, 

Youngstown State University, Youngstown, Ohio 44555-3663, United States 

 

*dbecke3@luc.edu;  
a
Current Address: Oak Ridge National Laboratory, Chemical 

Sciences Division, Oak Ridge, TN 37831 

 
 

ABSTRACT: Treatment of chlorotriaryl derivatives 3a and 3d or fluorotriaryl 

derivatives 3b and 3e with potassium diisopropylamide afforded alkyl-shifted phenazine 

derivatives 5a/5b, rather than the expected 9-membered triaza orthocyclophane 2a. The 

phenazine derivatives were isolated in 78-98% yield depending on the halogen and alkyl 

group present. In the absence of the halogen (chloro or fluoro), the apparent alkyl shift 

proceeds more slowly and cannot proceed via, the intermediacy of the aryne 

intermediate.. Mechanistic possibilities include intramolecular nucleophilic attack on an 

aryne intermediate leading to a zwitterionic intermediate and alkyl transfer via either a 

via a 5-endo-tet process, or via a Smiles rearrangement. 

 

INTRODUCTION 

 

Cyclotriveratrylene (CTV, 1), a [1.1.1]orthocyclophane, is an archetypal cyclophane 

scaffold that is commonly employed in supramolecular chemistry.1-4 As part of our 

research program directed toward the synthesis and application of apex-modified CTV 

derivatives5-7 with unique material properties and applications involving host-guest 



chemistry8 we recently reported the synthesis of the new triaza orthocyclophane 2a
9
 

(Figure 1) which was alkylated to give the N,N',N''-trimethyl derivative 2b. Following a 

6-step linear sequence to obtain the precursor 3a (Scheme 1), two mechanistically 

different approaches were examined in order to obtain the final desired triazacyclophane 

2a (Scheme 1). The first method employed a Buchwald-Hartwig N-arylation,10-13 which 

was ultimately successful in the macrocyclization of 3a to azacyclophane 2a.9 In parallel, 

we had also envisioned that the use of benzyne (aryne) intermediate 4a should be a viable 

synthetic route to the triazacyclophane skeleton, which led to the observation of an 

unexpected alkyl transfer and phenazine formation with interesting mechanistic 

implications that we describe herein. 

 

 

 

Figure 1: Structures of CTV and 1,4,7-triazacyclononatriene derivatives 

 

Ring closures via aryne intermediates were first introduced independently by Bunnett14 

and Huisgen.15 Since then, aryne intermediates have been used extensively in organic 

synthesis16 and in the synthesis of natural products.17 Barluenga et al. exploited the use of 

benzyne-tethered vinyl or aryl lithium compounds to obtain indole and benzo-fused 



heterocyclic derivatives.18 The reactivity of aryne intermediates toward nucleophilic 

attack is attributed to the low energy LUMO, which is a consequence of the “bending” of 

the triple bond within the ring; decreasing the energy gap between the LUMO of the 

aryne and the HOMO of the attacking nucleophile enables reaction between the two 

partners.19 For generating benzyne intermediates, a well-established method involves 

treating an aryl halide with a strong base, especially alkali metal aryls/alkyls or amides in 

ether solvents or liquid ammonia. Limitations arising from these reactions are due to the 

tendency for the solvent or the base itself to react with the benzyne intermediate, or from 

reduction of the benzyne via hydride transfer from the alpha-carbon of an amide base 

such as lithium diisopropylamide (LDA).19  

 

RESULTS AND DISCUSSION 

 

When we treated intermediate 3a with potassium diisopropylamide (KDA) in THF under 

reflux in order to form benzyne intermediate 4a, a curious methyl shift was observed 

accompanied by the production of an unexpected phenazine derivative 5a, rather than the 

desired triaza orthocyclophane derivative 2a (Scheme 1). Reactions that were attempted 

with lithium diisopropylamide (LDA) were more sluggish and were not as clean. We had 

expected that the most nucleophilic anilide nitrogen (N3) would react rather than the 

neutral, more sterically encumbered, and presumably less nucleophilic tertiary nitrogen 

(N2). 

 



 

 

Scheme 1: Cyclization of 3a via Buchwald-Hartwig yielding orthocyclophane 2a and 

benzyne route affording phenazine 5a 

 

Although the high-resolution molecular ion observed at 301.1562 was consistent with the 

expected molecular formula for orthocyclophane 2a, the isomeric structure 5a was 

suggested by analysis of the spectral data and was ultimately confirmed by single crystal 

X-ray analysis of its tosylate and hydrochloride salts (Figures 2 and S1). Both salts 

independently afforded X-ray quality crystals from diethyl ether. 



  

Figure 2: X-Ray crystal structure of the methyl-shifted phenazine 5a as the tosylate salt. 

Thermal ellipsoid probability level at 50%. 

 

The phenazine by-product was surprising since molecular models had predicted an ideal 

overlap of the N3 anionic anilide lone pair with the in-plane orbital on the proximal 

alkyne carbon of the benzyne, and we conjectured that the entropic cost of forming the 9-

membered ring would not be prohibitive due to the conformational constraints provided 

by the three intervening aryl rings. Yet 6-membered ring formation with alkyl shift 

proceeds exceptionally efficiently, with only the phenazine derivative as the major 

product formed and isolated (92% yield).  

 

We assumed that intramolecular or intermolecular methyl transfer from N2 to N3 was 

faster than the closure of the 9-membered ring, and might be faster than formation of the 

benzyne. Thus, we sought to slow down the alkyl transfer. Since SN2 displacement of a 

primary center is ~ 50× slower than of a methyl center,20 we replaced the N2-methyl by 

an n-butyl group. Scheme 2 describes the preparation of the requisite n-butyl derivative 



3d wherein X = Cl. Adapted from our earlier report5, intermediate 9a was alkylated with 

n-butyl bromide to afford N-methyl-N'-butyl derivative 10d, which was reduced 

according to the general method of Sanz21 to afford 3d. Ultimately, we also wanted to 

speed up the formation of the aryne intermediate by utilizing the fluoride substrates (3b 

and 3e), which commenced via a Buchwald-Hartwig reaction on 2-fluoro-iodobenzene 

(X = F, Y = I) to give the diarylamine 6b after purification by column chromatography. 

Methylation of N1 was accomplished with KOH and Me2SO4 in refluxing acetone22 or 

with sodium hydride followed by methyl iodide to give 2-fluoro-2'-nitrodiphenylamine 

7b. This was followed by reduction of the nitro group to give aniline 8b employing the 

general method of Sanz21 using CuCl and KBH4 in dry MeOH. Pd-catalyzed N-arylation 

of 8b with o-iodonitrobenzene produced the triaryl derivative 9b in 55% isolated yield 

after purification. Methylation of N2 proceeded with KH and MeI in warm DMF, and 

reduction of the nitro group was once again accomplished using CuCl and KBH4 to give 

compounds 10b and 3b respectively. Finally, nor-halo substrates 3c and 3f (X = H; R = 

CH3 or n-butyl, respectively) were prepared by Buchwald-Hartwig N-arylation of 2-

nitroaniline with bromobenzene to afford 6c
23 which was alkylated to give 7c.24 

Reduction of nitroaniline 7c gave 8c, which underwent N-arylation to afford phenylene 

diamine derivative 9c. Alkylation with either methyl iodide or n-bromobutane gave 10c 

and 10f, respectively, followed by reduction to give 3c and 3f, respectively. 

 



 

 

 

Scheme 2: Synthesis of triaryl derivatives 3a-f and formation of alkyl-shifted phenazine derivatives 5a and 5b.



 

 

As noted above, treatment of starting material 3a with KDA in THF under reflux 

afforded phenazine derivative 5a which had suffered the apparent methyl shift. Table 1 

outlines the different reaction conditions and substrates explored. The order in which the 

alkyl shift is occurring appears to be dependent upon several factors including the 

halogen leaving group as well as the alkyl group substituent on the internal nitrogen (N2). 

When the reaction of chloro-N,N'-dimethyl aniline 3a was carried out at -78°C (entry 1) 

no reaction occurred, as confirmed by 96% recovery of 3a even though benzyne 

formation has been observed at this temperature in some cases. However, when the 

reaction mixture was heated to reflux (66°C), phenazine 5a was isolated in 92% yield 

having suffered the apparent methyl shift (entry 2). In an attempt to slow the rate of the 

SN2 reaction, in consideration of the possibility that demethylation preceded the 

formation of the benzyne intermediate and that prior alkyl transfer from N2 to N3 was 

essential for phenazine formation, the incorporation of a more sterically hindered 

blocking group was employed. Initial attempts to install an isopropyl substituent led to 

elimination, though these efforts were not exhaustive , so an n-butyl group on the internal 

nitrogen (N2) was employed since SN2 displacement of a primary center is ~ 50× slower 

than of a methyl center.20 The reaction with the N2-butyl derivative 3d was conducted 

under the same conditions (KDA, THF, reflux, entry 4) and remarkably, no reaction 

occurred, including no alkyl shift, hence aryne formation must have preceded the alkyl 

shift and is required for the alkyl shift to occur for this particular substrate. Alternatively, 

this suggests the unexpected possibility that the benzyne formation itself may be 



dependent upon prior alkyl shift since the N,N'-dimethyl derivative did afford the methyl-

shifted phenazine under the same conditions (entry 2). When the reaction was conducted 

in a sealed vessel at 95°C (entry 5) alkyl transfer of the butyl group was seen with 

concomitant formation of the phenazine derivative 5b. The higher temperature required 

for the butyl shift is consistent with the rate difference for primary alkyl versus methyl 

substrates in an SN2-type reaction.  

 

Table 1: Phenazine formation via benzyne intermediates 

 

 

 

Entry S.M. X R1 R2 Temp 

(°C) 

Product 

1 3a Cl CH3 CH3 -78 no reaction 

2 3a Cl CH3 CH3 66 5a 

3 3b F CH3 CH3 66 5a 

4 3d Cl CH3 n-butyl 66 no reaction 

5 3d Cl CH3 n-butyl 95 5b 

6 3e F CH3 n-butyl 66 5b 

 



We considered that the rate of dealkylation in the case of R2 = CH3 may be faster than the 

rate of the benzyne formation (Scheme 2). The deprotonated terminal aniline nitrogen 

(N3, structure 11) should be more basic as well as more nucleophilic than the N2-

dealkylated anilide 12. Therefore, if a dynamic equilibrium exists wherein the alkyl 

substituent can shuttle back and forth between N2 and N3 (anilides 11 and 12, Scheme 3), 

then the equilibrium should shift toward having the anionic charge on N2 where it enjoys 

greater stabilization via resonance. This, however, begs the question of why N1 is not 

dealkylated as well. The isolated phenazine always bears a methyl on N1 and is not 

observed as a mixture of N1-CH3 and N1-H derivatives. However, only N2 is 

appropriately spaced to attack the benzyne, and dealkylation of N1 would be very 

unlikely after the phenazine formation since the N-methyl bond is orthogonal to the π 

system. The direct transfer of the methyl from N2 to N3 (11a to 12) requires an a priori 

forbidden25 but occasionally observed26 5-endo-tet mechanism. The transition state for 

the 5-endo-tet in this case, however, is essentially an SN2 reaction from the same face as 

the leaving group. Alternatively, a Smiles27 rearrangement (11b-d) may occur which 

would appear to proceed via an alkyl shift while actually exchanging N2 and N3 along 

with their respective substituents. The Smiles rearrangement often proceeds with anion-

stabilizing groups on the aromatic ring that is attacked, and typically with an exchange of 

heteroatoms, for example an N-nucleophile replacing an O-leaving group. 
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Scheme 3: Possible mechanism of alkyl shift prior to phenazine formation 

 

Encouraged by the lack of alkyl shift with R2 = butyl in our quest for a benzyne approach 

to the 1,4,7-triazacyclononatriene, we reasoned that if the benzyne could be formed under 

milder conditions, then N2 would remain blocked and potentially circumvent 6-

membered ring formation. We therefore decided to change the halogen from chlorine to 

fluorine to enhance the rate of formation of the aryne as it can stabilize the incipient 

negative charge on the adjacent carbon.28, 29 Substitution of the chlorine atom with a 

fluorine atom was accomplished as outlined in Scheme 2, adapted from our earlier 



reported procedure9
 as described above. Treatment of fluoro aniline substrate 3b with 

KDA in refluxing THF afforded a 98% yield of phenazine 5a (Table 1, entry 3).  

 

The formation of phenazine derivative 5a employing fluorine as the halogen led us to 

combine strategies and introduce the n-butyl substituent on N2 as was done for substrate 

3d. When aniline 3e containing the fluorine and the n-butyl group was subjected to KDA 

in refluxing THF (Table 1, entry 6), the alkyl transfer was once again observed giving 

rise to phenazine 5b in 98% isolated yield, and suggests that the formation of the benzyne 

intermediate precedes that of the alkyl transfer. The possible change in the reaction 

sequence and the isolation of phenazine 5b suggests the unusual zwitterion 14a/b as an 

intermediary (Scheme 4). The zwitterion could be formed from the neutral, tertiary 

aniline attacking the benzyne intermediate, followed by either an intramolecular alkyl 

transfer again via a 5-endo-tet mechanism, or via intermolecular SN2 dealkylation. 

Formation of zwitterions 14a/b requires attack by a less nucleophilic neutral aniline in 

the presence of a more nucleophilic anilide, yet the formation of a zwitterion from attack 

by a neutral nucleophile on an aryne is not without precedent. Kunai and co-workers30 

reported nucleophilic attack on an aryne by an imidazole forming a zwitterion which was 

neutralized by abstraction of a proton, consistent with our proposed intermediates 14a 

and 14b. Since the internal nitrogen N2 has no proton to abstract, dealkylation is required 

to lead to the neutral phenazine derivative. We believe that the alkyl transfer is 

intramolecular, although labeling experiments would be required to confirm this in the 

present case. Reactant concentrations were kept intentionally rather low to encourage 

intramolecular macrocycle formation and to discourage intermolecular processes; the 



dimethyl chloro-aniline 3a concentration was 0.05M and the methyl butyl chloro-aniline 

3d concentration was at 0.03M, whereas KDA concentrations were kept at 0.17M and 

0.16M in these two reactions respectively (initial concentrations of DIPA in the presence 

of excess KH). Phenazines 5a and 5b were isolated in high yield in both cases, and we 

did not isolate any phenazine where the N2-alkyl group was lost rather than transferred, 

as would be expected if a slower intermolecular process were competing with 

dealkylation by KDA in solution. Alternatively, a Smiles rearrangement could precede or 

even follow aryne formation. 
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Scheme 4: Alkyl shift and rearrangement via proposed zwitterionic intermediate 14 

 

In order to determine if alkyl transfer is dependent on prior benzyne formation, substrates 

lacking a halogen leaving group were subjected to the identical conditions which were 

employed for benzyne formation. Nor-halo derivatives 3c and 3f were synthesized as 

outlined in Scheme 2 bearing methyl and n-butyl groups on N2, respectively. When 

compound 3c was treated with KDA in refluxing THF, one methyl substituent was 

cleanly transferred from N2 to the terminal (N3) aniline nitrogen affording 15c in 89% 



yield (Scheme 5), demonstrating that dealkylation can occur independently of benzyne 

formation by the action of the nucleophilic terminal anilide (N3). When anilide 3f bearing 

N1-methyl and N2-butyl groups but no halogen was subjected to KDA in THF at reflux, 

the major product isolated in 73% yield was the N3-butyl derivative 15f, with the methyl 

group remaining on the N1 position. This result is surprising since the angle of attack by 

the N3-anilide nitrogen is not ideal for an SN2 reaction for the proximal N2-methyl (5-

endo-trig). This experiment employing aryl substrates lacking a halogen that are unable 

to form an aryne demonstrates that the alkyl shift can occur without benzyne formation. 

Furthermore, the N2-methyl or N2-n-butyl are the groups transferred, as evidenced by 

upfield 13C shifts of the migrating carbon, and by comparison with calculated 13C spectra 

utilizing ab initio density functional (DFT) calculation of equilibrium geometry with 

RB3LYP/6-31G* level of theory (Supplementary Schemes S1 and S2).  

 

We believe that the alkyl transfer from N2 to N3 in the conversion of 3c/f to 15c/f is 

intramolecular. In the case of the nor-halo substrate 3c, intermolecular alkyl transfer is 

very unlikely because a single product is formed in which only one alkyl group is 

transferred. If the transfer were intermolecular, a mixture of products where either the N1-

methyl or the N2-methyl were transferred would have been expected, as the two methyl 

groups of 3c should have comparable reactivity toward SN2 displacement given the 

similar diphenylamine leaving groups. Products from outright loss of alkyl groups from 

dealkylation by KDA were not isolated.  
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Scheme 5: Alkyl transfer without benzyne formation 

 

CONCLUSIONS 

 

It was originally hoped that a benzyne intermediate would provide an efficient 

route to the targeted 1,4,7-triazacyclononatriene 2a. Models suggested that overlap of the 

N3 anilide with the in-plane benzyne orbital would be ideal for the final cyclization step 

of the linear synthesis. However, when NMR spectra from the benzyne cyclization 

reactions commencing with halo derivatives 3 were compared with those of the purified 

N,N’-dimethyl-1,4,7-triazacyclononatriene orthocyclophane molecule isolated from 

Buchwald-Hartwig N-arylation conditions, there was no trace of the 9-membered 

cyclophane detected in the crude mixtures by 1H NMR, whereas the apparent alkyl-

shifted phenazine derivatives 5a/b were formed very efficiently, in 78-98% depending on 

the halogen and alkyl group present. This conversion is dependent upon two factors: the 

halogen present and the alkyl group employed as the substituent on the internal nitrogen. 

The evidence provided by these studies suggests the possibility of a neutral N2 aniline 

nucleophile attacking the proximal carbon of the aryne affording a zwitterionic 

intermediate (14a/b) followed by an alkyl shift from N2 to N3 to afford a phenazine 

derivative. We envisioned that this may occur via a rare 5-endo-tet pathway, although a 



classic Smiles rearrangement may be more likely since theoretical studies do not support 

a frontside attack, which would be required in a genuine 5-endo-tet process. Specifically, 

Hase31 has performed an ab initio (HF/3-21+G*) trajectory study of the SN2 reaction of 

Cl- + CH3Cl at a reagent relative translational energy of 100 kcal/mol and observed the 

expected backside attack but no frontside attack, and suggested that extensive 

electrophile vibrational energy would be required for frontside attack. Furthermore, 

reported 5-endo-tet processes26 are ambiguously categorized since they involve 3-

membered ring  (generally epoxide) openings under acidic conditions with significant 

carbocation character, and hence are more appropriately categorized as (allowed) 5-exo-

trig reactions.  Indeed, Baldwin noted that three-membered ring openings lie between 

tetrahedral and trigonal systems.25 It may be noted that some confusion arises upon 

categorization of the cyclizations of a 3,4-epoxy butan-1-ol system to form a 

tetrahydrofuran, which is an “endo” cyclization (per Baldwin) but could be considered 

either an allowed 5-exo-tet or a disfavored 6-endo-tet (counting the oxygen atom of the 

epoxide as part of the larger ring). As noted, a genuine 5-endo-tet pathway would involve 

attack by a nucleophile at the same face as the leaving group, in opposition to the classic 

SN2 trajectory of 180°, thus it is unlikely that the intramolecular alkyl transfer occurs as 

depicted in Scheme 3, and more likely is the result of a Smiles rearrangement, although 

the intermediacy of the zwitterionic intermediate (14a/14b) remains an intriguing 

possibility. Labeling experiments would be required to definitely differentiate between 

these possibilities. Further experiments are underway to study this unusual and 

theoretically interesting alkyl transfer in more detail. 

 



EXPERIMENTAL SECTION 

 General Experimental Methods 

All solvents were distilled prior to use. All reagents were used without further 

purification unless otherwise noted. All Pd-catalyzed and Cu-catalyzed reactions were 

conducted under an inert atmosphere of argon, and all other reactions were conducted 

under a nitrogen atmosphere. Silica gel 60A, 40–75 µm (200 × 400 mesh) was used for 

column chromatography. Aluminum-backed silica gel 200 µm plates were used for TLC. 

1H NMR spectra were obtained utilizing a 300 MHz spectrometer with trimethylsilane 

(TMS) as the internal standard. 13C NMR spectra were obtained using a 75 MHz 

spectrometer. A 300 watt microwave reactor with pressure and temperature sensors was 

used for all microwave (MW) reactions. Infrared (IR) spectra were determined as a 

solution in CHCl3. HRMS spectra were measured on a TOF instrument by electrospray 

ionization (ESI). Single crystal X-ray diffraction data were collected on a charge-

coupled-device (CCD) diffractometer with a liquid nitrogen vapor cooling device. Data 

were collected at 100 K with graphite monochromatized MoKα X-ray radiation (λ= 

0.71073 Å). Collected and reduced data were corrected for absorption using multi-scan 

methods. The structure was solved by direct methods and refined by full matrix least 

squares against F2 with all reflections. Non hydrogen atoms were refined anisotropically. 

C-H hydrogen atom positions were idealized. Additional details of the structure 

determinations for the tosylate and hydrochloride salts of 5a can be found in the 

supporting information and the supplementary cif files. 

 

N-Methyl-2-(10-methylphenazin-5(10H)-yl)aniline (2a)  



 

Similar to the procedure employed by Panagopoulos et al.
9
 but under optimized thermal 

conditions, a 125 mL pressure flask was charged with XPhos (426 mg, 0.89 mmol) and 

Pd(dba)2 (255 mg, 0.443 mmol) and a solution of compound 3a (712 mg, 2.11 mmol) in 

42 mL anhydrous 1,4-dioxane was added. The resulting solution was stirred at room 

temperature for 15 minutes as argon was passed over the top of the solution. Then cesium 

carbonate (1.38 g, 4.23 mmol) was added as a solid and the resulting suspension purged 

with argon for 30 minutes. The flask was then sealed and heated in a 140°C oil bath for 

16 hours. The reaction mixture was cooled to room temperature and filtered through a 

pad of Celite and the filter cake washed with 1:1 methanol/CH2Cl2. The filtrate was 

concentrated to dryness leaving a brown solid which was dissolved in ethyl acetate and 

the solution passed through a plug of silica gel eluting with 2:1 pet ether /CH2Cl2. The 

filtrate was concentrated to dryness leaving a tan powder that was dissolved in CH2Cl2. 

The CH2Cl2 solution was purified by flash chromatography eluting with a gradient from 

10% CH2Cl2 /pet ether to 33% CH2Cl2 /pet ether to give 2a (375 mg, 59% yield) as a tan 

powder, mp 228-230°C.  

 

N
1
-(2-Aminophenyl)-N

2
-(2-fluorophenyl)-N

1
,N

2
-dimethylbenzene-1,2-diamine (3b) 

 

CuCl (137 mg, 1.38 mmol) was added to a stirring solution of the nitroaryl derivative 10b 

(164 mg, 0.46 mmol) in dry MeOH (5 mL) at rt. KBH4 (248 mg, 4.60 mmol) was then 

added in portions.13 The reaction effervesced and a black precipitate formed upon each 

addition. Once all the KBH4 was added, the reaction continued to stir at rt until the 



solution became clear in color (2-4 h). The reaction was quenched with H2O and 

extracted with 3 x 10 mL 90/10 EA/MC. The organic layers were combined and dried 

over Na2SO4. The solvent was removed under vacuum to give the aniline 3b as a light 

brown oil (144 g, 98% yield). 1H NMR (300 MHz, CDCl3) δ 7.12 ( 2H, m), 7.00 ( 2H, 

m), 6.92 (3H, m), 6.78 (2H, m), 6.65 (2H, m), 6.56 ( 1H, dd, J = 9.2, 1.5 Hz), 3.17 ( 2H, 

bs), 3.08 (3H, s), 2.97 (3H, s); 13C NMR (75 MHz, CDCl3) δ 154.1 (d, J = 270 Hz), 

145.2, 141.7, 140.8, 137.4, 137.1, 127.0, 125.6, 124.9, 124.0, 123.5, 122.6, 120.1, 119.9, 

119.3, 118.7, 116.4, 116.1, 39.8, 38.4; IR (CDCl3) 3435 (NH2), 3346 (NH2), 1612 (C=C), 

1501 (NO2) cm-1; HRMS MH+ calcd for C20H21N3F 322.1719 found 322.1728. 

 

N
1
-(2-Aminophenyl)-N

1
,N

2
-dimethyl-N

2
-phenylbenzene-1,2-diamine (3c) 

 

CuCl (0.297 g, 3 mmol) was added to a stirring solution of the nor-halo dimethyl 

derivative 10c (0.212 g, 1.00 mmol) in a 1:1 mixture of dry MeOH and MC (20 mL) at rt. 

KBH4 (0.540 g, 8.0 mmol) was then added in portions.21 The reaction effervesced and a 

black ppt formed upon each addition. Once all the KBH4 was added, the reaction 

continued to stir at rt until the solution became clear in color and TLC showed 

consumption of 10c (2-4 h). The reaction was quenched with H2O and extracted with 3 x 

10 mL 90/10 EA/MC. The organic layers were combined and dried over Na2SO4. The 

solvent was removed under vacuum to give the N,N'-dimethyl diphenylamine derivative 

3c as a light brown oil (0.163 g, 96% yield). 1H NMR (500 MHz, CDCl3) δ 7.27 (1H, td, 

J = 6.3, 2.3 Hz), 7.21 (1H, d, J = 4.8 Hz), 7.10 (2H, td, J = 7.0, 1.0 Hz), 7.05-7.04 (2H, 

m), 6.87 (1H, td, J = 7.5, 1.0 Hz), 6.66 (1H, td, J = 7.5, 1.2 Hz), 6.61-6.58 (3H, m), 6.31 



(2H, dd, J = 8.5, 1.0 Hz), 2.99 (2H, br s), 2.97 (3H, s), 2.50 (3H, s). 13C NMR (125 MHz, 

CDCl3) δ 147.8, 147.3, 142.8, 138.7, 138.3, 129.9, 128.6, 126.8, 125.3, 123.9, 122.6, 

118.8, 118.6, 116.2, 116.1, 112.3, 38.4, 37.9. HRMS MH+ Calc for C20H22N3 304.1808, 

found 304.1808. 

 

N
1
-(2-Aminophenyl)-N

1
-butyl-N

2
-(2-chlorophenyl)-N

2
-methylbenzene-1,2-diamine 

(3d) 

 

Following the general procedure of Sanz,21 CuCl (0.060 g, 0.060 mmol) was added to a 

stirring solution of compound 10d (0.079 g, 0.2 mmol) in MeOH (2.0 mL) at rt, then 

KBH4 (0.108 g, 2.0 mmol) was added in portions. The reaction stirred at rt until the 

solution became clear (2-4 h). The reaction was then quenched with H2O and extracted 3 

× 15 mL 90/10 EA/DCM. The organic layers were combined and dried over Na2SO4 and 

the solvent was removed to give the desired aniline 3d as a brown oil (0.063 g, 82%). 1H 

NMR (300 MHz, CDCl3) δ 7.29 (1H, dd, J = 7.8, 1.5 Hz), 7.15-7.00 (4H, m), 6.95-6.84 

(5H, m), 6.73-6.62 (2H, m), 3.46 (5H, m), 3.20 (3H, s), 1.42-1.32 (2H, m), 1.25-1.16 (2H, 

m), 0.82 (3H, t, J = 7.2 Hz); 13C NMR (75 MHz, CDCl3) δ 147.2, 143.3, 143.2, 142.4, 

135.8, 131.2, 127.4, 127.3, 125.3, 124.8, 124.5, 123.7, 123.0, 118.4, 116.4, 50.6, 40.3, 

30.2, 20.5, 14.1; IR (CDCl3) 3436 (NH2), 3375 (NH2), 2956 (C-H), 2929 (C-H), 2869 (C-

H), 1491 (C=C) cm-1; HRMS MH+ calcd for C23H27N3Cl 380.1888, found 380.1892.  

 

N
1
-(2-Aminophenyl)-N

1
-butyl-N

2
-(2-fluorophenyl)-N

2
-methylbenzene-1,2-diamine 

(3e) 



 

CuCl (47 mg, 0.48 mmol) was added to a stirring solution of nitroaryl derivative 10e (63 

mg, 0.17 mmol) in dry MeOH (2 mL) at rt. KBH4 (86 mg, 1.6 mmol) was then added in 

portions.21 The reaction effervesced and a black ppt formed upon each addition. Once all 

the KBH4 was added, the reaction continued to stir at rt until the solution became clear in 

color (2-4 h). The reaction was quenched with H2O and extracted with 3 x 10 mL 90/10 

EA/MC. The organic layers were combined and dried over Na2SO4. The solvent was 

removed under vacuum to give the aniline derivative 3e as a light brown oil (60 mg, 

100% yield). 1H NMR (300 MHz, CDCl3) δ 7.18-6.99 (5H, m), 6.95-6.86 (2H, m), 6.78-

6.71 (2H, m), 6.66-6.60 ( 2H, m), 6.50 ( 1H, ddd, J = 9.6, 8.2, 1.8 Hz), 3.38 ( 2H, t, J = 

7.8 Hz), 3.20 ( 2H, bs), 2.90 (3H, s), 1.51-1.41 ( 2H, m), 1.32-1.20 ( 2H, m), 0.86 ( 3H, t, 

J = 7.3 Hz); 1H NMR (CDCl3, 125 MHz) δ 154.2 (d, J = 274 Hz), 145.9, 142.6, 142.1, 

137.3, 128.0, 125.8, 125.1, 124.7, 124.2, 121.4, 121.3, 121.0, 119.8, 119.8, 119.4, 118.7, 

116.5, 116.3, 50.9, 40.4, 30.0, 20.6, 14.2 ppm; HRMS MH+ calcd for C23H27N3F 

364.2184, found 364.2175. 

 

N
1
-(2-Aminophenyl)-N

1
-butyl-N

2
-methyl-N

2
-phenylbenzene-1,2-diamine (3f) 

 

Compound 10f (633 mg, 1.69 mmol) was dissolved in 17 mL dry methanol and the 

solution stirred at RT. According to the general method of Sanz,21 to that solution was 

added CuCl (508 mg, 5.13 mmol) in one portion and stirring was continued for 10 min 

before KBH4 (738 mg, 13.7 mmol) was added portion-wise maintaining the reaction 

temperature below 30°C. The reaction mixture was stirred at ambient temperature under 



nitrogen atmosphere for 2.5 h. The reaction was then quenched via the addition of water 

and then was extracted 3× with ethyl acetate. The organic extracts were combined, dried 

over MgSO4, filtered and the filtrate concentrated to dryness leaving a brown gum that 

was purified by flash chromatography eluting with an eluent comprised of 3% ether, 5% 

methylene chloride and 92% petroleum ether to give triaryl derivative 3f (202 mg, 25% 

yield, 2 steps) as a brown oil. 1H NMR (500 MHz, CDCl3) δ 7.29-7.26 (1H, m), 7.13 (1H, 

d, J=8.0 Hz), 7.08 (1H, t, J=11.0 Hz), 7.05-7.01 (2H, m), 6.86-6.83 (1H, m), 6.66 (1H, t, 

J=7.0 Hz), 6.60-6.54 (2H, m), 6.32 (1H, s), 6.30 (1H, s), 3.27 (2H, t, J=8.0 Hz), 2.99 (2H, 

bs), 2.46 (3H, s), 1.61-1.55 (4H, m), 1.30 (2H, q, J=7.5 Hz), 0.99 (3H, t, J=7.5 Hz). 13C 

NMR (125 MHz, CDCl3) δ 147.3, 146.2, 143.1, 139.8, 138.3, 130.3, 128.5, 126.5,125.0, 

124.7, 122.7, 119.7, 118.5, 116.2, 116.0, 112.4, 50.6, 37.9, 29.8, 20.4,14.0. HRMS MH+ 

Calc for C23H28N3 346.2278, found 346.2279. 

 

N-Methyl-2-(10-methylphenazin-5(10H)-yl)aniline (5a) 

 

In an oven-dried round-bottom flask, KH (0.543 g, 4.06 mmol) was washed with dry pet 

ether (3 x 5 mL) under N2 at rt, and 1 mL of THF was added to the KH and stirred at rt 

for 5 min. Diisopropylamine (0.15 mL, 1.0 mmol) was then added to the KH and the 

mixture stirred at rt for 5 min. Compound 3a (0.098 g, 0.29 mmol) in THF (5 mL) was 

added dropwise by syringe to the KDA in THF (1 mL). The mixture was heated to reflux 

for 1-2 hr until TLC showed complete consumption of 3a. The reaction mixture was 

quenched with 15 mL of H2O and extracted 3 × 20 mL Et2O. The organic layers were 

combined and dried over MgSO4 and the solvent was removed in vacuo to yield 



phenazine 5a as a colorless solid (80 mg, 92%): mp 202-204°C; 1H NMR (300MHz, 

CDCl3) δ 7.33 (1Η, ddd, J = 9.2, 7.8, 1.5 Hz), 7.16 ( 1H, dd, J = 8.1, 1.5 Hz), 6.82 (2H, t, 

J = 15.7, 7.8 Hz), 6.63 ( 2H, ddd, J = 9.1, 7.7, 1.4 Hz), 6.41 (2H, ddd, J = 8.7, 7.8, 1.2 

Hz), δ 6.34 (2H, dd, J = 7.7, 1.1 Hz), δ 5.82 (2H, dd, J = 7.8, 1.2 Hz), δ 4.45 (1H, bs), 

3.01 (3H, s), 2.79 (3H, bs); 13C NMR (75 MHz, CDCl3) δ 146.9, 136.9, 131.1, 129.6, 

129.2, 125.5, 121.7, 120.7, 117.5, 111.8, 111.2, 110.9, 30.2, 29.7; HRMS M+ calcd for 

C20H20N3 301.1573, found 301.1562. The desired product was then dissolved in 2-3 mL 

of Et2O and 1 equivalent of p-toluenesulfonic acid was added to form the tosylate salt as 

clear crystals suitable for X-ray crystallography. Similarly, addition of HCl/ether to 5a in 

Et2O afforded the hydrochloride salt as clear crystals suitable for X-ray crystallography. 

 

N-Butyl-2-(10-methylphenazin-5(10H)-yl)aniline (5b) 

 

In a round bottom flask, 2 mL of THF and DIPA (0.11 mL, 0.80 mmol) were added to 

KH (0.300 g, 2.24 mmol) at rt. The mixture was stirred for 10 min and aniline 3e (58 mg, 

0.16 mmol) in 3 mL of THF was added dropwise via syringe. The reaction mixture was 

heated to reflux for 2 h. The reaction mixture was cooled to rt and quenched with H2O. 

The product was extracted with 3 × 20 mL of 90/10 EA/MC. The organic layers were 

combined and dried over Na2SO4, the solvent was removed under reduced pressure to 

give the phenazine derivative 5b as a green oil (0.048 g, 87% yield). 1H NMR (500MHz, 

CDCl3) δ 7.3 (1H, ddd, J = 8.5, 7.3, 2.3), 7.16, (1H, dd, J = 7.7, 1.4), 6.83-6.75 (2H, m), 

6.62 (2H, t, J = 7.7), 6.41 (1H, t, 7.7), 6.34 (1H, d, J = 7.8), 5.81 (2H, dd, J = 7.8, 1.2), 

4.37 (1H, bs), 3.12 (2H, t, J = 7.1), 3.02 (3H, s), 1.55-1.43 (2H, m), 1.36-1.21 (2H, m), 



0.85 (3H, t, J = 7.3); 13C NMR (125 MHz, CDCl3) δ 137.2, 131.5, 129.7, 121.9, 121.1, 

117.7, 112.2, 112.0, 111.1, 43.3, 31.6, 29.9, 20.3, 14.0 (all aromatic carbons peaks are 

broadened due to hindered rotation except for 129.7, while the aliphatic carbon 

resonances are sharp); IR (CDCl3) 3415 (NH), 2965 (C-H), 2962 (C-H), 2870 (C-H), 

1607 (C=C), 1508 (C=C), 1482 (C=C) cm-1; HRMS M+ calcd for C23H26N3 343.2043, 

found 343.2046. 

(2
’
-Fluorophenyl)-(2-nitrophenyl)-amine (6b) 

(2’-Fluorophenyl)-(2-nitrophenyl)-amine 6b was synthesized according to the general 

procedures outlined by Tietze et al. 23 A pressure tube was charged with o-nitroaniline 

(0.690 g, 5.00 mmol), o-fluoroiodobenzene (0.70 mL, 6 mmol), Pd(dba)2 (0.144 g, 5%), 

BINAP (0.233 g, 7.5%), Cs2CO3 (3.26 g, 10 mmol) and toluene (10 mL). The mixture 

was purged with argon for 10 min at rt and the pressure tube was sealed. The reaction 

was placed in an oil bath. The temperature was brought to 120oC and the reaction stirred 

for 24 h. TLC showed complete consumption of o-nitroaniline and the reaction mixture 

was filtered through a pad of SiO2 using 10/90 DCM/EA as the eluent. The solvent was 

removed under reduced pressure and product was purified by column chromatography 

using 1/99 Et2O/PE as the eluent to afford the final product 6b as orange crystals (0.915 

g, 78% yield): mp 79-80°C; 1H NMR (300 MHz, CDCl3) δ 9.31 (1H, br s), 8.24 (1H, dd, 

J = 8.7, 1.5 Hz), 7.44-7.37 (2H, m), 7.24-7.18 (3H, m), 7.08 (1H, dt, J = 2.9, 1.5, 1.4 Hz), 

6.83 (1H, ddd, J= 7.2, 7.0, 1.2 Hz). 13C NMR (75 MHz, CDCl3) δ 156.6 (d, J = 248 Hz), 

142.2, 139.4, 135.7, 130.1, 126.8, 125.9, 124.7, 118.1, 116.8, 116.7, 116.0; IR (CDCl3) 



3345 (NH), 1609 (C=C), 1577 (C=C), 1509 (NO2) cm-1; HRMS (M+H)+ calcd for 

C12H10N2O2F 233.0721, found 233.0727. 

 

2-Nitro-N-phenylaniline (6c) 

 

2-Nitro-N-phenylaniline 6c was synthesized according to the general procedures outlined 

by Tietze et al.23 A pressure tube was charged with o-nitroaniline (1.38 g, 10 mmol), 

bromobenzene (1.2 mL, 10 mmol), Pd(dba)2 (0.288 g, 5%), BINAP (0.466 g, 7.5%), 

Cs2CO3 (6.52 g, 20 mmol) and toluene (20 mL). The mixture was purged with argon for 

10 min at rt and the pressure tube was sealed. The reaction was placed in an oil bath. The 

temperature was brought to 120°C and the reaction stirred for 48 h. TLC showed 

complete consumption of o-nitroaniline and the reaction mixture was filtered through a 

pad of silica gel using 5/5/90 EA/MC/PE as the eluent. The filtrate was dried over 

Na2SO4 and the solvent removed under reduced pressure to give the desired 2-nitro-N-

phenylaniline 6c as an orange solid without further purification (2.08 g, 98% yield). 1H 

NMR (300 MHz, CDCl3) δ 9.48 (1H, bs), 8.19 (1H, dd, J=8.7, 1.8 Hz), 7.43 (1H, d, J=1.8 

Hz), 7.41-7.32 (2H, m), 7.28-7.23 (4H, m), 6.76 (1H, dd, J=1.8, 1.2 Hz). 13C NMR (75 

MHz, CDCl3) δ 142.9, 138.6, 135.5, 133.0, 129.6, 126.5, 125.5, 124.2, 117.4, 115.9. 

 

2-Fluoro-N-methyl-N-(2-nitrophenyl)aniline (7b)  

 

To a solution of aniline 6b (0.122 g, 0.525 mmol) in acetone (2 mL) at rt was added 

freshly crushed KOH (0.130 g, 2.31 mmol). The reaction was heated to reflux and 



Me2SO4 (0.23 mL, 2.42 mmol) was added dropwise via syringe. The mixture was 

allowed to reflux for 1 h. The reaction was cooled to rt and 1 mL of 10 M NaOH was 

added to the solution. After 1 h the mixture was quenched with 2 mL H2O and extracted 

with 3 × 10 mL of 90/10 EA/MC. The organic layers were combined and dried over 

MgSO4. The solvent was removed under reduced pressure and the mixture was placed in 

an 80°C oil bath under vacuum to remove excess Me2SO4 providing fluoro nitrobenzene 

derivative 7b as a brown oil (0.122 g, 95% yield). 1H NMR (300 MHz, CDCl3) δ 7.73 

(1H, dd, J = 7.8, 1.7 Hz), 7.5 (1H, ddd, J = 8.2, 7.4, 1.7 Hz), 7.24 (1H, dd, J = 8.4, 1.2 

Hz), 7.09-6.94 (5H, m), 3.33 (3H, s); 13C NMR (75 MHz, CDCl3) δ 155.6 (d, J = 255 

Hz), 142.5, 138.9, 136.9, 126.9, 125.7, 125.4, 122.6, 120.8, 119.3, 117.2, 116.5, 41.1; IR 

(CDCl3) 1522 (NO2), 1501 (NO2) cm-1; HRMS (M+H)+ calcd for C13H11N2O2F 

247.0877, found 247.0871. 

 

N-Methyl-2-nitro-N-phenylaniline (7c) 

 

To a solution of aniline 6c (0.182 g, 1.0 mmol) in DMF (5 mL) at rt was added freshly 

crushed KOH (0.252 g, 4.5 mmol). After 10 min, MeI (0.20 mL, 3 mmol) was added to 

the stirring mixture dropwise via syringe. Stirring was continued at rt until TLC showed 

consumption of the aniline starting material. The reaction was then quenched with 25 mL 

deionized H2O and extracted with 3 × 30 mL of EA. The organic layers were combined 

and dried over MgSO4. The solvent was removed under reduced pressure and no further 

purification was needed to obtain the nor-halo N-methyl derivative 7c
24 as a brown oil. 

(0.194 g, 100% yield). 1H NMR (300 MHz, CDCl3) δ 7.83 (1H,dd,J=8.1, 1.5 Hz), 7.57 



(1H,dt, J=8.6, 1.8 Hz), 7.35 (1H, dd, J=8.1, 1.5 Hz), 7.27 (2H, dt, J=15.4, 1.5 Hz), 7.21 

(2H, dt, J=8.1, 1.5 Hz), 6.83 (1H, dt, J=7.2, 1.2 Hz), 6.72 (1H, dt, J=7.2, 1.2 Hz), 3.31 

(3H, s). 13C NMR (75 MHz, CDCl3) δ 147.8, 146.3, 142.2, 133.8, 129.2, 129.1, 125.6, 

125.0, 119.9, 115.6, 40.2. 

 

 

N
1
-(2-Fluorophenyl)-N

1
-methylbenzene-1,2-diamine (8b)  

 

CuCl (0.150 g, 1.50 mmol) was added to a stirring solution of fluoro nitrobenzene 

derivative 7b (0.122 g, 0.5 mmol) in dry MeOH (5.0 mL) at rt. KBH4 (0.270 g, 5.0 

mmol) was then added in portions.21 The reaction effervesced and a black precipitate 

formed upon each addition. Once all the KBH4 was added, the reaction continued to stir 

at rt until the solution became clear in color (2-4 h). The reaction was quenched with H2O 

and extracted with 3 x 10 mL 90/10 EA/MC. The organic layers were combined and 

dried over Na2SO4. The solvent was removed under vacuum to give the desired fluoro 

aniline 8b as a light brown oil (0.096 g, 89% yield). 1H NMR (300 MHz, CDCl3) δ 7.06-

6.85 (6H, m), 6.76 (1H,dd, J = 7.8, 1.2 Hz), 6.70 (1H, ddd, J = 8.8, 7.7, 1.4 Hz), 3.91 (2H, 

bs), 3.15 (3H, s); 13C NMR (75 MHz, CDCl3) δ 154.9 (d, J = 240 Hz), 142.1, 138.6, 

136.8, 126.1, 124.5 (d, J = 37 Hz), 121.7, 119.6, 118.8, 116.4, 116.1, 115.8, 34.0; IR 

(CDCl3) 3452 (NH2), 3351 (NH2), 1608 (C=C), 1500 (C=C) cm-1; HRMS MH+ calcd for 

C13H14N2F 217.1136, found 217.1133.  

 

N
1
-Methyl-N

1
-phenylbenzene-1,2-diamine (8c) 



 

CuCl (0.297 g, 3 mmol) was added to a stirring solution of the nor-halo N-methyl 

derivative 7c (0.208 g, 1.00 mmol) in dry MeOH (10 mL) at rt. KBH4 (0.540 g, 8.0 

mmol) was then added in portions.21 The reaction effervesced and a black precipitate 

formed upon each addition. Once all the KBH4 was added, stirring was continued at rt 

until the solution became clear in color and TLC showed consumption of 7c (2-4 h). The 

reaction was quenched with H2O and extracted with 3 x 10 mL 90/10 EA/MC. The 

organic layers were combined and dried over Na2SO4. The solvent was removed under 

vacuum to give the N-methyl diphenylamine derivative 8c
24 as a light brown oil (0.163 g, 

96% yield). 1H NMR (300 MHz, CDCl3) δ 7.19 (2H, dt, J=5.4, 1.8 Hz), 7.07 (1H, dt, 

J=7.8, 1.5 Hz), 7.03) 1H, dd, J=7.8, 1.5 Hz), 6.80-6.72 (3H, m), 6.66 (1H, s), 6.63 (1H, 

s), 3.77 (2H, bs), 3.19 (3H,s).  

 

N
1
-(2-Fluorophenyl)-N

1
-methyl-N

2
-(2-nitrophenyl)benzene-1,2-diamine (9b) 

 

The fluoroaniline derivative 8b (0.096 g, 0.44 mmol), o-iodonitrobenzene (0.132 g, 0.53 

mmol), Pd(dba)2 (0.013 g, 5% mol), BINAP (0.021 g, 7.5% mol), Cs2CO3 (0.215 g, 0.66 

mmol) and 2 mL of toluene were placed in a pressure tube. The mixture was purged with 

argon at rt for 15 min. The pressure tube was then sealed and placed in a pre-heated oil 

bath at 130°C for 24 h. When TLC showed consumption of 8b, the reaction mixture was 

filtered through a pad of SiO2 eluting with 90/10 EA/MC. The solvent was removed 

under reduced pressure and the resulting product was purified by column 

chromatography eluting with 1/99 Et2O/pet ether to afford the N,N’-diaryl 



phenylenediamine derivative 9b as a red oil (0.082 g, 55% yield). 1H NMR (300 MHz, 

CDCl3) δ 9.12 ( 1H, bs), 8.05 (1H, dd, J = 8.5, 1.7 Hz), 7.34-7.05 (6H, m), 6.86-6.83 (4H, 

m), 6.69 (1H, ddd, J = 8.5, 7.1, 1.4 Hz), 3.21 (3H, s); 13C NMR (75 MHz, CDCl3) δ 156.3 

(d, J = 240 Hz), 144.4, 142.3, 137.8, 135.1, 133.4, 132.5, 126.4, 125.7, 124.2, 123.7, 

123.5, 122.7, 122.4, 117.1, 116.4, 116.1, 115.8, 40.6; IR (CDCl3) 3343 (NH), 1615 

(C=C), 1593 (C=C), 1573 (C=C), 1501 (NO2) cm-1; HRMS MH+ calcd for C19H17N3O2F 

338.1299, found 338.1306.  

 

N
1
-Methyl-N

2
-(2-nitrophenyl)-N

1
-phenylbenzene-1,2-diamine (9c) 

 

Nor-halo aniline derivative 8c (0.163 g, 2.5 mmol), o-iodonitrobenzene (0.249 g, 2.50 

mmol), Pd(dba)2 (0.072 g, 5% mol), BINAP (0.112 g, 7.5% mol), Cs2CO3 (0.900 g, 2.75 

mmol) and 5 mL of toluene were placed in a pressure tube. The mixture was purged with 

argon at rt for 15 min. The pressure tube was then sealed and placed in a pre-heated oil 

bath at 120oC for 36 h. When TLC showed consumption of 8c, the reaction mixture was 

filtered through a pad of silica gel eluting with 90/10 EA/MC. The solvent was removed 

under reduced pressure and the resulting product was purified by column 

chromatography eluting with 10/90 EA/pet ether to afford the desired dimethyl derivative 

9c as a yellow gum (0.163 g, 70% yield). 1H NMR (300 MHz, CDCl3) δ 9.24 (1H, s), 

8.08 (1H, dd, J = 9.9, 1.8 Hz), 7.47-7.43 (1H, m), 7.34-7.20(5H, m), 7.11 (2H, dt, J = 6.4, 

1.0 Hz), 6.74 (2H,ddd, J = 7.5, 7.9, 1.2 Hz), 6.65 (1H, d, J = 1.0 Hz), 6.62 (1H, d, J = 1.0 

Hz), 3.23 (3H, s). 13C NMR (75 MHz, CDCl3) δ 148.6, 142.1, 141.8, 135.6, 135.12, 



133.9, 129.0, 127.8, 126.6, 126.0, 125.9, 123.7, 119.1, 117.7, 116.1, 115.1, 39.6. HRMS 

MH+ Calc for C19H18N3O2 320.1394, found 320.1394. 

 

N
1
-(2-Fluorophenyl)-N

1
,N

2
-dimethyl-N

2
-(2-nitrophenyl)benzene-1,2-diamine (10b) 

 

A solution of fluoro nitroaryl derivative 9b (0.082 g, 0.24 mmol) in 2 mL of DMF was 

added to KH (0.100 g, 0.72 mmol, freshly washed with pet ether). Upon addition, the 

solution changed color from orange to deep purple. The mixture was stirred at rt for 10 

min, then methyl iodide (1.0 mL, 1.2 mmol) was added dropwise via syringe. Stirring 

was continued until the solution became bright yellow in color (2 h). The reaction was 

then quenched with H2O and extracted with 3 × 10 mL 90/10 EA/CH2Cl2. The organic 

layers were combined and washed with 3 × 20 mL H2O, then brine. The organic layer 

was dried over Na2SO4, and the solvent was removed under reduced pressure to give the 

desired N1,N2-dimethyl derivative 10b as a yellow solid (0.082 g, 97% yield). 1H NMR 

(500 MHz, CDCl3) δ 7.62 (1H, dd, J = 8.2, 1.7 Hz), 7.34 ( 1H, ddd, J = 8.8, 7.4, 1.9 Hz), 

7.1-6.75 (10H, m), 3.22 (3H, s), 3.14 ( 3H, s); 13C NMR (125 MHz, CDCl3) δ 155.1 (d, J 

= 148 Hz), 143.0, 143.8, 140.9, 137.6, 132.9, 132.6 (d, J = 25 Hz), 125.9, 125.8, 125.6, 

125.1, 125.0, 124.4 (d, J = 2 Hz), 122.1 (d, J = 5 Hz), 121.7, 121.5 (d, J = 2 Hz), 120.0, 

116.5 (d, J = 12 Hz), 40.1, 39.2; IR (CDCl3) 1606 (C=C), 1591 (C=C), 1568 (C=C), 1522 

(NO2), 1500 (NO2) cm-1; HRMS (M+H)+ calcd for C20H19N3O2F 352.1456, found 

352.1463. 

 

N
1
,N

2
-Dimethyl-N

1
-(2-nitrophenyl)-N

2
-phenylbenzene-1,2-diamine (10c) 



 

To a solution of aniline 9c (0.163 g, 2.0 mmol) in DMF (10 mL) at rt was added freshly 

crushed KOH (0.504 g, 9 mmol). After 10 min, MeI (0.40 mL, 6 mmol) was added to the 

stirring mixture dropwise via syringe. Stirring was continued at rt until TLC showed 

consumption of the aniline starting material. The reaction was then quenched with 25 mL 

deionized water and extracted with 3 x 30 mL of EA. The organic layers were combined 

and dried over MgSO4. The solvent was removed under reduced pressure to provide the 

nor-halo N,N’-dimethyl derivative 10c as a brown oil. (0.170 g, 100% yield). 1H NMR 

(300 MHz, CDCl3) δ 7.59 (1H, dd, J=8.2, 1.6 Hz), 7.29-7.15 (3H, m), 7.11-7.04 (4H, m), 

6.92 (1H, dt, J=7.2, 1.2 Hz), 6.76 (1H, dd, J=8.2, 1.2 Hz), 6.72 (1H, dt, J=13.5, 1.2 Hz), 

6.34 (1H, d, J=3.2 Hz), 6.31 (1H, d, J=1.9 Hz), 3.27 (3H, s), 2.82 (3H,s). 13C NMR (75 

MHz, CDCl3) δ 147.8, 144.1, 143.5, 142.9, 140.1, 132.8, 129.0, 128.4, 126.5, 125.3, 

124.7, 124.4, 123.6, 121.5, 117.5, 113.9, 41.2, 38.1. HRMS MH+ calc for C20H20N3O2 

334.1550, found 334.1547. 

 

N
1
-Butyl-N

2
-(2-chlorophenyl)-N

2
-methyl-N

1
-(2-nitrophenyl)benzene-1,2-diamine 

(10d)  

 

A solution of chloro N1-methyl aniline derivative 9a
9
 (0.100 g, 0.28 mmol) in 2 mL of 

DMF was added to KH (0.112 g, 0.830 mmol). Upon addition, the solution went from 

orange to deep purple. The mixture was stirred at rt for 10 min. n-Butyl bromide (0.30 

mL, 2.8 mmol) was added dropwise via syringe. The reaction was warmed to 80°C and 

stirred until the solution returned to an orange color (3 h). The reaction was then 



quenched with H2O and extracted with 3 × 15 mL EA. The organic layers were combined 

and washed with 3 × 25 mL H2O, brine, then again with H2O to remove excess DMF. 

The organic layer was then dried over MgSO4, and the solvent was removed under 

reduced pressure. The crude product was purified by column chromatography using a 

gradient of EA/pet ether as the eluent to give the desired product 10d as a red oil (0.065 

g, 56%). 1H NMR (300 MHz, CDCl3) δ 7.57 (1H, dd, J = 8.0, 1.7 Hz), 7.40 (1H, ddd, J = 

8.7, 7.2, 1.6 Hz), 7.24 (1H, dd, J = 15.4, 1.4 Hz), 7.21 (1H, dd, J = 14.8, 1.7 Hz), 7.06 ( 

1H, dd, J = 8.1, 1.5 Hz), 7.02-6.87 (6H, m), 6.76 (1H, dd, J = 8.2, 1.7 Hz), 3.77 (2H, t, J = 

8.1 Hz), 3.31 (3H, s), 1.6 (2H, m), 1.29 (2H, m), 0.90 (3H, t, J = 7.4, 7.1 Hz); 13C NMR 

(75 MHz, CDCl3) δ 146.7, 132.8, 132.3, 131.0, 130.1, 128.4, 128.3, 127.8, 127.5, 126.3, 

125.9, 125.8, 124.1, 124.0, 123.7, 120.7, 120.6, 119.1, 49.8, 38.6, 29.0, 20.1, 14.0 IR 

(CDCl3) 2958 (C-H), 2929 (C-H), 2871 (C-H), 2817 (C-H), 1524 (NO2) cm-1; HRMS 

MH+ calcd for C23H25N3O2Cl 410.1630, found 410.1640. 

 

N
1
-Butyl-N

2
-(2-fluorophenyl)-N

2
-methyl-N

1
-(2-nitrophenyl)benzene-1,2-diamine 

(10e) 

 

A solution of the fluoro nitroaryl derivative 9b (0.102 g, 0.300 mmol) in 2 mL of DMF 

was added to KH (0.121 g, 0.910 mmol). Upon addition, the solution went from orange to 

deep purple. The mixture was stirred at rt for 10 min. n-Butyl bromide (0.32 mL, 3.0 

mmol) was added dropwise via syringe. The reaction was heated to 80°C and stirred until 

the solution returned to an orange color 3 h. The reaction was then quenched with H2O 

and extracted with 3 × 15 mL DCM. The organic layers were combined and washed with 



3 × 25 mL H2O, with brine and then with H2O again to remove excess DMF. The organic 

layer was then dried over MgSO4, and the solvent was removed under reduced pressure. 

The crude product was purified by column chromatography using a gradient of EA/PE as 

the eluent to produce the N1-methyl-N2-butyl derivative 10e as a red oil (0.063 g, 53%). 

1H NMR (300 MHz, CDCl3) δ 7.57 (1H, dd, J = 8.1, 1.5 Hz), 7.34 (1H, ddd, J = 8.7, 7.3, 

1.7 Hz), 7.11-6.77 (9H, m), 3.59 (2H, t, J = 15.9, 8.0 Hz), 3.06 (3H, s), 1.65-1.54 (2H, 

m), 1.30 (2H, s, J = 7.3 Hz), 0.88 (3H, t, J = 7.3 Hz); 13C NMR (75 MHz, CDCl3) δ 154.4 

(d, J = 255 Hz), 141.8, 141.0, 137.5, 132.6, 132.3, 132.0, 130.1, 129.3 (d, J = 30 Hz), 

128.3, 127.8, 125.8, 125.6, 125.1, 124.1, 122.6, 121.3, 120.8, 120.3, 116.3 (d, J = 22 Hz), 

52.5, 39.2, 29.7, 20.3, 13.9; HRMS MH+ calcd for C23H25N3O2F 394.1925, found 

394.1939. 

 

N
1
-Butyl-N

2
-methyl-N

1
-(2-nitrophenyl)-N

2
-phenylbenzene-1,2-diamine (10f) 

 

Nitro triaryl compound 9c (735 mg, 2.30 mmol) was placed in a round bottom flask and 

12 mL anhydrous DMF was added. To that solution was added powdered KOH (593 mg, 

10.6 mmol) and the reaction mixture stirred 10 min at RT. Then, n-butyl bromide (3.21 g, 

23.4 mmol) was added neat and the reaction mixture was heated in an 80°C oil bath for 

3h. The reaction mixture was then cooled to RT and diluted with 20 mL water and 

extracted 3× with diethyl ether. The organic extracts were combined, dried over MgSO4, 

filtered and the filtrate concentrated to dryness to give the N-butyl derivative 10f as a 

brown oil that was carried on directly without further purification. 

 



N
1
-Methyl-N

2
-(2-(methylamino)phenyl)-N

1
-phenylbenzene-1,2-diamine (15c) 

 

A round bottom flask was charged with 30% KH (187 mg, 1.4 mmol) and the solid was 

washed under nitrogen atmosphere with 3 × 5 mL portions of petroleum ether. The solid 

was then suspended in 1 mL anhydrous THF and stirred at RT while diisopropylamine 

(50.0 µL, 0.356 mmol) was added. Stirring at ambient temperature was continued for 10 

min before N,N’-dimethyl triaryl derivative 3c (30 mg, 0.10 mmol) was added as a 

solution in 1ml THF. The reaction mixture was then heated and maintained at reflux for 2 

h and then cooled to RT. The reaction mixture was diluted with water and extracted 2× 

with ethyl acetate. The organic extracts were combined, dried over MgSO4, filtered and 

the filtrate concentrated to dryness. The residue was dissolved in petroleum ether and 

purified by passing the solution through silica gel eluting with petroleum ether and then 

with 2% dichloromethane, 10% ether, 88% petroleum ether. The purified material was 

concentrated to dryness to give the product 15c as a clear gum (26.8 mg, 89%). 1H NMR 

(500 MHz, CDCl3) δ 7.23 (2H, t, J = 7.5 Hz), 7.13-7.07 (4H, m), 6.80 (2H, t, J = 7.5 Hz), 

6.80 (2H, t, J = 7.5 Hz), 6.71 (2H, t, J = 4 Hz), 6.65 (3H, t, J = 3.0 Hz), 5.51 (1H,s), 4.06 

(1H, bs), 3.29 (3H, s), 2.76 (3H, s). 13C NMR (125 MHz, CDCl3) δ 149.3, 146.0, 143.3, 

135.0, 129.4, 128.0, 127.6, 127.4, 126.8, 125.9, 119.5,1 18.4, 117.0, 114.1, 114.0, 110.5, 

39.4, 30.7. HRMS MH+ Calc for C20H22N3 304.1802, found 304.1802. 

 

N
1
-(2-(Butylamino)phenyl)-N

2
-methyl-N

2
-phenylbenzene-1,2-diamine (15f) 

 



A round bottom flask was charged with 30% KH (374 mg, 2.80 mmol) and the solid was 

washed with 3 portions of petroleum ether under nitrogen atmosphere. The solid was then 

suspended in 1 mL anhydrous THF and to that suspension was added distilled 

diisopropylamine (100 µL, 0.714 mmol). Stirring at ambient temperature was continued 

for 10 min before a solution of triaryl aniline 3f (69 mg, 0.2 mmol) in 3mL THF was 

added. The reaction mixture was then heated and maintained at reflux for 2h before 

cooling to RT. The reaction mixture was diluted with water and extracted 2X ethyl 

acetate. The organic extracts were combined, dried over MgSO4, filtered and the filtrate 

concentrated to dryness. The residue was purified using flash chromatography eluting 

with 1% dichloromethane, 5% ether, 94% petroleum ether to give the product 15f as a 

pale yellow gum (50.3 mg, 73%). 1H NMR (500 MHz, CDCl3) δ 7.22 (1H, d, J = 1.0 Hz), 

7.21 (1H, d, J = 1.0 Hz), 7.12-7.07 (4H, m), 6.79 (2H, dt, J = 7.0, 1.0 Hz), 6.72-6.64 (5H, 

m), 5.54 (1H, bs), 3.99 (1H, bs), 3.30 (3H, s), 3.04 (2H, t, J = 7.0 Hz), 1.46 (2H, q, J = 7.5 

Hz), 1.28 (2H, dq, J = 7.5, 1.0 Hz), 0.90 (3H, t, J = 7.5 Hz). 13C NMR (125 MHz, CDCl3) 

δ 144.9, 143.1, 134.6, 129.2, 127.7, 127.4, 127.0, 126.5, 125.8, 119.1, 118.1, 116.6, 

113.7, 113.7, 110.7, 43.4, 39.1, 31.6, 20.3, 13.9. HRMS MH+ calc for C23H28N3 

346.2278, found 346.2276. 
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