
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Physics: Faculty Publications and Other Works Faculty Publications and Other Works by 
Department 

6-2011 

Method for Generating Additive Shape Invariant Potentials from Method for Generating Additive Shape Invariant Potentials from 

an Euler Equation an Euler Equation 

Jonathan Bougie 
Loyola University Chicago, jbougie@luc.edu 

Asim Gangopadhyaya 
Loyola University Chicago, agangop@luc.edu 

Jeffrey Mallow 
Loyola University Chicago, jmallow@luc.edu 

Follow this and additional works at: https://ecommons.luc.edu/physics_facpubs 

 Part of the Physics Commons 

Author Manuscript 
This is a pre-publication author manuscript of the final, published article. 

Recommended Citation Recommended Citation 
Bougie, J, A Gangopadhyaya, and J Mallow. "Method for Generating Additive Shape Invariant Potentials 
from an Euler Equation." Journal of Physics A: Mathematical and Theoretical 44, 2011. 

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department 
at Loyola eCommons. It has been accepted for inclusion in Physics: Faculty Publications and Other Works by an 
authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. 
© Bougie et al., 2011. 

https://ecommons.luc.edu/
https://ecommons.luc.edu/physics_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/physics_facpubs?utm_source=ecommons.luc.edu%2Fphysics_facpubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=ecommons.luc.edu%2Fphysics_facpubs%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/


ar
X

iv
:1

10
3.

11
69

v1
  [

he
p-

th
] 

 6
 M

ar
 2

01
1

Method for Generating Additive Shape Invariant

Potentials from an Euler Equation

Jonathan Bougie

E-mail: jbougie@luc.edu, †agangop@luc.edu, ‡jmallow@luc.edu

Loyola University Chicago, Department of Physics, Chicago, IL 60660

Asim Gangopadhyaya†

Loyola University Chicago, Department of Physics, Chicago, IL 60660

Jeffry V. Mallow‡

Loyola University Chicago, Department of Physics, Chicago, IL 60660

Abstract. In the supersymmetric quantum mechanics formalism, the shape

invariance condition provides a sufficient constraint to make a quantum mechanical

problem solvable; i.e., we can determine its eigenvalues and eigenfunctions

algebraically. Since shape invariance relates superpotentials and their derivatives at

two different values of the parameter a, it is a non-local condition in the coordinate-

parameter (x, a) space. We transform the shape invariance condition for additive shape

invariant superpotentials into two local partial differential equations. One of these

equations is equivalent to the one-dimensional Euler equation expressing momentum

conservation for inviscid fluid flow. The second equation provides the constraint that

helps us determine unique solutions. We solve these equations to generate the set

of all known h̄-independent shape invariant superpotentials and show that there are

no others. We then develop an algorithm for generating additive shape invariant

superpotentials including those that depend on h̄ explicitly, and derive a new h̄-

dependent superpotential by expanding a Scarf superpotential.

PACS numbers: 03.65.-w, 47.10.-g, 11.30.Pb
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1. Introduction

1.1. Background

Supersymmetric quantum mechanics (SUSYQM) provides an elegant and useful

prescription for obtaining closed expressions for the energy eigenvalues and

eigenfunctions of many one dimensional problems and three dimensional problems with

spherical symmetry [1, 2, 3, 4].

In the SUSYQM formalism, first order differential operators A− and A+ are

generalizations of the raising and lowering operators employed by Dirac for treating

the harmonic oscillator [5]. These “ladder” operators A±(x, a0) = ∓h̄ d
dx

+W (x, a0) use

a superpotential W to generate partner Hamiltonians H− ≡ A+A− and H+ ≡ A−A+. If

these partner potentials are shape invariant, then the eigenspectra for both Hamiltonians

can be derived algebraically without any prior information for either Hamiltonian.

Until recently, all known shape-invariant potentials could be generated from

superpotentials with no explict dependence on h̄ [3, 4]. We classify such superpotentials

as “conventional.” However, a new class of shape-invariant potentials was discovered by

Quesne [6] and expanded elsewhere [7, 8]. These potentials arise from an “expanded”

set of superpotentials that contain explicit h̄-dependence.

In a recent publication [9], we showed that the shape-invariance condition can be

transformed into two local partial differential equations. Solutions to these equations

generate the set of all known conventional shape invariant superpotentials and allow no

others in this category. In addition, these equations provide an algorithm for generating

h̄-dependent potentials. In this manuscript, we elaborate this method, proving the

completeness of the set of “conventional” superpotentials and generating a previously

unknown “expanded” superpotential.

1.2. Supersymmetric Quantum Mechanics

A quantum mechanical system in one spatial dimension x described by a potential V (x)

can alternately be described by its ground state wavefunction ψ0. For simplicity of

notation, we will use units where 2m = 1 throughout this manuscript. We may also set

the ground state energy to zero without changing the physics. With these choices,the

Schrödinger equation for the ground state wavefunction is

− h̄2ψ
′′

0 + V (x)ψ0 = 0 , (1)

where prime denotes differentiation with respect to x. Thus, it follows that the potential

can be written as

V (x) = h̄2
(

ψ
′′

0

ψ0

)

. (2)

The SUSYQM formalism makes use of first order differential “ladder” operators

A− and A+,

A±(x, a0) = ∓h̄
d

dx
+W (x, a0). (3)
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These ladder operators include a superpotential W (x, a0), which is a real function of

coordinate x and parameter a0 (or a set of parameters).

Operators A± generate two supersymmetric partner Hamiltonians: H− ≡ A+A−

and H+ ≡ A−A+. Hamiltonian H+ is called the superpartner of H−, and corresponding

potentials V− and V+ are given by V± = W 2(x, a0)± h̄dW (x,a0)
dx

.

Let us denote the eigenfunctions of H± that correspond to eigenvalues E±
n , by ψ

(±)
n .

For positive integer n,

H+

(

A−ψ(−)
n

)

= A−A+
(

A−ψ(−)
n

)

= A−
(

A+A−ψ(−)
n

)

= A−H−

(

ψ(−)
n

)

= E−
n

(

A−ψ(−)
n

)

. (4)

Hence, with the exception of the the ground state which obeys A−ψ
(−)
0 = 0, all excited

states ψ(−)
n of H− have one-to-one correspondence with eigenstates of H+ with exactly

the same energy: ψ
(+)
n−1 ∝ A−ψ(−)

n , where E+
n−1 = E−

n (n = 1, 2, · · ·), as illustrated in

figure 1. In other words, eigenstates of H+ are iso-spectral with excited states of H−.

Figure 1. Schematic illustrating the isospectrality of H+ and H
−
, showing the ground

state and first two excited states of H
−

(corresponding to potential V
−
(x) sketched

with a solid bold curve) in the left column, and the ground state and first excited state

of H+ (corresponding to potential V+(x), sketched as a solid bold curve) in the right

column. Sample energy levels are shown as horizontal lines, and a sketch of a sample

wavefunction is overlaid with a dashed line for each energy level. In general, V+ and

V
−

have different shapes, as do various ψ+ and ψ−. However, the energy E+

1 = E−

0 ,

E+

2 = E−

1 , and E+

n−1 = E−

n
. The operator A− acting on an eigenstate ofH+ will yield

an eigenstate of H
−
, and A+ acting on an eigenstate of H

−
will yield an eigenstate of

H+.

Conversely, ψ(−)
n ∝ A+ψ

(+)
n−1. Thus, if the eigenvalues and the eigenfunctions of H−

were known, one would automatically obtain the eigenvalues and the eigenfunctions of
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H+ (and vice versa), which is in general a different Hamiltonian. However, unless we

know one set of eigenstates a priori, this analysis is simply a mathematical curiosity.

1.3. Shape Invariance

Despite this limitation, for special cases in which these partner potentials obey the

“shape invariance” condition [10, 11]:

V+(x, a0) + g(a0) = V−(x, a1) + g(a1) , (5)

where parameter a1 is a function of a0, i.e., a1 = f(a0), the spectra for both Hamiltonians

can be derived algebraically without any prior information for either Hamiltonian. This

is due to the existence of an underlying potential algebra [12, 13, 14].

Let us consider the special case where V−(x, a0) is a shape invariant potential.

In this case, potentials V− and V+ have the same x-dependence, and the corresponding

Hamiltonians H+(x, a0) and H−(x, a1) differ by g(a1)−g(a0). Thus, their eigenfunctions

are the same, and corresponding eigenvalues differ by g(a1) − g(a0). In particular,

they have a common ground state wavefunction, given by ψ
(+)
0 (x, a0) = ψ

(−)
0 (x, a1) ∼

exp
(

−
∫ x
x0
W (x, a1)dx

)

, and the ground state energy of H+(x, a0) is g(a1) − g(a0),

because the ground state energy ofH−(x, a1) is zero. Note that the parameter shift a0 →

a1 has an effect similar to that of a ladder operator: ψ
(−)
1 (x, a0) ∼ A+(x, a0) ψ

(−)
0 (x, a1).

Also note that the ladder operators A− and A+, like H±, are dependent on parameters

an.

The first excited state of H−(x, a0) is given to within normalization by

A+(x, a0)ψ
(−)
0 (x, a1) and the corresponding eigenvalue is g(a1) − g(a0). By iterating

this procedure, the (n+ 1)-th excited state is given by

ψ
(−)
n+1(x, a0) ∼ A+(a0) A

+(a1) · · ·A
+(an) ψ

(−)
0 (x, an) , (6)

and corresponding eigenvalues are given by

E0 = 0; and E(−)
n = g(an)− g(a0) for n > 0. (7)

(To avoid notational complexity, we have suppressed the x-dependence of operators

A(x, a0) and A
+(x, a0).) Thus, for a shape invariant potential, one can obtain the entire

spectrum of H− itself by the algebraic methods of SUSYQM (and of course the same is

true for H+).

In this manuscript, we develop a method for finding shape-invariant superpotentials

from a system of partial differential equations, and use this method to discover a new

shape-invariant superpotential. In Section II, we will show that for h̄-independent

(“conventional”) superpotentials, the shape invariance condition can be converted into

an infinite sequence of partial differential equations. In Section III, we solve these partial

differential equations and systematically generate the complete set of conventional shape

invariant potentials. In Section IV, we show a method for using these equations to find

h̄-dependent (“extended”) superpotentials. In Section V we use this method to find a

new shape-invariant superpotential, and we present our conclusions in Section VI.
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2. Expressing the Shape Invariance Condition With Partial Differential

Equations for Conventional Superpotentials

As we have just seen, any partner potentials obeying (5) can be solved algebraically.

Thus, discovering that a potential is shape-invariant yields much useful information.

Here we develop a method for finding shape-invariant potentials.

For shape invariant systems, the energy eigenvalues of H−(x, a0) are given by

E(−)
n (a0) = g(an) − g(a0), where an ≡ fn(a0) indicates f applied n-times to a0 [3, 4].

To avoid level crossing, g(a) must be a monotonically increasing function of a; i.e.,
∂g
∂a
> 0. In the case of “additive” or “translational” shape invariance, the parameters

differ by an additive constant; i.e., ai+1 = ai + h̄. While there are other forms of shape

invariance such as multiplicative [15] and cyclic[16], most of the known exactly solvable

superpotentials exhibit additive shape invariance [18, 17]. We thus restrict our analysis

to additivel shape invariance.

Several groups found these potentials by imposing various ansatzes [18, 14, 19]. In

this manuscript, we derive these potentials ab initio as the solutions to a set of partial

differential equations that must be satisfied for all additive shape-invariant potentials.

Writing (5) in terms of the superpotential, we obtain

W 2(x, a0) + h̄
dW (x, a0)

dx
+ g(a0) =W 2(x, a1)− h̄

dW (x, a1)

dx
+ g(a1). (8)

Note that (8) is a difference-differential equation; that is, it relates the square of the

superpotential W and its spatial derivative computed at two different parameter values:

(x, a0 ≡ a) and (x, a1 ≡ a + h̄). This equation has also been studied for dynamical

systems, where it is known as the infinite-dimensional dressing chain [20, 21]. Note that

we have not needed to specify the value of h̄; therefore, this equation must hold for

any value. Using this feature, we will transform (8) into a non-linear partial differential

equation that is local in nature; i.e., all terms can be computed at the same point (x, a).

This has the obvious advantage of mathematical familiarity (at least to physicists). In

addition, it provides a systematic method for finding additive shape invariant potentials.

Important correspondences have been shown to exist between quantum mechanics

and fluid mechanics [22]. SUSYQM is well known to have a deep connection with

the KdV equation [23, 24, 25, 27, 26], a nonlinear equation that describes waves in

shallow water. In this section we show that every additive shape invariant superpotential

that does not depend explicitly on h̄ corresponds to a solution of the Euler equation

expressing momentum conservation for inviscid fluid flow in one spatial dimension. We

use this correspondence to develop a systematic method which 1) yields all such known

h̄-independent solvable potentials for SUSYQM and 2) shows that no others exist. We

will consider h̄-dependent potentials in Section III.

Because of additive shape invariance, the dependence of W on a and h̄ is through

the linear combination a + h̄; therefore, the derivatives of W with respect to a and h̄

are related by: ∂W (x,a+h̄)
∂h̄

= ∂W (x,a+h̄)
∂a

. Since (8) must hold for an arbitrary value of h̄, if

we assume that W does not depend explicitly on h̄, we can expand in powers of h̄ and
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the coefficient of each power must separately vanish. Expanding the right hand side in

powers of h̄ yields

O(h̄) ⇒ W
∂W

∂a
−
∂W

∂x
+

1

2

dg(a)

da
= 0 , (9)

O(h̄2) ⇒
∂

∂a

(

W
∂W

∂a
−
∂W

∂x
+

1

2

dg(a)

da

)

= 0 , (10)

O(h̄n) ⇒
∂n

∂an−1∂x
W (x, a) = 0 , n ≥ 3 . (11)

Thus, all conventional additive shape invariant superpotentials are solutions of the above

set of non-linear partial differential equations. Although this represents an infinite set,

note that if equations at O(h̄) and O(h̄3) are satisfied, all others automatically follow.

Replacing W by −u, x by t, and a by x in (9), the equation then becomes:
(

u(x, t)
∂

∂x

)

u(x, t) +
∂u(x, t)

∂t
= −

1

2

dg(x)

dx
. (12)

This equation is equivalent to the equation for inviscid fluid flow in the absence of an

external force on the bulk of the fluid:

∂u (x, t)

∂t
+ u (x, t) · ∇u (x, t) = −

∇p (x, t)

ρ (x, t)
(13)

in one spatial dimension with the correspondence 1
ρ
dp
dx

= 1
2
dg
dx
, where u is the fluid velocity

at location x and time t, p is the pressure, and ρ is the local fluid density. Equation (13)

is one of the fundamental laws of fluid dynamics, and was first obtained by Euler in

1755 [28]. Thus, all conventional shape invariant superpotentials form a set of solutions

to the one-dimensional Euler equation.

It should be noted that (13) is not solvable unless additional constraints are

applied. In fluid dynamics this equation is generally supplemented by the continuity

equation expressing conservation of mass, along with an equation of state and/or the

energy equation and boundary conditions. These additional constraints do not apply

in SUSYQM. Instead, (11) supplies the additional constraint which must be fulfilled to

satisfy shape-invariance. Thus, the set of solutions of (9) that also satisfy the constraint

of (11) will define the complete set of conventional shape invariant superpotentials.

3. Generating the complete set of conventional superpotentials

3.1. Solutions of Special Cases

In this section, we show that the set of all possible conventional superpotentials are

determined by six special cases. To find this set of solutions, we note that (11) is

satisfied for all n ≥ 3 as long as

∂3

∂a2∂x
W (x, a) = 0. (14)

The general solution to Eq. (14) is

W (x, a) = a ·X1(x) +X2(x) + u(a) . (15)
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Substituting this into (9) yields

(a ·X1 +X2 + u)
︸ ︷︷ ︸

W

(

X1 +
du

da

)

︸ ︷︷ ︸

∂W

∂a

−

(

a ·
dX1

dx
+
dX2

dx

)

︸ ︷︷ ︸

dW

dx

+
1

2

dg

da
= 0 . (16)

To systematically find all possible solutions, we define u du
da

+ 1
2

dg
da

= −H(a), and then

collect and label terms based on their dependence on X1 and X2 and their derivatives:

X1X2
︸ ︷︷ ︸

Term#1

+

(

−
dX2

dx

)

︸ ︷︷ ︸

Term#2

+ aX2
1

︸ ︷︷ ︸

Term#3

+

(

−a
dX1

dx

)

︸ ︷︷ ︸

Term#4

+
du

da
X2

︸ ︷︷ ︸

Term#5

+

(

u+ a
du

da

)

X1

︸ ︷︷ ︸

Term#6

= H(a) . (17)

We begin by considering special cases of (17) where one or more of the terms X1(x),

X2(x), or u can be considered zero. After considering these cases, we will show that all

solutions to this equation can be reduced to one of these cases. In the nomenclature

that follows, lower case Greek letters denote a- and x-independent constants.

3.1.1. Case 1: X2 and u are not constants, X1 is constant. In this case, let X1 = µ.

Then our general form forW becomesW = µa+u(a)+X2(x). If we define ũ ≡ u(a)+µa,

we getW = ũ+X2. So this case is equivalent to X1 = 0. Then terms 1, 3, 4, and 6 each

become zero, and (17) becomes −dX2

dx
+ du

da
X2 = H(a). Since X2 must be independent

of a but cannot be constant,dX2

dx
6= 0. Thus, this is possible only if du

da
and H(a) are

independent of a. This yields u = αa + β, H(a) = θ. Therefore, −dX2

dx
+ αX2 = θ,

where α 6= 0 since u is not constant. The solution to this differential equation is

X2(x) =
θ
α
+ η eαx. Therefore, W = αa + β + θ

α
+ η eαx. Defining α = −1, this yields

W = A− Be−x, where A ≡ β − a− θ. This is the Morse superpotential.

3.1.2. Case 2: X1 and u are not constants, X2 is constant. Following a similar

procedure this case is equivalent to X2 = 0. So aX2
1 − adχ1

dx
+
(

u+ adu
da

)

X1 = H(a).

Since X1 cannot depend on a but must contain x-dependence, the only way for H(a) to

be independent of x is if u+adu
da

= αa, where α could be any constant. Thus, u = αa
1
+ β

a
,

where α and β could be any two constants, although they cannot both be zero.

Thus, aX2
2 − adX1

dx
+ aαX1 = H(a). This is only possible if H(a) = γa for some

constant γ. So X2
1 −

dX1

dx
+ αX1 = γ. This differential equation gives different solutions

depending on the values of α and γ.

If α 6= 0, then γ 6= 0 yields the Rosen-Morse I superpotential, and γ = 0 yields the

Eckart superpotential.

If α = 0, then γ = 0 yields Coulomb, γ > 0 yields Rosen-Morse II, and γ < 0 yields

Rosen-Morse I.

Thus, the Rosen-Morse I, Rosen-Morse II, Eckart, and Coulomb superpotentials

are all solutions to Case 2, for different values of α and γ.
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3.1.3. Case 3: X1 and X2 are not constants, u = µa + ν (this includes the case where

u is constant.) In this case we can define X̃1 ≡ X1 + µ and X̃2 ≡ X2 + ν, which is

equivalent to u = 0. For u = 0, X1X2 −
dX2

dx
+ a

(

X2
1 −

dX1

dx

)

= H(a).

Since X1 and X2 are both independent of a, the coefficients of each power of a must

cancel separately. So we are left with two coupled differential equations: X2
1 −

dX1

dx
= α,

X1X2 −
dX2

dx
= β. Again, the solution varies depending on the values of α and β, which

could be any constants.

If α = 0, the solution is the 3-D harmonic oscillator superpotential. If α < 0, the

solution is the Scarf I superpotential, and if α > 0, the equation is solved by either the

Scarf II or Generalized Pöschl-Teller superpotential.

Therefore, the Scarf I, Scarf II, 3-D oscillator, and Generalized Pöschl-Teller

superpotentials are all solutions of Case 3.

3.1.4. Case 4: X2 is not constant, X1 and u are constant. If X1 6= 0, this is equivalent

to X1 = 0 and u = µa+ ν. In such a case, this is equivalent to Case 1, and the solution

is the Morse superpotential. However, if X1 = 0, this case is equivalent to X1 = u = 0,

in which case −dX2

dx
= H(a). Since X2 is independent of a, H(a) must be a constant.

This generates the one-dimensional harmonic oscillator.

3.1.5. Case 5: X1 is not constant, X2 and u are constant. In this case, αX1 + aX2
1 −

adX1

dx
= H(a) for some constant α. Since X1 is independent of a but must depend on x,

α = 0 and H(a) = βa for some constant β. Thus, X2
1 − dX1

dx
= β. This yields special

cases of Scarf I and Scarf II, and the centrifugal term of the Coulomb and 3-D oscillator,

depending on whether β is positive, negative, or zero.

3.1.6. Case 6: X1 is constant, X2 is constant. In this case, the superpotential has no

x-dependence, regardless of the value of u. This is a trivial solution corresponding to a

flat potential, and we disregard it.

Thus far, we have considered all of the special cases that are equivalent to u = 0,

X1 = 0, or X2 = 0. These special cases generate all known conventional additive

shape-invariant superpotentials [3, 17, 4]. We have listed them all in Table 1.

3.2. Proof That the List of Conventional Superpotentials is Complete

Now that we have these special cases, we can systematically obtain all possible solutions.

H(a) is independent of x. Therefore, when any solution is substituted into (17), it will

yield an x-independent sum of terms 1-6. There are many ways in which these terms

could add up to a term independent of x. As a first step, we begin with the simplest

possibility, in which each term is individually independent of x.

Under this assumption, term 3 states that X1 must be a constant, independent of

x. In addition, term 1 dictates X1X2 must be constant as well. These two statements
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Name superpotential Special

Cases

Harmonic Oscillator 1
2
ωx X1 = u = 0

Coulomb e2

2(ℓ+1)
− ℓ+1

r
X2 = 0

3-D oscillator 1
2
ωr − ℓ+1

r
u = 0

Morse A−Be−x X1 = 0

Rosen-Morse I −A cot x− B
A

X2 = 0

Rosen-Morse II A tanh x+ B
A

X2 = 0

Eckart −A coth x+ B
A

X2 = 0

Scarf I A tan x− Bsec x u = 0

Scarf II A tanh x+Bsech x u = 0

Gen. Pöschl-Teller A coth x−Bcosech x u = 0

Table 1. The complete family of additive shape-invariant superpotentials.

can only be true if X2 and X1 are constant separately; this reduces to the trivial solution

of case 6.

Therefore, assuming that each term is separately independent of x yields only the

trivial solution. However, there is also the possibility that some of the terms depend

on x, but when added to other terms, the x-dependence cancels to yield a sum that is

independent of x. If a group of n-terms taken together produce an x-independent sum,

and if no smaller subset of these terms add up to a sum independent of x, we call this

group of n-terms “irreducibly independent of x”.

As an example, we check whether there are any solutions for the six-term irreducible

set in which the sum of all six terms in (17) is independent of x, but in which the sum

of any subset of terms would depend on x.

To check this possibility, we note that the first two terms are independent of a, while

terms 3 and 4 are linear in a. We do not know a priori the functional form of u. Since

term 5 contains du
da
, it could include terms independent of a, terms linear in a, and/or

other forms of a-dependence. Similarly, we do not know the functional form of u+ adu
da
.

Therefore, we define functions f1(a) and f2(a) such that u+ adu
da

= α1+β1a+ f1(a) and
du
da

= α2 + β2a + f2(a), where we do not know the functional form of f1(a) and f2(a),

except that they contain no constant terms or terms linear in a.

With this definition, term 6 becomes α1X1+ aβ1X1+ f1(a)X1 and term 5 becomes

α2X2 + aβ2X2 + f2(a)X2 Since f1(a) and f2(a) contain no constant terms or terms

proportional to a, the x dependence of the term f1(a)X1 cannot be cancelled by

terms 1-4, and neither can the x-dependence of f2(a)X2. Therefore, we conclude that

f1(a)X1 + f2(a)X2 = µ.

This leaves only two possibilities. First we consider the possibility that f1(a) =

f2(a) = 0. In this case, du
da

= α2+β2a, so u = α2a+
β2a

2

2
+γ. Plugging this solution into

(17), term 6 then becomes
(
3β2

2
a2 + 2α2 + γ

)

X1. Since X1 is independent of a and none
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of the other terms are proportional to a2, 3β2

2
X1 must be independent of x. So either

X1 is a constant, or β2 = 0, in which case u is linear in a; either possibility represents a

special case.

On the other hand, if f1(a) 6= 0, then eitherX1 is a constant (which is a special case),

or the x-dependence of f1(a)X1 must be cancelled by the x-dependence of f2(a)X2. Since

X1 and X2 cannot depend on a, this is only possible if X2+µX1 = ν for some constants

µ and ν. However, if this is the case, then W = aX1 +X2 + u = aX1 − µX1 + ν + u.

Since the zero of a can be shifted by defining ã = a− µ, and we can define ũ = u+ ν,

this is equivalent to the case W = ãX1+ ũ. So this particular case can be reduced to the

special case of X2 = 0 and does not yield any new solutions. Thus, no new solutions can

be found by assuming the full six-term set is irreducibly independent of x; any solution

found under this assumption can be reduced to one of the special cases.

Since each term cannot be separately independent of x and the full six-term

set cannot be irreducibly independent of x, the only possibility that could produce

solutions not covered under one of the special cases would be if two or more irreducibly

independent sets combine to produce a solution. If, for example, term 5 depends on x

and term 6 depends on x, but the sum of these two terms is x-independent, then we

consider the set of terms {5, 6} to be a two-term set that is irreducibly independent

of x. To continue this example, if the four sets {1}, {2, 3}, {4}, and {5, 6} were each

irreducibly independent of x, then the entire left side of (17) would be independent of

x, and this could possibly produce a solution not covered under the special cases. We

now proceed to examine all possible combinations and show that no new solutions are,

in fact, produced.

To examine all possibilities, we begin by examining all possible one-, two-, and

three- term sets, and see what restrictions are imposed on solutions in each case. For

example, if term 1 is individually independent of x, then X1X2 = α for some constant

α, which implies that X1 = α/X2. Table 2 shows the consequences required for each

possible one-term set to be independent of x.

We now proceed to examine two-term sets. Let us take the example mentioned

above in which {5, 6} is a two-term set that is irreducibly independent of x (that is,

term 5 depends on x and term 6 depends on x, but the sum of these two terms is

x-independent). Let us consider this example further to see if it leads to any new

solutions. In this example, du
da
X2 +

(

u+ adu
da

)

X1 must be independent of x. Since X1

and X2 must each depend on x and du
da

must depend on a (or this would reduce to a

special case), the only way this is possible is if the x-dependence of du
da
X2 is cancelled

by the x-dependence of
(

u+ adu
da

)

X1. For this to be true, the a-dependence of du
da

must

differ from the a-dependence of u + adu
da

by only a multiplicative constant. Thus, we

conclude thatX2+αX1 = β for some constants α and β. As we did when considering the

full six-term set, we can absorb X2 into X1 by shifting the zero of a. So this particular

case can be reduced to the special case of X2 = 0 and does not yield any new solutions.

However, not all two-term sets can be reduced in this way. As an example, we

consider the set {1, 2}. For this set to be irreducibly independent of x, X1X2 and dX2

dx
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Single term Requirements for Compatible with

set x-independence a new solution?

{1} X1 = α/X2 If α 6= 0

{2} X2 = αx+ β If α 6= 0

{3} X1 = α No

{4} X1 = αx+ β If α 6= 0

{5} X2 = α No

{6} u = α/a If α 6= 0

Table 2. Assuming that a single term is independent of x results in restrictions

on the possible solutions. The first column lists each possible single term set. The

middle column of each row shows what consequences are necessary for that set to be

independent of x. Throughout this section, lower-case greek letters indicate constants

that are independent of both a and x. Finally, if this requirement is compatible with

solutions not included as one of the special cases, restrictions on such a solution are

shown in the third column of that row. The third column states “No” if the requirement

is equivalent to a special case and thus no new solutions are allowed.

must each depend on x. However, X1X2−
dX2

dx
must be independent of x. Since X1 and

X2 do not depend on a, the only way for this to be possible is if X1X2 −
dX2

dx
= α for

some constant α. By itself, this requirement could allow many solutions. Therefore, we

will have to check whether this set can couple with the remaining terms 3, 4, 5, and 6 in

such a way as to produce new solutions that are not compatible with the special cases.

In Table 3, we display the consequences required for each possible two-term set

to be irreducibly independent of x. From this table, it is clear that there are several

two-term sets that can be irreducibly independent of x. However, in order to satisfy

(17), these sets must be compatible with solutions that allow the remaining four terms

to be independent of x. We now check whether there are any combinations of one- and

two- term sets that can satisy (17). Once we have completed this, we will consider cases

involving three-, four-, and five- term irreducible sets.

Combining the results from Table 2 and Table 3 allow us to immediately eliminate

many possibilities. For instance, in the example listed above, the set {1, 2} is irreducibly

independent if X1X2 −
dX2

dx
= α for some constant α. However, in order to satisfy (17),

the remaining terms must combine in such a way that the combination of terms 3, 4, 5,

and 6 are independent of x as well. We first note from Table 2 that term 3 cannot be

independent of x by itself, and neither can term 5. From Table 3, we note that {3, 6}

cannot be irreducibly independent of x, and the set {5, 6} is equivalent to a special case.

Therefore, there are only two possible combinations of one- and two- term sets

involving the irreducible set {1, 2} that could satisfy (17) and lead to a new solution. The

first possibility is that set {1, 2} is irreducibly independent of x, set {3, 5} is irreducibly

independent of x, and set {4, 6} is irreducibly independent of x. However, from Table

3, {3, 5} requires u = αa2

2
+ γ with α 6= 0. On the other hand, {4, 6} requires u = α

a
+ γ,

so these two terms are incompatible. The only other possibility is that set {1, 2} is
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Two-term Requirements for Compatible with

set irreducible x-independence a new solution?

{1, 2} X1X2 −
dX2

dx
= α For any α

{1, 3} Contradiction: must reduce No

{1, 4} Contradiction: must reduce No

{1, 5} u = µa + ν No

{1, 6} u = α
a
+ γ; If α 6= 0; β 6= 0

X1 =
β

X2+α

{2, 3} Contradiction: must reduce No

{2, 4} Contradiction: must reduce No

{2, 5} u = µa + ν No

{2, 6} u = α
a
+ γ; If α 6= 0

−dX2

dx
+ αX1 = β

{3, 4} X2
1 −

dX1

dx
= α For any α

{3, 5} u = αa2

2
+ γ; If α 6= 0

X2
1 + αX2 = β

{3, 6} Contradiction: must reduce No

{4, 5} u = αa2

2
+ γ; If α 6= 0

dX1

dx
= αX2 + β

{4, 6} u = α
a
+ γ; If α 6= 0; β 6= 0

X1 = βeαx + µ

{5, 6} X2 = αX1 + β No

Table 3. Assuming that a two-term set is irreducibly independent of x results in

restrictions on the possible solutions. The first column lists each possible two-term

set. The middle column of each row shows what consequences are necessary for that

set to be irreducibly independent of x. The middle column states “Contradiction:

must reduce” if the assumption that the two-term set is irreducibly independent of

x leads to the contradictory conclusion that the set must be reducible. Finally, if

this requirement is compatible with solutions not included as one of the special cases,

restrictions on such a solution are shown in the third column of that row. The third

column states “No” if no new solutions are allowed, either because the assumption

of irreducibility leads to a contradiction or because the requirement on solutions is

equivalent to a special case.

irreducibly independent of x, set {3, 5} is irreducibly independent of x, and sets {4}

and {6} are each separately independent of x. However, once again the requirement

u = α/a for term 6 to be x-independent is incompatible with the requirement u = αa2

2
+γ

with α 6= 0 for {3, 5}. Therefore, there can be no possible new solutions resulting from

combinations of one- and two- term sets involving the irreducible set {1, 2}.

Comparing Table 2 and Table 3, every possible combination of one- and two- term

sets leads to one of the following three results: a) one of the terms is directly equivalent

to a special case (such as any combination involving the single-term set {3}); b) one of
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the terms leads to a contradiction in which a term assumed to be irreducible must be

reducible (such as any combination involving the two-term set {1, 3}); or c) two elements

in the combination require different functional forms of u, leading to the impossibility

of a common solution (such as any combination involving the sets {3, 5} and {4, 6}).

Therefore, we conclude that no new solutions can be found from combinations of one-

and two- term sets.

However, there is still the possibility that there are solutions provided by

combinations involving three-, four-, or five-term irreducible sets. We now test these

possibilities, begining with three-term sets. In Table 4, we display the consequences

required for each possible three-term set to be irreducibly independent of x.

Following the same procedure as for two-term sets, we see that once again all

combinations produce one of the following results: a) one of the terms is directly

equivalent to a special case; b) one of the terms leads to a contradiction in which a

term assumed to be irreducible must be reducible; or c) two elements in the combination

require different functional forms of u, leading to the impossibility of a common solution.

We now turn to the case of four-term irreducible sets. In this case, rather than

calculating the restrictions on all possible four-term sets, we use the fact that each four-

term set must combine with either a two-term set or a pair of single-term sets. We can

use this fact to eliminate many possibilities. For instance, in order for set {2, 4, 5, 6}

to yield new solutions, it must combine either with the two-term set {1, 3} or with the

pair of single term sets {1} and {3}. Since neither possibility can yield new solutions,

we can eliminate the four-term set set {2, 4, 5, 6} from consideration.

Of the remaining four-term sets, many more can be considered by assuming

the requirements from the complementary one- or two- term sets and plugging these

solutions in to the remaining equation. For instance, since term 5 must depend on x

(cf Table 2), the set {1, 2, 3, 6} can only be irreducibly independent of x if {4, 5} is

irreducibly independent of x as well. However, from Table 3, this would require u =
αa2

2
+γ. Plugging this solution into (17) requires that X1X2−

dX2

dx
+γX1+aX

2
1 +

3αa2

2
X1

be independent of x in order for {1, 2, 3, 6} to be irreducibly independent of x. However,

as term 3 is the only term linear in a, the only solution is for X1 to be constant, which

leads to special case 1 and contradicts our assumptions. Therefore, {1, 2, 3, 6} cannot

be irreducibly independent of x.

Finally, there are some four-term sets that cannot be eliminated in this manner.

For example, {1, 2, 5, 6} could be irreducibly independent of x if a solution can be found

that is compatible with the requirement that X2
1−

dX1

dx
is constant which results from the

two-term set {3, 4}. To check this possibility, we assume that {1, 2, 5, 6} is irreducibly

independent of x. In this case, X1X2−
dX2

dx
+ du

da
X2+

(

u+ adu
da

)

X1 must be independent

of x. We do not know a priori the functional form of u(a) or du
da
, but we do know that

du
da

must depend on a or this would reduce to a special case. Since terms 1 and 2 are

independent of a, the only way for this to be the case is if the x-dependence of du
da
X2 is

cancelled by the x-dependence of
(

u+ adu
da

)

X1. For this to be true, the a-dependence

of du
da

must differ from the a-dependence of u + adu
da

by only a multiplicative constant,
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Three-term Requirements for Compatible with

set irreducible x-independence a new solution?

{1, 2, 3} Contradiction: must reduce No

{1, 2, 4} Contradiction: must reduce No

{1, 2, 5} u = µa+ ν No

{1, 2, 6} u = α
a
+ γ; If α 6= 0

X1X2 −
dX2

dx
+ αX1 = µ

{1, 3, 4} Contradiction: must reduce No

{1, 3, 5} Contradiction: must reduce No

{1, 3, 6} Contradiction: must reduce No

{1, 4, 5} u = αa2

2
+ βa+ γ; If α 6= 0; β 6= 0

X2 =
ν

X1+β
;

−dX1

dx
+ αν

X1+β
= µ

{1, 4, 6} u = αa
2
+ β + γ

a
α 6= 0; β 6= 0

X1 =
ν

X2+β

X1 = µeαx + η

{1, 5, 6} X2 = αX1 + β No

{2, 3, 4} Contradiction: must reduce No

{2, 3, 5} u = αa2

2
+ βa+ γ; If α 6= 0; β 6= 0;

X2 = µeβx + ν; µ 6= 0

X2
1 + αX2 = µ

{2, 3, 6} Contradiction: must reduce No

{2, 4, 5} u = αa2

2
+ βa+ γ; If α 6= 0; β 6= 0

X2 = µeβx + ν; µ 6= 0

−dX1

dx
+ αX2 = η

{2, 4, 6} u = αa
2
+ β + γ

a
; If α 6= 0; β 6= 0

X2 = µeβx + ν; µ 6= 0

−dX2

dx
+ βX1 = η

{2, 5, 6} X2 = αX1 + β No

{3, 4, 5} Contradiction: must reduce No

{3, 4, 6} u = αa−γ
2

+ γ
a

If α 6= 0

X2
1 −

dX1

dx
+ αX1 = µ

{3, 5, 6} Contradiction: must reduce No

{4, 5, 6} X2 = αX1 + β No

Table 4. Assuming that a three-term set is irreducibly independent of x results in

restrictions on the possible solutions. The first column lists each possible three-term

set. The middle column shows the consequences necessary for that set to be irreducibly

independent of x. If this requirement is compatible with solutions not included as one

of the special cases, restrictions on such a solution are shown in the third column.
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in which case X2 + αX1 = β for some constants α and β. By shifting the zero of a, we

absorb X2 into X1 by shifting the zero of a. So this particular case can be reduced to

the special case of X2 = 0 and does not yield any new solutions.

By examining all possible four-term sets, we find that no new solutions are admitted

by any combinations that are not included as one of our special cases. Applying the

same method to five-term sets again yields no new results. Thus, we have examined all

possible combinations of one-, two-, three-, four-, five-, and six-term sets and discovered

that they allow no solutions other than those covered by one of the special cases. Since

the special cases include all known conventional potentials, we therefore conclude that

this method finds all of such known potentials, and it precludes other solutions. We

have thus proven that the set of known h̄-independent solutions is complete.

4. Superpotentials that contain explicit h̄ dependence

Thus far we have found all known additive shape-invariant superpotentials that do not

depend explicitly on h̄, and have proven that no more can exist. We now show that

our formalism can be generalized to include “extended” superpotentials that contain h̄

explicitly. In this case, we expand the superpotential W in powers of h̄:

W (x, a, h̄) =
∞∑

n=0

h̄nWn(x, a) . (18)

We wish to substitute (18) in (8). From (18),

∂W

∂x
|a=a0 =

∞∑

n=0

h̄n
∂Wn(x, a0)

∂x
,

and

W 2 (x, a0, h̄) =
∞∑

l=0

∞∑

k=0

h̄k+lWkWl.

Since a1 = a0 + h̄, W (x, a1, h̄) =W (x, a0 + h̄, h̄) . Expanding in powers of h̄,

W (x, a1, h̄) =
∞∑

m=0

m∑

k=0

h̄m

k!

∂kWm−k

∂ak
|a=a0 .

So

W 2 (x, a1, h̄) =
∞∑

n=0

n∑

s=0

s∑

k=0

h̄n

(n− s)!

∂n−2

∂an−2
(WkWs−k) .

Similarly,

∂W

∂x
|a=a1 =

∞∑

m=0

m∑

k=0

h̄m

k!

∂k+1Wm−k

∂ak∂x
.

After significant algebraic manipulation and requiring that the result must hold for

any value of h̄, we find that the following equation must be true separately for each
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positive integer value of n:
n∑

k=0

WkWn−k +
∂Wn−1

∂x
−

n∑

s=0

s∑

k=0

1

(n− s)!

∂n−s

∂an−s
WkWs−k

+
n∑

k=1

1

(k − 1)!

∂k

∂ak−1 ∂x
Wn−k −

(

1

n!

∂ng

∂an

)

= 0. (19)

For n = 1, we obtain

2
∂W0

∂x
−

∂

∂a

(

W 2
0 + g

)

= 0, (20)

yielding 2 ∂kW0

∂ak−1∂x
= ∂k

∂ak
(W 2

0 + g) for k ≥ 1. We have shown that all conventional

superpotentials W = W0 are solutions of this equation. The extended cases ([6, 8]) are

solutions to (19) as well. In addition, new potentials can be generated by applying (19)

for all n > 1, as we show in the next section.

5. Generating a new h̄ dependent superpotential

We now use the method outlined in the previous section to generate a new potential.

We begin by choosing a conventional shape invariant solution to satisfy (20): W0 =

−a tanh x−Bsechx, which is a Scarf II superpotential from Table 1 with A = −a. For

n = 2, the expansion in (19) yields

∂W1

∂x
−

∂

∂a
(W0W1) = 0 ,

and for n = 3, we obtain

∂W2

∂x
−
∂ (2W0W2 +W 2

1 )

∂a
−

1

2

∂2W0W1

∂a2
+

2

3

∂3W0

∂a2∂x
= 0.

Without imposing boundary conditions, there are many solutions to (19) for each value

of n. However, from physical considerations we require that 1) solutions should not

have singularities worse that 1/x2 to prevent domain splitting or particles being sucked

into the singularity; and 2) the asymptotic limits of W be the same as those for the

corresponding W0, so that supersymmetry remains unbroken.

With these considerations, these two coupled equations are solved by W1 = 0

and W2 = − B coshx
(a−B sinhx)2

. The next order equations are solved by W3 = 0 and

W4 = − B cosh x
4(a−B sinhx)4

. Generalizing these, we get W0 = −a tanh x − Bsechx; and for

n ≥ 1,

W2n−1 = 0; W2n = −
4B cosh x

(2a− 2B sinh x)2n
,

yielding a sum that converges to

W (x, a, h̄) = −a tanh x− Bsech x

−2Bh̄ cosh x

(

1

2(a− B sinh x)− h̄
−

1

2(a− B sinh x) + h̄

)

. (21)

This is a hitherto undiscovered superpotential that meets the requirements of shape-

invariance.
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6. Conclusions

We have transformed the condition for additive shape invariance into a set of local

partial differential equations. For conventional cases that do not depend on h̄, we have

shown that the shape invariance condition is equivalent to an Euler equation expressing

momentum conservation for fluids and an equation of constraint. Solving these equations

we have generated all known h̄-independent shape invariant superpotentials, and we have

also shown that there are no others.

For extended cases in which the superpotential depends explicitly on h̄, we have

developed an algorithm that is satisfied by all additive shape invariant superpotentials.

Finally, we have generated a new shape-invariant superpotential using this algorithm.

This method thus has the possibility to greatly expand our ability to identify shape-

invariant superpotentials.

It may also be possible to extend this method to other forms of shape invariance

such as multiplicative or cyclic. For these types of shape invariance, the potentials are

generally not available in terms of known functions, except in very special cases (N = 2

for cyclic and limiting cases for multiplicative). It remains to be shown whether for

these, the shape invariance condition can be transformed from a difference-differential

equation into a set of partial differential equations and be subjected to similar analysis.
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