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Abstract 19 

Viruses are the most abundant component of the human microbiota. Recent evidence has uncovered a 20 

rich diversity of viruses within the female bladder, including both bacteriophages and eukaryotic viruses. 21 

We conducted whole genome sequencing of the bladder microbiome of 30 women: 10 asymptomatic 22 

“healthy” women and 20 women with overactive bladder. These metagenomes include sequences 23 

representative of human, bacterial, and viral DNA. This analysis, however, focused specifically on viral 24 

sequences. Using the bioinformatic tool virMine, we discovered sequence fragments, as well as 25 

complete genomes, of bacteriophages and the eukaryotic virus JC polyomavirus. The method employed 26 

here is a critical proof-of-concept: the genomes of viral populations within the low biomass bladder 27 

microbiota can be reconstructed through whole genome sequencing of the entire microbial community. 28 

 29 

 30 

The old paradigm that the bladder is sterile results from the use of standard urine culture-dependent 31 

methods that are optimized for E. coli (1,2). However, there is definitive evidence that communities of 32 

bacteria exist within the bladder (3-6), as well as for associations between these bladder microbiota and 33 

urinary symptom levels, treatment response, and UTI risk (7-15). Furthermore, the bladder microbiota 34 

of individuals both with and without urinary symptoms includes viral species. The viruses isolated from 35 

urine include several viruses that infect eukaryotes (16-22), as well as those that infect bacteria 36 

(bacteriophages [phages]) (23-25). Metagenomic sequencing of the urinary virome, which detects 37 

eukaryotic viruses and phages in the lytic cycle, revealed an abundance of phages (26,27). 38 

Because the bladder microbiota exist at a substantially lower biomass (1,5,6) than many other human 39 

niches (e.g. the gut (28)), sequencing the bladder’s virome presents unique technical difficulties. From 40 

the gut, the viral biomass can be separated and the extracted DNA can be sequenced directly (29,30). In 41 

contrast, previous urine virome metagenomic studies have relied on DNA amplification prior to 42 

sequencing to increase DNA concentrations (26). These amplification methods, however, have well 43 

documented biases (31). As such, the complete diversity of the virome may not be captured. 44 

Alternatively, we hypothesized that the challenges of sequencing the bladder virome could be overcome 45 

bioinformatically. Bioinformatic approaches have successfully identified complete viral genomes from 46 
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bacterial metagenomes (e.g. 32). Moreover, complete viral genomes have been reconstructed from viral 47 

metagenomes containing significant quantities of non-viral (bacterial and eukaryotic) DNA (e.g. 33). 48 

Thus, we conducted whole genome sequencing of the bladder microbiota and examined the sequence 49 

data specifically for viral sequences. This approach has the potential to capture both lytic and lysogenic 50 

phage sequences present in the community. 51 

In a previously published study (10), urine was collected aseptically via transurethral catheter from 10 52 

women without urinary symptoms (control) and 20 women with reported overactive bladder symptoms 53 

(OAB) and stored with the DNA preservative AssayAssure (Sierra Molecular) at -80°C. In the current 54 

study, 5 ml of each urine sample was thawed and the DNA was extracted, as described previously 55 

(10,34). Briefly, the urine was incubated in a lysis solution containing mutanolysin and lysozyme and the 56 

DNA extracted from the sample using the DNeasy blood and tissue kit (Qiagen, Valencia, CA), according 57 

to the manufacturer’s instructions. The Illumina Nextera kit was used for whole genome library 58 

preparation with fragment sizes of 200-300 bp. Sequencing was conducted on the Illumina HiSeq 2500 59 

platform, producing paired-end 100bp x 2 reads. Human contaminating reads were filtered out by 60 

mapping to the Human reference genome (hg19) with bowtie2 (35). Supplementary Table 1 lists the 61 

number of raw reads and filtered reads for each patient sample sequenced. Most reads produced 62 

represent bacterial and viral species; on average, only 5.3% of the reads mapped to the human 63 

reference genome sequence. Raw sequencing data are available from NCBI’s SRA database, BioProject 64 

Accession # PRJEB8104. The accession numbers for each sample are listed in Supplementary Table 1. 65 

Supplemental Figure S1 outlines the analytic process. Each individual metagenome data set was 66 

assembled separately. Raw reads were first trimmed for quality using the tool sickle (36) and then 67 

assembled by SPAdes (v3.10.1) with the “meta” (metagenomic) option (37). There was only a weak 68 

correlation between the number of reads produced for a given sample and the number of contigs 69 

assembled from those reads (r=0.23). Next, the virMine (38) tool was used to classify the contigs 70 

produced. Briefly, virMine first filtered out contigs less than 1000 bp in length; this length is a user-71 

defined parameter and was selected to eliminate partial gene sequences and repetitive elements from 72 

downstream analyses. For the remaining contigs, open reading frames were predicted, translated, and 73 

compared to virMine’s bacterial and viral protein sequence databases (RefSeq protein sequences). 74 

These comparisons enabled us to classify each contig as bacterial, viral, or unknown (exhibiting no 75 

similarity to bacterial or viral). Genome assembly and virMine statistics are listed in Supplementary 76 
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Table 1. The microbiomes were dominated by bacterial contigs (90% on average). The contigs classified 77 

as “unknown” were queried via megablast to the NCBI nr/nt database finding that the overwhelming 78 

majority were human in origin (results not shown). Thus, here we will focus on the 252 contigs from the 79 

30 metagenomes that were predicted to be viral. 80 

Twenty-seven of the 30 bladder metagenomes examined included contigs predicted to be viral. To 81 

further evaluate these contigs, each was queried against the nr/nt database via the NCBI web interface 82 

using the megablast algorithm (Supplementary Table 2). In comparing the contigs to this database, eight 83 

samples were identified as containing sequences of human origin. The virMine software characterized 84 

these contigs as viral, as they did not resemble bacterial sequences and had moderate sequence 85 

similarity to a sequence in the viral database. The contigs within another seven samples were uniformly 86 

short (~1 kbp) and only exhibited sequence similarity to annotated transposases. Transposases, along 87 

with integrases, can be encoded by a phage to allow that phage to enter its lysogenic (latent) life cycle 88 

by inserting itself into the bacterial genome (the inserted phage genome is now called the “prophage”) 89 

(39). Thus, while these contigs suggest the presence of lysogenic phages within the bladder microbiota, 90 

they do not provide insight into the phage species. The remaining 12 metagenomes, however, had 91 

recognizable phage and/or eukaryotic virus sequences. 92 

Two patient samples – OAB045 and OAB052 – contained numerous contigs with homologies to 93 

annotated phage genes, including genes annotated as encoding tail proteins, phage tail tape measure 94 

proteins, phage DNA packaging proteins, phage portal proteins, terminases, and capsid proteins. 95 

Furthermore, these contigs represented phage genome fragments, including several coding regions. For 96 

instance, in the OAB052 sample, a 4898 bp contig was identified, containing annotated regions for a 97 

phage terminase, phage portal protein, endopeptidase Clp, major capsid protein, phage DNA packaging 98 

protein, and two hypothetical proteins. This contig is homologous to a region within the 18.3 kbp 99 

putative prophage (determined via PHAST (40)) in the Gardnerella vaginalis HMP9231 genome. As such, 100 

it is unlikely that the contig identified here represents a complete, intact phage genome. Nevertheless, it 101 

may represent a Gardnerella prophage, which we previously showed to be prevalent within Gardnerella 102 

strains of the bladder (41). We next examined the contigs that were classified as bacterial by the virMine 103 

tool. Blast queries found significant homology (e-score=0) between the larger contigs within the OAB052 104 

metagenome and G. vaginalis genome records in GenBank. Thus, we hypothesize that the larger viral 105 

contigs detected within the OAB052 patient sample represent lysogenic phages. While here we have 106 
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presented the analysis of just one of these contigs, similar observations were made: viral sequences 107 

exhibited homologies to annotated prophages within bacterial species that were also found within the 108 

sample’s metagenome. 109 

Larger phage sequences were identified in three patient samples – OAB010, OAB018, and OAB039. 110 

Table 1 lists the contigs identified in each of these samples. While many of these larger phage sequences 111 

include novel genic content (i.e. low or no sequence homology to records in GenBank), each exhibited 112 

some homology to recognized prophage sequences within bacterial genomes (per PHAST (40)). The 113 

most similar phage species are listed in Table 1. Based upon the size of the assembled genome and the 114 

presence of “hallmark” viral genes (42), we were able to confidently predict the completeness of several 115 

of these assembled sequences. The phage sequences listed in Table 1 were then annotated using the 116 

RAST server (43) (Supplementary Table 3). The genome map for the putative complete phage genome 117 

sequence within the OAB018 patient sample is shown in Fig. 1 (generated using Geneious, Auckland, 118 

NZ). Phage sequences identified here are not necessarily unique to the microbiota of the urinary tract 119 

(Supplementary Table 2). For instance, the sequence of contig 28 from the OAB010 sample is 99% 120 

identical to a prophage found within a Streptococcus agalactiae strain isolated from a patient’s blood 121 

sample (44), as well as from a strain isolated from a diseased tilapia (GenBank record CP016501). These 122 

larger sequences are informative both of the bioinformatic approach employed here and the samples 123 

themselves. First, complete (or near-complete) phage genomes can be reconstructed by sequencing 124 

bladder microbiome samples. Second, because we sequenced the bacterial and viral fractions together, 125 

it is possible to associate phages and their bacterial host. Last, we found evidence of related phages 126 

present in the bladder microbiota of different patients. For instance, the OAB018 and OAB039 patient 127 

samples both contain phage sequences similar to the Lactobacillus-infecting phages PLE2 and phi adh. 128 

These phages were first detected as prophages within the genomes of the probiotic strains L. casei BL23 129 

(45) and L. gasseri ADH, respectively. Further sequencing of the bladder microbiota is necessary to 130 

ascertain if these phage families are common constituents of the bladder virome. 131 

Five patient samples, OAB021, OAB026, OAB032, OAB042, and OAB045, contained recognizable 132 

complete genomes for the human polyomavirus JC (JCV). Furthermore, a partial genome sequence, 1023 133 

bp, was retrieved from patient sample OAB025. JCV is a circular double-stranded DNA virus (∼5130 bp) 134 

and naturally occurs in the urine of healthy individuals. A previous study found that up to 80% of adults 135 

excreted JCV in their urine (46). Furthermore, JCV quasispecies have been detected in healthy 136 
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individuals (47). JCV, however, was not detected within any of the 10 asymptomatic “healthy” 137 

individuals (controls) included in this study. While JCV infection has been associated with progressive 138 

multifocal leukoencephalopathy, a fatal neurological disorder (48), JCV within individuals with 139 

overactive bladder has yet to be studied. The prevalence of JCV within these five samples varied. Raw 140 

reads were mapped to the RefSeq for the species (GenBank Accession: NC_001699) using Bowtie 2 (v. 141 

2.2.6) (35) revealing coverage of the JCV genome ranging from 12x to 726.9x. Coverage correlated with 142 

the % reads in the sample corresponding to the JCV genome (r2=0.9570). JCV was most abundant in 143 

patient samples OAB042 and OAB045, in which 4.4% and 3.2%, respectively, of the total reads 144 

generated were classified as JCV. 145 

Sample Contig # Length 
(kbp) 

Coverage Bacterial Blast Homology 
(sequence ID/ query coverage) 

Most Similar Phage 
(length) 

OAB010 
28 17.5 16.56 S. agalactiae (99%/ 100%) phiCT453B (36.7 kbp) 
31 8.1 11.61 S. agalactiae (95%/ 99%) phiCT453B (36.7 kbp) 
39 3.4 14.21 S. agalactiae (100%/ 100%) phiARI0923 (33.5 kbp) 

OAB018 

28 37.1 9.54 L. helveticus (87%/ 71%) phig1e (42.3 kbp) 
49 26.8 10.89 L. helveticus (85%/ 15%) phig1e (42.3 kbp) 
66 17.8 7.30 L. allii (72%/ 3%) PLE2 (35.1 kbp) 
148 7.6 6.96 L. helveticus (76%/ 25%) phi adh (43.8kbp) 

OAB039 55 13.6 18.08 L. allii (72%/ 4%) PLE2 (35.1 kbp) 
79 8.5 23.09 L. gasseri (67%/ 57%) phi adh (43.8kbp) 

Table 1. Putative complete/near-complete phage genomes identified within bladder microbiome 146 
samples. Most similar phage sequences were determined using PHAST (40). 147 

 148 
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 149 

Fig. 1. Genome map for the 37.1 kbp contig 28 from the OAB018 patient sample. 150 

 151 

Previous research has identified subtypes of JCV and found that these subtypes can correspond with 152 

different human population groups (49). Thus, we next determined the subtypes of the five JCV 153 

complete genomes from the bladder microbiome samples by comparing their genomes to 605 publicly 154 

available genomes representative of the diversity of the species (Supplementary Table 2). The 155 

sequences were aligned using MUSCLE through Geneious; the alignments were trimmed, removing the 156 

tandem repeats (as their placement at the 5’ or 3’ end of the genome sequence varied among the 157 

genome sequence records), and a phylogenetic tree was inferred using FastTree (50) (Fig. 2). Clades 158 

were labeled according to their documented genotype, determined from the literature (49) and from 159 

GenBank records. Genotype classifications rely on coding sequence variation, most notably the VP1 160 

capsid coding sequence (51). This tree aids in gaining greater insight into the JCV genomes detected 161 

within the patient samples. The JCV strains identified in patient samples OAB026 and OAB045 are 162 

representative of subtype 1, genotype 1B (exhibiting greatest sequence similarity to isolates from 163 

individuals of German heritage (49)). The JCV virus from patient sample OAB042 is also categorized as 164 

subtype 1 (genotype 1A) via sequence homology (50). Subtype 1 is relatively common in the United 165 

States and Europe (52) and these three patients self-reported as “White/ Non-Hispanic.” The JCV strains 166 
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identified in patient samples OAB032 and OAB021 are classified as belonging to genotype 3A (prevalent 167 

in Africa and southwestern Asia) and 2A (prevalent amongst individuals of Japanese and Native 168 

American decent), respectively, based upon their nearest neighbors and placement within the 169 

phylogenetic tree (Fig. 2) (49,53). However, the self-reported ethnicities of these patients are 170 

incongruent with the ethnicities typically associated with these subtypes; patient OAB032 self-reported 171 

as “White/ Hispanic” and patient OAB021 self-reported as “Black/ Non-Hispanic.” As the majority of 172 

sequencing and genotyping studies of JCV have been largely restricted to individuals with or without 173 

neurological diseases, our findings here prompt further investigation of the presence and genotypes of 174 

JCV in individuals with and without lower urinary tract symptoms to ascertain if JCV plays any role in 175 

urinary tract symptoms or disease. 176 

 177 

 178 

Fig. 2. Phylogenetic tree for 610 complete genomes of JCV, including strains isolated in this study (tree 179 
branches shown in black and labeled) and the reference sequence (NC_001699) for the species (shown 180 
in red). 181 

 182 

Here, we have shown that challenges in isolating viral species from the low biomass bladder microbiome 183 

can be circumvented via bioinformatic classification tools; whole genome, as well as partial genome, 184 

sequences can be reconstructed from complex samples. While the sheer size of bacterial genomes lends 185 

to greater representation in whole genome sequencing data, viral genomes were detected without 186 
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amplification within 27 of the 30 urinary samples examined here. This further supports prior estimates 187 

of the abundance of viruses within the bladder microbiota (25,26). Moreover, as our results show, our 188 

strategy can detect both lysogenic and lytic phages, as well as eukaryotic viruses. 189 

Abbreviations: 190 

OAB=overactive bladder 191 

JCV=Human polyomavirus JC 192 
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