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traits in diverse cohorts implicates
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triglyceride levels
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4Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, United States of America

ABSTRACT
Plasma lipid levels are risk factors for cardiovascular disease, a leading cause of death
worldwide. While many studies have been conducted on lipid genetics, they mainly
focus on Europeans and thus their transferability to diverse populations is unclear.
We performed SNP- and gene-level genome-wide association studies (GWAS) of four
lipid traits in cohorts from Nigeria and the Philippines and compared them to the
results of larger, predominantly European meta-analyses. Two previously implicated
loci met genome-wide significance in our SNP-level GWAS in the Nigerian cohort,
rs34065661 in CETP associated with HDL cholesterol (P = 9.0×10−10) and rs1065853
upstream of APOE associated with LDL cholesterol (P = 6.6× 10−9). The top SNP
in the Filipino cohort associated with triglyceride levels (rs662799; P = 2.7× 10−16)
and has been previously implicated in other East Asian studies. While this SNP is
located directly upstream of well known APOA5, we show it may also be involved in
the regulation of BACE1 and SIDT2. Our gene-based association analysis, PrediXcan,
revealed decreased expression of BACE1 and decreased expression of SIDT2 in several
tissues, all driven by rs662799, significantly associate with increased triglyceride levels in
Filipinos (FDR < 0.1). In addition, our PrediXcan analysis implicated gene regulation
as themechanism underlying the associations ofmany other previously discovered lipid
loci. Our novel BACE1 and SIDT2 findings were confirmed using summary statistics
from the Global Lipids Genetic Consortium (GLGC) meta-GWAS.

Subjects Computational Biology, Genetics, Genomics
Keywords GWAS, PrediXcan, Lipids, Population genetics, Gene expression

INTRODUCTION
Though 99.9% of the genome between humans is identical, millions of variant sites exist
in different frequencies between populations, which leads to differences in gene expression
and other complex traits (Brown et al., 2016). Since most GWAS have been conducted
in European cohorts and most databases are built upon European data, the results may
not accurately extrapolate to other global populations, which could lead to disparity
within medicine (Bustamante, De La Vega & Burchard, 2011). This discrepancy is alarming
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considering urgent health issues worldwide, such as obesity and cardiovascular disease.
Lipid levels as a complex trait are increasingly concerning due to the growing global rate of
obesity caused by the increasing availability of high-fat foods and rapid urbanization (Ellulu
et al., 2014). Decreased high density lipoprotein (HDL) cholesterol levels and increased
low density lipoprotein (LDL) cholesterol and triglyceride (TRIG) levels are associated
with cardiovascular disease, the leading cause of death in the United States (Go et al.,
2013). Studies such as the Global Lipids Genetic Consortium (GLGC) acquire information
predominantly from Europeans, but lack information from other populations (Coram et
al., 2015; Willer et al., 2013). We aim to help remedy this issue by studying lipid traits in
diverse populations. We chose two populations with lipid phenotypes available to study
from the database of Genotypes and Phenotypes: Yoruba in Ibadan, Nigeria, (Yoruba) and
Filipino in Cebu, Philippines (Cebu) (Hall et al., 2006; Adair et al., 2011;Wu et al., 2013).

At the time of our study, one of the largest available cholesterol SNPmeta-analyses is the
GLGC (Willer et al., 2013). The cohort in that study consists of 188,577 European-ancestry
individuals and 7,898 non-European-ancestry individuals. One hundred fifty-seven loci
were found to be significantly associated with total cholesterol (CHOL), HDL, TRIG, or
LDL levels, and they conducted further gene set enrichment analysis with MAGENTA
(Ayellet et al., 2010). However, gene-level association studies that integrate transcriptome
data, like PrediXcan and TWAS, were not performed (Gamazon et al., 2015; Gusev et al.,
2016). Summary statistics from GLGC were used as a replication and base set in our
analyses of the Yoruba and Cebu cohorts.

Both the Cebu and Yoruba cohorts have been used in genetic studies of lipids previously
(Hall et al., 2006; Wu et al., 2013). These studies, both using the same data we study here,
focused on APOE, a well-known gene that is associated with lipid levels and Alzheimer’s
disease (Middelberg et al., 2011). Previously, SNP-level GWAS in the Cebu and other East
Asian cohorts attributed rs662799 as affecting function of APOA5, which is located 571
bases upstream (Wu et al., 2013; Lu et al., 2016; Spracklen et al., 2017). Beyond the APOE
candidate gene study, no full GWAS has been conducted in the Yoruba cohort.

In this study, we performed a genomewide association study (GWAS) in each population
using linear mixed modeling (Zhou & Stephens, 2012) and a conditional and joint analysis
(Yang et al., 2012). Subsequently, we calculated the genetic correlation for each lipid trait
between the populations at the SNP-level using bivariate REML analysis (Yang et al., 2011).
We also used cross-population empirical Bayes (XPEB) modeling to improve power to
detect SNPs with similar effects as previously found in larger European meta-analyses
(Coram et al., 2015). Finally, we used the transcriptome-informed method PrediXcan to
implicate genes in CHOL,HDL, LDL, and TRIG (Gamazon et al., 2015). Using our data and
those from previous European studies, we confirm previously known loci and implicate
new loci through the mechanism of gene expression regulation in Filipinos (Willer et al.,
2013). Our gene-based association study for triglyceride levels in the Cebu cohort suggests
that rs662799 may affect the expression of BACE1 and SIDT2 rather than that of APOA5.
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Table 1 Data analyzed.

Yoruba Cebu

Accession number phs000378.v1.p1 phs000523.v1.p1
Type of genotyping Whole genome genotyping Whole genome genotyping
Source platform Illumina, HumanOmni2.5 Affymetrix, Genomewide Human

SNP Array 5.0
Pre-QC SNPs 2,443,179 440,792
Pre-QC individuals 1,251 1,799
Post-QC SNPs 1,522,836 369,185
Post-QC individuals 1,017 1,765
Post-imputation GWAS SNPs 12,553,142 4,496,603

MATERIALS AND METHODS
Cohorts
We obtained data from both cohorts through the database of Genotypes and Phenotypes
with Institutional Review Board approval (Mailman et al., 2007) (Table 1). Yoruba consists
of 1,251 adults of Yoruba ethnicity age 73 to 103 years old, living in Ibadan, Nigeria in 2001,
who were originally studied in the Indianapolis Ibadan Epidemiological Study of Dementia
(Ogunniyi et al., 1997). The Cebu population consists of 1,799 Filipino mothers, who gave
birth betweenMay 1, 1983 and April 30, 1984 in themetropolitan area of Cebu, Philippines.
This cohort was originally studied in the Cebu Longitudinal Health and Nutrition Survey
(Adair et al., 2011), and at the time of data collection in 2005, the mothers were age 34
to 70. The Yoruba cohort was genotyped with the Illumina HumanOmni2.5 array and
the Cebu cohort was genotyped with the Affymetrix Genomewide Human SNP Array 5.0.
Both cohorts had CHOL, HDL, LDL, and TRIG levels measured after fasting (mg/dL)
and we subsequently rank normalized each trait (Aulchenko et al., 2007) (Table S2). See
https://github.com/aandaleon/px_chol for all scripts used in our analyses.

Summary statistics from the Global Lipids Genetic Consortium meta-analysis (Willer
et al., 2013) were downloaded from http://csg.sph.umich.edu/abecasis/public/lipids2013/.
Though the offspring of the Cebu cohort are included in the GLGC cohort, they form a
small portion of the dataset (1,771/188,577) and thus do not drive the signal for the entire
dataset.

Quality control
We performed quality control on the genotypes in these cohorts with PLINK following
a standard quality control pipeline (Turner et al., 2001; Purcell et al., 2007). Starting with
the dbGaP PLINK binary files, we removed SNPs with call rates < 99% in the individual
populations. Subsequently, SMARTPCA within Eigensoft was used to map individuals on
their first 10 principal components, and individuals with excess (±5 standard deviations)
from the population mean on the first two components were removed (Patterson, Price
& Reich, 2006) (Figs. S1 and S2). This was followed by removing individuals with excess
heterozygosity (±3 standard deviations), leaving the Yoruba cohort with 1,017 individuals
with genotype and lipid phenotype data, including 1,522,836 SNPs. The Cebu cohort
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retained 1,757 individuals with genotype and lipid phenotype data, including 369,185
SNPs. Both cohorts were mapped to hg19, which included performing a liftover in the
Cebu cohort from hg18 to hg19. We used an imputation preparation tool on the Cebu
cohort available at http://www.well.ox.ac.uk/~wrayner/tools/ that adjusted the data by
matching the strand, alleles, position, ref/alt assignments, and frequency differences to the
1000G reference panel.

Imputation
Yoruba SNPs were imputed on the Sanger Imputation Server with EAGLE2 and PBWT
using the African Genomes Reference Panel to improve genome coverage (Delaneau,
Marchini & Zagury, 2012; Durbin, 2014; McCarthy et al., 2016). We imputed the Cebu
SNPs using the Michigan Imputation Server with the 1000 Genomes phase 3 reference
panel and EAGLE2 (Auton et al., 2015; Das et al., 2016; Loh et al., 2016). The output from
the imputation was filtered to remove SNPs with R2 < 0.8 and minor allele frequency
<0.01, leaving 12,553,142 SNPs for analysis in Yoruba and 4,496,603 SNPs for analysis in
Cebu.

SNP-level genome-wide association study
The imputed genotype dosages were used in a genome-wide association study performed
with Genome-Wide Efficient MixedModel Analysis (GEMMA) software using a univariate
linear mixed model for each of the four phenotypes (Zhou & Stephens, 2012). SNPs with
P < 5×10−8 using the Wald test were considered genome-wide significant. The top SNPs
from the GEMMA analysis were plotted using LocusZoom to depict their proximity to
various genes (Pruim et al., 2011). For each phenotype tested, we also used GEMMA to
obtain the percent variance explained (PVE) by all the SNPs, i.e., the ‘‘chip heritability’’
(Zhou & Stephens, 2012). Conditional and joint analyses were then performed using
GCTA-COJO (Yang et al., 2011; Yang et al., 2012) to identify the lead SNP or SNPs at each
locus.

Comparison of populations
Both populations’ GEMMA results and summary statistics from GLGC (Willer et al., 2013)
were used in a cross-population empirical Bayes model (XPEB) to compute false discovery
rates for each SNP,with significance declared at FDR< 0.05. Thismodel improves efficiency
in GWAS by incorporating relevant results from larger (ex. GLGC) GWAS only when there
are similar effect sizes between populations (Coram et al., 2015). Sample sizes in the GLGC
results ranged from 50,000 to 187,365 depending on the SNP. Because XPEB assumes
similar sample size in the base population across SNPs, we ran XPEB using only the SNPs
with sample size between 80,000 and 95,000 in GLGC, which left us with 4,454,201 markers
for each phenotype. SNP-level comparisons between populations were performed using
Genome-wide Complex Trait Analysis (GCTA) software (Yang et al., 2011). We performed
a bivariate restricted maximum likelihood (REML) analysis to estimate the genetic
correlation between the Cebu and Yoruba cohorts for each phenotype (Lee et al., 2012).
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Table 2 The number of genes tested in PrediXcan using expression prediction models built in GTEx Project tissues.Genes tested had a cross-
validated prediction performance R2> 0.01.

Tissue model Tissue
abbreviation

Genes
tested

Tissue model Tissue
abbreviation

Genes
tested

Adipose—Subcutaneous ADPSBQ 7,254 Esophagus—Mucosa ESPMCS 7,710
Adipose—Visceral (Omentum) ADPVSC 4,447 Esophagus—Muscularis ESPMSL 6,338
Adrenal Gland ADRNLG 3,785 Heart—Atrial Appendage HRTAA 4,450
Artery—Aorta ARTAORT 5,943 Heart—Left Ventricle HRTLV 4,718
Artery—Coronary ARTCRN 3,141 Liver LIVER 2,502
Artery—Tibial ARTTBL 7,074 Lung LUNG 6,448
Brain—Anterior cingulate cortex (BA24) BRNACC 2,430 Muscle—Skeletal MSCLSK 6,520
Brain—Caudate (basal ganglia) BRNCDT 3,325 Nerve—Tibial NERVET 8,016
Brain—Cerebellar hemisphere BRNCHB 4,077 Ovary OVARY 2,673
Brain—Cerebellum BRNCHA 5,066 Pancreas PNCREAS 4,603
Brain—Cortex BRNCTXA 3,334 Pituitary PTTARY 3,094
Brain—Frontal Cortex (BA9) BRNCTXB 3,138 Prostate PRSTTE 2,491
Brain—Hippocampus BRNHPP 2,508 Skin—Not Sun Exposed (Suprapubic) SKINNS 5,471
Brain—Hypothalamus BRNHPT 2,290 Skin—Sun Exposed (Lower leg) SKINS 7,665
Brain—Nucleus accumbens (basal ganglia) BRNNCC 2,984 Small Intestine—Terminal Ileum SNTTRM 2,515
Brain—Putamen (basal ganglia) BRNPTM 2,621 Spleen SPLEEN 3,602
Breast—Mammary Tissue BREAST 4,473 Stomach STMACH 4,035
Cells—EBV-transformed lymphocytes LCL 3,441 Testis TESTIS 7,002
Cells—Transformed fibroblasts FIBRBLS 7,543 Thyroid THYROID 7,853
Colon—Sigmoid CLNSGM 3,619 Uterus UTERUS 2,058
Colon—Transverse CLNTRN 4,729 Vagina VAGINA 1,939
Esophagus—Gastroesophageal Junction ESPGEJ 3,457 Whole Blood WHLBLD 6,588

Gene-based association study
PrediXcan, the gene-level association study, was performed using models built with
cis-expression quantitative trait loci results from the Genotype-Tissue Expression
Project (GTEx) (Ardlie et al., 2015; Wheeler et al., 2016; Barbeira et al., 2017). GTEx
models (GTEx-V6p-HapMap-2016-09-08.tar.gz) were downloaded from PredictDB at
http://predictdb.hakyimlab.org/. Significance for each tissue was determined as FDR< 0.1
across all testable genes in all tissues (N = 198,970). In total, 44 GTEx models were
tested in both cohorts (Table 2). Predicted expression levels were obtained and tested for
association with the lipid phenotypes using PrediXcan software (Gamazon et al., 2015).
Significant genes were further plotted using ggplot to depict the predicted gene expression
against the observed phenotype (Wickham, Winston & RStudio, 2016). For the replication
cohort, GLGC, Summary-PrediXcan (Barbeira et al., 2017) was used because only summary
statistics were available.

Backward elimination modeling
Because our PrediXcan analysis showedmultiple genes associated with TRIG at the 11q23.3
locus in Cebu, we conducted a backward elimination analysis to determine the lead gene
or genes. We used the R lm function to build all multiple linear regression models. The
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Table 3 SNP-level GWAS results in the Yoruba (Y) and Cebu (C) populations. Shown are SNPs that reach genome-wide significance after condi-
tional and joint analysis (Yang et al., 2011; Yang et al., 2012).

Pop. Pheno. Chr. Position SNP ids Nearest
gene

Non-
effect
allele

Effect
allele

EAF Marginal
Beta

Marginal P Joint
Beta

Joint P

Y HDL 16 56995935 rs34065661 CETP C G 0.093 0.468 9.0×10−10 0.468 8.7×10−10

Y LDL 19 45413233 rs1065853 APOE G T 0.113 −0.405 6.6×10−9 −0.405 6.4×10−9

C TRIG 11 116663707 rs662799 APOA5 A G 0.245 0.342 2.7×10−16 0.342 2.5×10−18

C TRIG 2 27731212 rs3817588 GCKR T C 0.309 −0.202 2.6×10−7 −0.202 2.1×10−8

starting model included predicted expression terms for all genes with rs662799 or a linked
SNP (r2> 0.6) in its predictive model and the absolute value of the marginal t -statistic
greater than 3. The term with the highest P-value was eliminated and the model rerun until
only terms with P < 0.05 remained in the model.

RESULTS
Yoruba SNP-level GWAS
We sought to better understand the genetic architecture of lipid traits within and across
populations. In the Yoruba cohort from Ibadan, Nigeria, which included 1,017 individuals
and 12,553,142 SNPs, we conducted SNP-level GWAS for four lipid traits CHOL, HDL,
LDL, and TRIG. For each lipid trait, we used a univariate linear mixed model, which
accounts for relatedness within the populations (Zhou & Stephens, 2012). This was
especially important because one-third of the Yoruba cohort is related to at least one
other member (proportion identity by descent > 0.125). Across the four phenotypes, five
SNPs surpassed the genome-wide significance threshold of P < 5×10−8 at two loci (Fig. 1).
Conditional and joint analysis (Yang et al., 2011; Yang et al., 2012) did not reveal additional
associated SNPs at these two loci and the top hits are shown in Table 3. rs34065661 is on
chromosome 16q13 within an intron of CETP and rs1065853 is on chromosome 19q13.32
near APOE (Fig. 1). Both CETP and APOE are well-known and well-studied lipid genes
(Buyske et al., 2012; Rasmussen-Torvik et al., 2012).

Cebu SNP-level GWAS
We performed SNP-level GWAS for the same four lipid phenotypes in 1,765 individuals
from Cebu, Philippines, using 4.5 million imputed SNPs (see Methods). No SNPs met
genome-wide significance for the CHOL, HDL, and LDL phenotypes. However, 44 SNPs
were genome-wide significant (P < 5×10−8) for TRIG and all grouped on chromosome
11q23.3 (Fig. 2), a locus that includes various lipid genes such as APOA1 and APOA4. The
most significant SNP in this group is rs662799, with amarginal P = 2.7×10−16. It is located
571 base pairs upstream of APOA5, and has been previously associated with cholesterol
traits in Asian populations, possibly due to its high minor allele frequency within Asian
populations, with MAF for minor allele G at 0.245 in 1000 Genomes EAS compared to
0.083 in EUR (Marcus & Novembre, 2016) (Fig. 3). Conditional and joint analysis (Yang et
al., 2011; Yang et al., 2012) did not reveal additional associated SNPs at the 11q23.3 locus,
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Figure 1 LocusZoom plots of the most significant SNPs in (A) HDL (rs34065661) and (B) LDL
(rs1065853) in Yoruba. The color of each dot represents the SNP’s linkage disequilibrium r2 with the
labeled SNP in the 1000 Genomes African populations.

Full-size DOI: 10.7717/peerj.4314/fig-1
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Figure 2 The top Cebu GWAS signal, rs662799, which associated with TRIG levels is 571 bp upstream
of APOA5. The color of each dot represents the SNP’s linkage disequilibrium r2 with rs662799 in the 1000
Genomes East Asian populations.

Full-size DOI: 10.7717/peerj.4314/fig-2

but did reveal an additional genome-wide significant SNP on chromosome 2 in the GCKR
gene (Table 3). As a positive control, we compared the results from the previous Cebu
GWAS (Wu et al., 2013) and our GWAS and obtained largely the same significant results
(Table S1).

Integrating larger European study results into Yoruba and Cebu
SNP-level GWAS
The overlapping genetic architecture between populations for most traits is likely nonzero,
but not 100% either due to differences in allele frequencies, effect sizes, and linkage
disequilibrium patterns. Currently, European GWAS often have sample sizes 100 times
larger than non-European studies. However, studies in diverse populations are growing
(Spracklen et al., 2017; Wojcik et al., 2017). Traditional meta-analysis methods give the
most weight to the GWASwith the largest sample size. Therefore, meta-analyses combining
populations by traditional methods would be driven by the European results, drowning out
any additional signal. The cross-population empirical Bayes (XPEB) method is designed
to boost signal in a target (small, usually non-European) population whenever the base
(large, usually European) population shares genetic architecture, but does not generate
false positives when the signal is only present in the base population (Coram et al., 2015).

We used XPEB to improve power for mapping lipid traits in the Yoruba and Cebu
cohorts by integrating results from the base population GLGC, a large lipid meta-analysis
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Figure 3 Allele frequencies of TRIG associated SNP and driver of predicted expressionmodels in mul-
tiple genes, rs662799, in 1000 Genome populations. Figure generated with the Geography of Genetic
Variants Browser (Marcus & Novembre, 2016).

Full-size DOI: 10.7717/peerj.4314/fig-3

of European individuals (Willer et al., 2013). In XPEB, we input the SNPs and P-values
from both our target GWAS (Yoruba or Cebu) and the base European GWAS. The output
includes a population-wide estimate of the degree of genetic architecture overlap, κ1, and a
new false discovery rate (FDR) for each individual SNP in common between the base and
target GWAS.

In the Yoruba population, we found associated loci (FDR < 0.05) using XPEB for
the CHOL, HDL, and LDL phenotypes (Table S3). These results reflect the estimated
architecture overlap with GLGC, where κ1 was 0.65 for CHOL, 0.51 for HDL, 0.9 for
LDL, and 0 for TRIG. The CETP locus, which was also significant in the Yoruba-only
HDL GWAS was the most significant result in the XPEB analysis. In addition, several
other previously implicated genes were significant in the XPEB analysis, including LDLR
for CHOL and PCSK9, LPA, and SMARCA4 for LDL (Wu et al., 2013; Willer et al., 2013;
Surakka et al., 2014).

In Cebu, CHOL, TRIG, and LDL each had κ1= 0.90, while HDL had κ1= 0.64. Tens
or hundreds of SNPs had FDR < 0.05 for each phenotype, including those found in the
Cebu-only GWAS (Table 3). Additional significant SNPs located within or near other
well-known, previously studied lipid genes included CETP and LIPC in HDL; PLCG1 and
TOP1 in LDL; and APOA5 and BUD13 in TRIG (Asselbergs et al., 2012; Spracklen et al.,
2017;Wu et al., 2013; Zhou et al., 2013; Kim et al., 2011) (Table S4).
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Table 4 Percent variance explained (PVE) and standard error as estimated in GEMMA for each trait
compared.

Yoruba
(n= 1,017)

Cebu
(n= 1,765)

European
(n= 5,123)a

CHOL 0.040± 0.061 0.067± 0.093 0.29± 0.043
HDL 0.013± 0.037 0.217± 0.091 0.34± 0.043
TRIG 0.049± 0.110 0.140± 0.103 0.38± 0.041
LDL 0.029± 0.046 0± 0.096 0.19± 0.047

Notes.
aSabatti et al. (2009) and Zhou (2017).

Heritability
As part of our GWAS study, we also estimated the percent variance explained (PVE) by
all SNPs tested, i.e., ‘‘chip heritability’’, using GEMMA and conducted further genetic
correlation analysis using GCTA (Yang et al., 2011; Zhou & Stephens, 2012). By estimating
heritability, we can help determine which portion of our phenotype is not explained
through our analyses and is influenced by other factors, such as diet.

In the Yoruba cohort, no PVE estimate was significantly different than zero. All PVE
estimates for Yoruba were low when compared to variance component studies in a Finnish
cohort of 5,123 individuals (Sabatti et al., 2009; Zhou, 2017). Unlike in Yoruba, PVE
estimates for two phenotypes, HDL and TRIG, within the Cebu were significantly different
than zero and closer to the Finnish estimates (Table 4).

We attempted to estimate the genetic correlation between all SNPs in the Cebu and
Yoruba populations using bivariate REML analysis as implemented in GCTA (Lee et al.,
2012). The only phenotype that converged was TRIG, with an estimated correlation of
0.644 ± 0.65, indicating there is shared architecture between the populations. However,
the small sample sizes available in our study do not offer enough power to reliably estimate
heritability and genetic correlation as indicated by the large standard errors.

Yoruba gene-based association study
While many GWAS have been performed on lipid traits, most of the significant SNPs
found fall outside of protein coding regions and thus their mechanisms of action are not
immediately apparent. PrediXcan is a gene-level association method that incorporates
functional data on potential regulatory elements to provide mechanistic directionality
for association of a gene with a phenotype (Gamazon et al., 2015). PrediXcan uses gene
expression prediction models built from genome-transcriptome datasets such as the
Genotype-Tissue Expression (GTEx) Project to predict gene expression from genotype and
then tests the predicted expression levels for association with with trait of interest (Ardlie
et al., 2015). We applied PrediXcan to our SNP-level GWAS results using models built in
44 GTEx tissues (Barbeira et al., 2017) (Table 2).

For each tissue, we declared associations significant if FDR < 0.1, across all genes and
tissues tested, to adjust for multiple testing. Of the four phenotypes for this cohort and 44
tissues with models available, one gene, PAX6, surpassed the significance threshold. PAX6
was not significant in Cebu or GLGC (Table 5). In humans, PAX6 has been associated with
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Table 5 Top genes (FDR< 0.1) in Yoruba and Cebu found using PrediXcan. All results are for the TRIG phenotype. Results from both popula-
tions and the Global Lipids Genetic Consortium (GLGC) are shown. Six associations discovered in Cebu replicated in the GLGC.

Chr. Tissue Gene
name

Beta
(Yoruba)

P
(Yoruba)

FDR
(Yoruba)

Beta
(Cebu)

P (Cebu) FDR
(Cebu)

Beta
(GLGC)

P (GLGC)

2p23.3 THYROID FNDC4 0.05 0.50 0.99 −0.24 1.0×10−6 0.037 −0.11 7.7×10−83

11p13 ARTAORT PAX6 −0.74 4.8×10−7 0.093 0.16 0.20 0.98 0 0.91
11q23.3 ESPMCS BACE1 0.22 0.33 0.99 −3.30 1.7×10−15 3.0×10−10 −0.17 7.3×10−19

11q23.3 CLNSGM APOA4 0.80 0.55 0.99 −11.6 6.5×10−12 5.9×10−7 −1.95 1.7×10−39

11q23.3 BRNHPP APOA1 0.015 0.88 0.99 0.50 3.2×10−7 0.019 0 0.31
11q23.3 HRTLV SIDT2 0.24 0.21 0.98 0.90 8.1×10−7 0.037 0.16 9.3×10−29

11q23.3 THYROID SIDT2 0.10 0.61 0.99 −0.55 1.7×10−6 0.050 −0.55 1.1×10−102

11q23.3 WHLBLD BACE1 0.00 0.99 0.99 −0.79 3.4×10−6 0.087 −0.28 4.0×10−28

insulin production (Ahlqvist et al., 2012). Currently, there is little known about PAX6 and
its potential association with lipid or cardiovascular phenotypes.

Cebu gene-based association study
When we applied PrediXcan to the Cebu cohort, seven genes were found significant
(Table 5). A few of these genes, such as FNDC4, APOA1 and APOA4, are well-documented
in lipid traits, while genes such as SIDT2 have been previously implicated in Asians
(Teslovich et al., 2010; Kim et al., 2011; Willer et al., 2013; Wu et al., 2013; Zhou et al., 2013;
Gombojav et al., 2015; Lu et al., 2016; Spracklen et al., 2017). The association of BACE1with
TRIG was highly significant (FDR= 3.02×10−10, Fig. 4). The predicted increase in BACE1
expression and decrease in TRIG levels is an association not previously seen in humans,
but has been observed in mice (Meakin et al., 2012; Baek et al., 2016) (Fig. 5). Additionally,
SIDT2 has a similar effect across many tissue models, indicating its potential importance in
regulating TRIG levels as well (Figs. 5 and 6). Both BACE1 and SIDT2 have increased gene
expression associated with decreased TRIG levels in most tissues and share many SNPs in
most of their prediction models.

We conducted a backward elimination analysis to determine the lead gene or genes
at the 11q23.3 locus. The starting model include all gene-tissue combinations in Fig. 6,
which includes all genes with rs662799 or a linked SNP (r2> 0.6) in its predictive model
and |t |> 3, where t is the association test statistic. The most significant gene in the final
model was ESPMCS-BACE1 (P = 1×10−10), with residual effects present (P < 0.05) for
LCL-SIDT2, MSCLSK-APOA1, TESTIS-CEP164, and WHLBLD-BACE1 (Table 6).

Comparing populations
In a direct comparison of the significant genes obtained through PrediXcan for the Cebu
and Yoruba cohorts, there is no gene that shares significance (FDR < 0.10) between
populations (Table 5). There was no overlap in significant genes between Yoruba and
GLGC, but there was overlap in significant genes between Cebu and GLGC in FNDC4,
SIDT2, APOA4, and BACE1 with the same effect direction for all genes (Willer et al., 2013)
(Table 5).
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Figure 4 PrediXcan results for the Cebu TRIG phenotype using gene expressionmodels built in 44
GTEx tissues. (A) Manhattan plot:−log10 P-values are plotted against the respective chromosomal posi-
tion of each gene across all tissues. (B) QQ plot of observed versus expected−log10 P-values for each gene
across all tissues.

Full-size DOI: 10.7717/peerj.4314/fig-4
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Figure 5 TRIG levels vs. predicted expression of two genes in Cebu. (A) BACE1 predicted expression
using the GTEx ESPMCS prediction model. (B) SIDT2 predicted expression using the GTEx LCL predic-
tion model.
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Table 6 Gene-tissue combinations from Fig. 6 with P < 0.05 in a backwards-elimination linear model
including the TRIG phenotype and predicted gene expression terms.

Tissue Gene Estimate Std. Error t value P

ESPMCS BACE1 −3.7 0.57 −6.4 1.7×10−10

LCL SIDT2 −0.20 0.06 −3.2 0.001
MSCLSK APOA1 1.5 0.52 2.9 0.003
TESTIS CEP164 −0.17 0.08 −2.2 0.025
WHLBLD BACE1 0.83 0.29 2.9 0.003

DISCUSSION
Using genome-wide genotypes and lipid levels obtained in two diverse populations from
Ibadan, Nigeria and Cebu, Philippines, we performed multiple genome-wide analyses with
the goal of better understanding the underlying genetic architecture of cholesterol traits in
both populations.

Top GWAS SNPs have been previously shown to associate with lipid
traits
Within the Yoruba portion of our study, rs34065661 and rs17231520, SNPs close to or
within CETP, were significant (Fig. 1A). CETP, cholesteryl ester transfer protein, is a
well-known lipid gene previously implicated in lipid studies in African populations (Buyske
et al., 2012; Elbers et al., 2012). CETP is involved in the transfer of cholesterol from HDL to
other lipoproteins, and is a commongenetic target for statins and other cholesterol-lowering
drugs (Barter et al., 2003). It also has strong association with Alzheimer’s disease and other
neurodegenerative diseases (Xiao et al., 2012). Additional significant SNPs in Yoruba,
rs1065853, rs7412, and rs75627662, are located near or within APOE (Fig. 1B). APOE,
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apolipoprotein E, is another well-known cholesterol gene previously implicated in other
lipid studies (Rasmussen-Torvik et al., 2012; Surakka et al., 2014; Mahley, 2016; Spracklen
et al., 2017; Zhu et al., 2017). It acts as a lipid transport protein in high association with
LDL receptors and is also strongly associated with neurodegenerative diseases (Moriarty
et al., 2017).

The most significant SNP within the Cebu GWAS portion of our study is rs662799,
at P = 2.7 ×10−16. It has been previously associated with cholesterol traits in Asian
populations (Lu et al., 2016; Spracklen et al., 2017) (Fig. 2). APOA5 is a well-documented
gene associated with triglyceride levels (Go et al., 2013). Other genes within this linkage
group include ZPR1 and BUD13, which have both been previously implicated with
triglyceride levels in East Asians as well, possibly due to its higher minor allele frequency
in those populations (Kim et al., 2011; Lin et al., 2016) (Fig. 3).

The mechanism underlying the association of rs662799 with TRIG
levels may include long distance regulation of BACE1 and SIDT2
In our PrediXcan analysis, BACE1 reached significance (FDR = 3.0× 10−10) in both
the Cebu and GLGC replication cohorts, but it was not significant in Yoruba (Fig. 4).
Currently, in humans, BACE1 is known to increase risk of Alzheimer’s disease with
increased expression (Cole & Vassar, 2007). While not recognized as significant in the
GLGC SNP meta-analysis (Willer et al., 2013), our application of PrediXcan to the GLGC
GWAS results verified that theBACE1 associationwith TRIG is significant (P = 7.3×10−19)
(Table 5).

This gene has been studied in terms of Alzheimer’s disease and weight gain in mice. In
our results, we found increased predicted gene expression for BACE1 to be associated with
lower TRIG levels (Table 5). For BACE1 knockout mice, there was no significant difference
in triglyceride levels versus wild-type mice, but they did have lower average body weight
(Meakin et al., 2012). Additionally, in mice, higher triglyceride levels were found to reduce
BACE1 expression in a study concerning Alzheimer’s treatment (Baek et al., 2016). This
latter result is consistent with our finding that increased BACE1 expression is associated
with lower triglyceride levels (Fig. 5).

The SNP rs662799 is 571 bases upstream of the gene with which it is typically associated,
APOA5 (Fig. 2).APOA5was well-predicted in only one tissue, SNTTRM, and the prediction
was not driven by SNPs linked to rs662799. Thus, APOA5 may not affect TRIG levels
through the mechanism of variation in gene expression regulation. Even though rs662799
is located 493kb downstream of BACE1, it has the largest effect size, i.e., it is the driver
SNP, in the predictive model for BACE1 in ESPMCS. SNPs closer to BACE1 are not linked
to rs662799 (Fig. 2). The similar effects and significance of BACE1 in mouse studies, the
Cebu cohort analysis, and GLGC PrediXcan results indicate the increased expression of
BACE1 is associated with decreased TRIG levels and that variation in the regulation of
BACE1 may contribute to differences in TRIG levels.

Another significant gene in our gene-based association study of TRIG in Cebu is SIDT2,
which is 386 kb downstream of rs662799. Here, the effects of many SNPs, including some
linked to rs662799, combine in the prediction model for SIDT2 gene expression, with
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no dominant driver SNP, as demonstrated by the lack of discernible clusters in the plot
of TRIG levels versus predicted expression (Fig. 5). Additionally, SIDT2 exhibits more
consistent effect sizes over more tissues than BACE1 (Fig. 6), in which predicted expression
is associated with higher TRIG levels (Fig. 5).

SIDT2, along with others nearby on the same chromosome, has been previously
implicated in East Asian GWAS (Gombojav et al., 2015). In our results, we found increased
predicted gene expression for SIDT2 to be associated with lower TRIG levels in most
models. SIDT2 has been associated with glucose and lipid metabolism in mice, as SIDT2
knockout mice have significantly higher serum levels of TRIG than wild-type mice (Gao
et al., 2016). Since increased gene expression is associated with lower TRIG levels in our
cohort for a majority of models, our models concur with the association present within
mice. Significance of SIDT2 for TRIG in LCL was also replicated in GLGC at P = 1.1
×10−102 (Table 5). The similar effects and significance of SIDT2 in knockout mice studies,
the Cebu cohort analysis, and GLGC PrediXcan results indicate that increased expression
of SIDT2 is associated with decreased TRIG levels. Therefore, variation in the regulation
of SIDT2 may contribute to differences in TRIG levels.

In an attempt to disentangle themultiple genes associatedwithTRIG at the 11q23.3 locus,
we performed backwards elimination modeling. This analysis showed that BACE1 has the
strongest effect at the locus, with SIDT2, APOA1, and CEP164 contributing smaller effects.

rs662799 has a greater impact in East Asian populations
The significant SNPs in the GWAS portion of our study have been previously associated
with lipid traits, but these prior studies did not conduct a robust gene-based association
modeling (Hall et al., 2006; Buyske et al., 2012; Rasmussen-Torvik et al., 2012; Wu et al.,
2013). In our PrediXcan analysis, we implicated a new gene (PAX6) in Yoruba and
additional genes at the chromosome 11 locus in Cebu, including genes with predictive
SNPs located hundreds of thousands of base pairs away from their transcription start sites.

rs662799 in particular is a significant SNP in cholesterol GWAS of East Asians (Teslovich
et al., 2010; Wu et al., 2013; Lin et al., 2016; Lu et al., 2016; Spracklen et al., 2017), with its
minor allele frequency as high as 0.37 in the 1000 Genomes Japanese (JPT) population,
and it is also the top SNP, with a minor allele frequency of 0.245, in our own TRIG
GWAS analysis for Cebu (Table 3). rs662799 has a low minor frequency in European and
African populations, indicating that even if effects are similar, it has a lower allelic impact
in European and African ancestry populations (Fig. 3). In Asian populations, therefore,
rs662799 has a more significant genetic impact (Brown et al., 2016) due to its higher MAF,
causing the difference in phenotypic effects. This demonstrates how prediction models
may vary in utility across populations.

CONCLUSIONS
In this study, we use a transcriptome-informed approach to implicate new genes in lipid
traits. Limitations arose from the small sample sizes in desired populations and the lack
of population-specific transcriptome prediction models. Other lipid trait GWAS, such as
the GLGC, included over 180,000 individuals of European ancestry (Willer et al., 2013),
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while each population in this study had less than 2,000 individuals. Current GTEx models
are based on an 85% European-American and 15% African-American population, which
cannot be fully extrapolated to diverse populations. While Yoruba in Ibadan, Nigeria is a
HapMap population, and specific reference panels exist for African populations, there is a
lack of publicly available data for southeast Asian and Pacific Islander populations, which
is an issue due to the rarer variants in more isolated island populations (Loh et al., 2016).
For example, the reference panel used for imputation, 1000 Genomes Phase 3, contains
only Vietnamese, Chinese, and Japanese genotypes for East Asian populations (Auton et al.,
2015). Without data collection and proper models for non-European populations, there
is less potential for accurate implementation of precision medicine. To fully characterize
the impact of genetic variation between populations, larger studies in non-European
populations are needed.
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