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RESEARCH ARTICLE Open Access

Homoplastic microinversions and the avian tree
of life
Edward L Braun1*, Rebecca T Kimball1, Kin-Lan Han1, Naomi R Iuhasz-Velez2, Amber J Bonilla1, Jena L Chojnowski1,
Jordan V Smith1, Rauri CK Bowie3,4, Michael J Braun5,6, Shannon J Hackett3, John Harshman3,7,
Christopher J Huddleston5, Ben D Marks8, Kathleen J Miglia9, William S Moore9, Sushma Reddy3,10,
Frederick H Sheldon8, Christopher C Witt8,11 and Tamaki Yuri1,5,12

Abstract

Background: Microinversions are cytologically undetectable inversions of DNA sequences that accumulate slowly
in genomes. Like many other rare genomic changes (RGCs), microinversions are thought to be virtually homoplasy-
free evolutionary characters, suggesting that they may be very useful for difficult phylogenetic problems such as
the avian tree of life. However, few detailed surveys of these genomic rearrangements have been conducted,
making it difficult to assess this hypothesis or understand the impact of microinversions upon genome evolution.

Results: We surveyed non-coding sequence data from a recent avian phylogenetic study and found substantially
more microinversions than expected based upon prior information about vertebrate inversion rates, although this
is likely due to underestimation of these rates in previous studies. Most microinversions were lineage-specific or
united well-accepted groups. However, some homoplastic microinversions were evident among the informative
characters. Hemiplasy, which reflects differences between gene trees and the species tree, did not explain the
observed homoplasy. Two specific loci were microinversion hotspots, with high numbers of inversions that
included both the homoplastic as well as some overlapping microinversions. Neither stem-loop structures nor
detectable sequence motifs were associated with microinversions in the hotspots.

Conclusions: Microinversions can provide valuable phylogenetic information, although power analysis indicates
that large amounts of sequence data will be necessary to identify enough inversions (and similar RGCs) to resolve
short branches in the tree of life. Moreover, microinversions are not perfect characters and should be interpreted
with caution, just as with any other character type. Independent of their use for phylogenetic analyses,
microinversions are important because they have the potential to complicate alignment of non-coding sequences.
Despite their low rate of accumulation, they have clearly contributed to genome evolution, suggesting that active
identification of microinversions will prove useful in future phylogenomic studies.

Background
Reconstructing the evolutionary relationships among
organisms and changes in their genomes are major
goals of phylogenomics [1-3]. The characteristics of gen-
omes that have been used to reconstruct evolutionary
history reflect the multitude of changes that arise due to
distinct mutational mechanisms and accumulate at a
variety of rates (Figure 1). The most slowly accumulat-
ing changes, collectively designated rare genomic

changes (RGCs), reflect a heterogeneous set of muta-
tional processes. RGCs include transposable element
insertions (e.g., Kriegs et al. [4]), gene order changes [5],
and additional less-studied phenomena [6-8]. Microin-
versions [6] are one of these relatively poorly-studied
types of RGCs.
Despite this heterogeneity, RGCs are thought to

exhibit less homoplasy (evolutionary convergence and
reversals) than nucleotide substitutions [9]. Indeed,
some RGCs have been viewed as “perfect” homoplasy-
free (or virtually homoplasy-free) characters. Establish-
ing that specific types of RGCs, like microinversions,
are perfect characters is important for two reasons.
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First, it would provide information about the muta-
tional and evolutionary processes that underlie their
accumulation, illuminating processes that contribute to
genome evolution. Second, perfect RGCs could provide
a practical means to assemble the tree of life because
phylogenetic reconstruction is straightforward when
homoplasy is absent [6].
Even perfect RGCs can appear homoplastic when

found in genomic regions with an evolutionary history
incongruent with the species tree [5,10]. The appearance
of homoplasy due to incomplete lineage sorting, called
hemiplasy [11], typically occurs in trees with short inter-
nal branches [12,13]. However, rapid radiations with
short internal branches ("bushes” or “biological big
bangs”) may be relatively common events in the tree of
life [14,15]. This suggests that analyses of RGC data
should consider hemiplasy explicitly.
Microinversions are defined as cytologically undetect-

able inversions [6], although in practice the size range
considered depends on the type of data examined and
method used for detection. Feuk et al. [16] classified
inversions ranging in size from 23 base pairs (bp) to 62
megabases (Mb) as microinversions, whereas Ma et al.
[1] considered all inversions greater than 50 kilobases
(kb) to be “large” inversions rather than microinversions.
The lower limit also varies, going down to 4 bp [17].
Not surprisingly, studies using whole genomes (e.g.,
[1,16]) have identified larger inversions, while phyloge-
netic studies (often restricted to a single locus or region
of an organellar genome) have typically revealed much
smaller microinversions (e.g., [17-21]). Nonetheless, the
size spectra reported for genome-scale and phylogenetic
studies overlap, suggesting that both types of studies

include at least some inversions that result from similar
biological phenomena. Using the term “microinversion”
to refer to inversions that are long enough to include
one or more complete genes seems inappropriate, sug-
gesting that it should be reserved for shorter inversions.
However, this criterion may be difficult to apply in prac-
tice, since the length of genes exhibits substantial varia-
tion among organisms and within genomes. The
majority of genes are <50 kb in length in most verte-
brate lineages, suggesting that the Ma et al. [1] size cri-
terion may be appropriate and simple to use. Therefore,
we recommend using 50 kb as the maximum size for
microinversions in most vertebrate genomes, although
we also note that the most appropriate size criterion is
likely to depend upon the focal organism.
The hypothesis that microinversions and other RGCs

are perfect characters reflects both their large state space
(number of potential character states) and slow rate of
accumulation over evolutionary time, making indepen-
dent changes to the same state unlikely. The state space
for different RGCs will depend upon the details of each
type of genomic change, but it seems likely that the state
space for microinversions is large; they can be of a variety
of lengths and have any specific nucleotide for endpoints,
making it unlikely that independent microinversions will
appear identical. Previous studies have also suggested
that microinversions accumulate at a very low rate
(Figure 1), although this observation may be biased by
the size spectrum of the inversions that were identified
and considered to be microinversions. Ma et al. [1]
reported that smaller microinversions (they identified
inversions as short as 31 bp) occur more frequently than
larger ones. However, the rate of accumulation for

Figure 1 Approximate rates of accumulation for different genomic changes over evolutionary time. Details of the literature survey used
to estimate these rates are provided in Additional file 2. The estimate of the avian microinversion rate reflects the results of this paper. Estimates
of evolutionary rates for nucleotide substitutions and indels in birds appear lower than those for mammals, consistent with some previous
publications [59], but it is important to note that substantial rate variation occurs within each group (e.g., [27,60]). As described in the text, it
may be better to interpret prior estimates of the mammalian microinversion rate as the rate at which relatively long microinversions accumulate.
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inversions that are even shorter than those identified by
Ma et al. [1] remains unclear and these differences
among previous studies make direct comparisons chal-
lenging. Nonetheless, it seems certain that microinver-
sions accumulate at least several orders of magnitude
more slowly than nucleotide substitutions. Thus, the
hypothesis that microinversions are perfect characters
that will be very useful for assembling the tree of life
remains reasonable.
The mechanism(s) responsible for microinversion

accumulation remain poorly characterized, making
empirical tests of the “perfect character hypothesis” for
these relatively poorly studied RGCs critical. Indeed,
homoplastic microinversions have been identified in
angiosperm chloroplast genomes [17,19], in contrast to
expectation based upon the perfect character hypothesis.
Most chloroplast microinversions appear to be asso-
ciated with palindromic sequences that have the poten-
tial to form stem-loop structures in transcripts [17,19]
and these palindromes may facilitate inversion. Indeed,
Catalano et al. [21] reported that microinversions are
correlated with higher stability of the hairpins that have
the potential to form at these stem-loop regions, in
agreement with the hypothesis that hairpin formation
facilitates inversion. Since many chloroplast stem-loop
structures have regulatory functions (e.g., Stern et al.
[22]) they are typically conserved, creating the potential
for recurrent inversions at specific sites. Regulatory
stem-loops are present in vertebrate introns (e.g., Hugo
et al. [23]) and at least one vertebrate microinversion
noted in a vertebrate phylogenetic study was associated
with an inverted repeat [18]. However, conserved stem-
loops appear to be uncommon in vertebrate introns
whereas chloroplast stem-loops are relatively common
[22,24]. This difference is consistent with the observa-
tion that few animal microinversions appear homoplas-
tic [6,25]. Indeed, all microinversions observed in those
studies were either homoplasy-free or conflicted with
short branches. Thus, the small number of animal
microinversions that appear to conflict with the species
tree based upon other data may result from hemiplasy
rather than homoplasy. Thus, microinversions in animal
nuclear genomes remain candidates for “ideal RGCs”,
able to recover branches in gene trees accurately.
Microinversions can be difficult to identify, making

the study of these interesting and phylogenetically useful
genomic changes challenging. In fact, ~80% of the inver-
sions identified in the Feuk et al. [16] comparison of the
human and chimpanzee genomes were later suggested
to be contig assembly artifacts [6]. This problem can be
solved by restricting the term microinversion to the
shortest part of the inversion spectrum, limiting the
maximum size of the microinversions to less than the
length of an individual sequencing read (i.e., focusing on

inversions that are <400 bp for Sanger sequencing).
Comparing closely related taxa also has the potential to
facilitate microinversion identification. Indeed, most
microinversions identified in a comparison of four
mammalian genomes were found in the two most clo-
sely related taxa [1]. Here we use these strategies to
identify microinversions in non-coding regions asso-
ciated with 17 loci from 169 birds. We examined varia-
tion among loci in the microinversion rate (hereafter
abbreviated lMI), identified phylogenetically informative
and homoplastic microinversions, and found evidence
that the number of microinversions has been underesti-
mated in previous large-scale studies.

Methods
Sequencing, Alignment and Microinversion Identification
We primarily used published data [26-28], although
some novel CLTCL1 sequences were generated using
the primers and PCR conditions from Kimball et al. [29]
(for details, see Additional file 1). For this study, we
focused on shorter sequences with extensive taxon sam-
pling (Table 1) instead of complete genomic sequences
[26-28]. Sequences were aligned manually, sometimes
starting from an alignment produced in an automated
manner (i.e., using Clustal [30] or MAFFT [31]). Align-
ments were refined iteratively with input from at least
two different individuals. During this process alignments
were examined carefully; this resulted in the identifica-
tion of a number of microinversions “by eye” (Addi-
tional file 2, Table S2).
Microinversions were also identified by a computa-
tional method that combined the multiple sequence
alignments with the results of complementary strand
alignments for all pairs of sequences (Additional file 2,
Figure S1). The pairwise complementary strand align-
ments were generated using bl2seq [32] and YASS [33]
and mapped onto the multiple sequence alignments
using a program written by ELB. This program saved a
table that included the first and last positions of each
pairwise complementary strand alignment in the multi-
ple sequence alignment and highlighted the overlap-
ping pairwise complementary strand alignments (an
example is presented in Additional File 3 along with a
description of the algorithm in pseudocode). Microin-
versions are expected to result in complementary
strand alignments that either overlap or are located
near each other in the sequence alignment. The pre-
sence or absence of microinversions at each position
identified as a significant complementary strand hit
involving sequences that were overlapping or located
near each other in the multiple sequence alignment
was then validated by visual inspection. Microinversion
endpoints were assigned based upon the length of the
complementary strand alignments, although there were
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some cases where inversion endpoints were difficult to
identify (e.g., Figure 2). Validating microinversions
shorter than 5 bp was difficult, so that was the mini-
mum size considered.

The DNA mfold server (http://mfold.bioinfo.rpi.edu/cgi-
bin/dna-form1.cgi; [34]) was used to search for stem-
loop structures, and the MEME server (http://meme.
sdsc.edu/meme4_4_0/intro.html) was used to search for
sequence motifs that might be associated with
inversions.

Patterns and Rates of Microinversion Evolution
Microinversions were coded as binary characters, and
PAUP* 4.0b10 [35] was used to calculate numbers of
inversion events using maximum-parsimony (MP) and
the Hackett et al. [27] topology. lMI was expressed as
microinversions Mb-1 MY-1 to facilitate comparison to
other studies [6]. The null hypothesis of equal genome-
wide microinversion rates was tested as described by
Han et al. [36]. Briefly, a global Poisson model (which
assumes equal genome-wide rates) was used as the null
hypothesis, and the fit of that null model was compared
to that of the more general negative binomial (NB)
model (which permits variation in lMI) using a likeli-
hood ratio test (LRT). See Additional file 2 for details.

Phylogenetic Analyses
Phylogenetic analyses of the CLTC alignment, con-
ducted to provide an estimate of the CLTC gene tree,
used RAxML 7.0.4 [37]. Microinversions and sites with
gaps and/or missing data in more than 50% of taxa were
excluded before conducting the RAxML search. See
Additional file 2 for details.

Results and Discussion
Many Avian Microinversions were Identified
Manual and automated searches revealed that non-cod-
ing regions associated with 11 of the 17 loci we exam-
ined contained microinversions (e.g., Figure 2) ranging
from 5 bp to 38 bp (Additional file 2, Table S2). Their
median length was 22 bp. A number of the microinver-
sions identified here were much shorter than those
reported in genome-scale comparisons of mammals

Figure 2 Example of a microinversion. (a) A conserved region in TPM1 intron 6 with a 24 bp microinversion (outlined in white) in Trogon
personatus. (b) Inverting the Trogon sequence (indicated in lower-case) results in a sequence identical to Pharomachrus auriceps, its sister taxon
in the tree.

Table 1 Estimates of the microinversion rate (lMI) for
different loci

Locus Chra Mean
Non-
coding
Length
(bp)

Treelength
(MY)b

# of
Inversionsc

Estimated
Rate (lMI)
(inversions
Mb-1 MY-1)

CLTCL1 15 360 8890 5 1.58

CLTC 19 1310 9280 19 1.56

PCBD1 6 800 9150 5 0.68

HMGN2 23 1340 5400 4 0.55

EEF2 28 1210 9230 6 0.54

IRF2 4 600 9090 2 0.37

GH1 27 1030 9090 3 0.32

ALDOB Z 1450 8850 4 0.31

TPM1 10 450 8090 1 0.28

FGB 4 2070 9360 4 0.21

TGFB2 3 560 9360 1 0.19

CRYAA 1 930 8740 0 0

EGR1 13 490d 8970 0 0

MB 1 680 9190 0 0

MUSK Z 510 8810 0 0

MYC 2 620d 9240 0 0

RHO 12 1190 8990 0 0

Overall – 15600 – 54 0.39

Excluding
hotspotse

13930 – 30 0.25

a Chromosomal location in the chicken (Gallus gallus).
b Sum of the branch lengths after rate smoothing in millions of years (MY).
Divergence times were calibrated by assuming of a mid-Cretaceous (~100
MYA) origin of Neoaves. Differences among loci reflect the amounts of
missing data.
c The number of inversion events based upon the MP criterion.
d The non-coding portions of two loci (EGR1 and MYC) include 820 bp of 3’
UTR. All EGR1 non-coding sequence is 3’ UTR and about half (330 bp) of MYC
non-coding sequence is 3’ UTR.
e CLTC and CLTCL1 were excluded for this estimate.

Braun et al. BMC Evolutionary Biology 2011, 11:141
http://www.biomedcentral.com/1471-2148/11/141

Page 4 of 10

http://mfold.bioinfo.rpi.edu/cgi-bin/dna-form1.cgi
http://mfold.bioinfo.rpi.edu/cgi-bin/dna-form1.cgi
http://meme.sdsc.edu/meme4_4_0/intro.html
http://meme.sdsc.edu/meme4_4_0/intro.html


[1,16], where the smallest microinversions were 23 bp
and 31 bp, respectively. Although it is possible that
birds and mammals have distinct microinversion size
spectra, it seems more likely that the large-scale surveys
of mammalian data failed to identify the shortest
microinversions.
If lMI was similar in birds and mammals, fewer than

four microinversions would be expected given the
amount of sequence data examined; instead, microinver-
sions were identified at 49 positions (Table 1). Ma et al.
[1] reported that short inversions are more common
than long inversions. If this pattern continues as micro-
inversions become even shorter than those they identi-
fied, the larger number of microinversions that we
observed could reflect our identification of smaller
inversions rather than any inherent difference between
mammalian and avian genomes. The denser taxon sam-
pling in our study, relative to whole genome studies in
mammals, is also likely to have improved microinversion
identification. Taken as a whole, our results suggest that
previous studies that used mammalian data [1,6] under-
estimated lMI.
The identification of microinversions can be difficult

because point mutations and insertion-deletion events
(indels) continue to accumulate after inversions. This
has the potential to make ancient microinversions parti-
cularly difficult, or impossible, to identify. Denser taxon
sampling can help by increasing the number of
sequences closely related to those with the microinver-
sion and by providing multiple versions of the inverted
sequence (Additional file 2, Figure S1). Although the
taxon sampling for this study was denser than previous
surveys that used mammalian data, computational
searches for microinversions were difficult. Many com-
plementary strand alignments were not validated as
actual inversions; the false positives reflected palin-
dromes and other phenomena. bl2seq performed better
than YASS, producing fewer false positives while still
identifying all of the microinversions also found by
YASS. However, even after employing two computa-
tional approaches, some microinversions were only iden-
tified “by eye” (Additional file 2, Table S2), suggesting
that further improvements to the methods used to iden-
tify microinversions are required.
Most microinversions were assigned to terminal

branches in the Hackett et al. [27] phylogeny (Figure 3)
when the MP criterion was used. This raises the ques-
tion of whether an acquisition bias caused us to miss a
number of ancient microinversions that occurred closer
to the base of the tree. However, the structure of the
avian tree of life is dominated by a rapid radiation at
the base of Neoaves, the most speciose avian supergroup
(identified in Figure 3), leading to a tree dominated by
terminal branches. Indeed, 70.8% of the overall

treelength in the Hackett et al. ML tree [27] comprises
terminal branches. The number of microinversions
observed on terminal branches was not significantly dif-
ferent from expectation given the proportion of the tree
that reflected internal and terminal branches (c2 = 3.0;
P = 0.08). Thus, acquisition bias did not have a major
impact upon our ability to identify ancient inversions.

Avian Microinversion Rates Vary Among Loci
Estimates of lMI differ among loci (Table 1). The Pois-
son model of microinversion accumulation (the null
hypothesis) was rejected in favour of the NB model
(which includes rate variation) using the LRT (2δlnL =
27.55; P < 10-6). Excluding the highest-rate loci (CLTC
and CLTCL1) eliminated our ability to reject the Poisson
model (2δlnL = 2.29; P = 0.13) and reduced the lMI

estimate to 0.25 microinversions Mb-1 MY-1 (the value
presented in Figure 1; 95% confidence interval of 0.17 -
0.36). This suggests a “hotspot” model in which CLTC
and CLTCL1 are inversion-prone. However, even the
lower estimate of lMI for “non-hotspot” loci greatly
exceeded previous estimates of lMI, consistent with our
hypothesis that the identification of microinversions,
especially the shortest inversions, has been improved
relative to prior studies.
Surprisingly, both hotspot loci encode clathrin heavy

chains, which are proteins critical for endocytosis [38],
suggesting that the high microinversion rates could
reflect their functional similarities. However, these cla-
thrin heavy chain paralogs arose by duplication early in
vertebrate evolution [39], and the homologous introns
in CLTC and CLTCL1 do not exhibit detectable
sequence similarity. Although specific intronic motifs
can be overrepresented in functionally related genes
[40], motifs common to the CLTC and CLTCL1 introns
were not identified (data not shown). This suggests that
it will be necessary to identify additional hotspot loci to
understand the basis for inversion hotspots.
Microinversions were absent in some loci (Table 1),

but it is unclear whether this reflects stochastic variation
or the existence of “coldspots”. 3’ UTRs are coldspot
candidates because they exhibit a lower rate of sequence
evolution than introns [29,41] and they are known to
include regulatory elements [42]. Many of these regula-
tory sequences are non-palindromic [43,44] and are
unlikely to remain functional after inversion. Two to
three microinversions were expected in our 3’ UTR data
(assuming equal rates for non-hotspot loci), but none
were identified. We examined 3’ UTRs from five addi-
tional loci (ALDOB, CRYAA, EEF2, HMGN2, and
PCBD1), four of which have intronic microinversions
(Table 1), by examining 23 members of the avian order
Galliformes [41]. A 36 bp microinversion is present in
the Rollulus roulroul PCBD1 3’ UTR, indicating that
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Figure 3 Microinversions indicated on the Hackett et al. [27]phylogeny. Inversions in introns are indicated with tick marks (blue for no
homoplasy, green for the homoplastic inversions in CLTC intron 6, and red for the homoplastic inversions in CLTC intron 7). The 3’ UTR inversion
the PCBD1, which was obtained from selected galliform (see Results and Discussion), is indicated with a blue diamond. This mapping of
character state changes assumes a reversal to the ancestral state in Psittaciformes for the CLTC intron 7 microinversion (indicated by an X over
the red tick mark). An inversion in CLTCL1 where Palaeognathae and Neognathae differ is shown along the root branch. Orders united by
microinversions are indicated using names above the branch uniting them and brackets to the right. The order Galliformes is emphasized
because 3’ UTRs were sequenced from additional taxa in that order (see text). This phylogeny is presented as a cladogram because many
internal branches are very short and this presentation makes it easier to locate the inversion events. For branch length information refer to
Figure 3 in Hackett et al. [27] and the chronogram presented for this publication (Additional file 2, Figure S3).
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these regions are not absolutely refractory to microin-
versions. Thus, future surveys should include 3’ UTRs to
improve lMI estimates for those regions and establish
whether they exhibit among-locus rate variation similar
to introns.

Homoplastic and Overlapping Microinversions Exist
Two microinversions in CLTC appeared homoplastic
because the inverted forms were present in divergent
lineages (e.g., Additional File 2, Figure S2). These homo-
plastic microinversions required at least three (CLTC
intron 6) or four (CLTC intron 7) changes on the Hack-
ett et al. [27] phylogeny using the MP criterion to
explain the observed distribution of character states
(Figure 3). Errors in the phylogeny are unlikely to
explain this observation, since the relevant branches are
well supported (compare Figure 3 to Figure 2 of Hackett
et al. [27]; also see Additional File 2, Figure S2). More-
over, when these microinversions were mapped on other
recent estimates of avian phylogeny using the MP criter-
ion they require similar levels of homoplasy. These
other estimates of phylogeny are based upon nuclear
[26,45], mitochondrial [46-48], and morphological data
[49,50], as well as expert opinion (e.g., Figure 27.10 in
Cracraft et al. [51] and Figure 5 in Mayr [52]).
Hemiplasy is unlikely to explain the observed homo-

plastic microinversions for two reasons. First, hemiplasy
would require maintenance of polymorphic inversions
over multiple, long internal branches (estimates of
branch lengths are presented as a chronogram in Addi-
tional File 2, Figure S3). Second, the estimate of the
CLTC gene tree was not consistent with the microinver-
sion distribution (Additional file 2, Figure S4), even in
the single case in which branch lengths are short
enough that hemiplasy is plausible. Thus, the CLTC
inversions reflect genuine homoplasy, not hemiplasy, a
novel finding for microinversions in animal nuclear
genomes.
In addition to the homoplastic microinversions in

CLTC, we also found several overlapping microinver-
sions (Additional file 2, Table S2). All of these overlap-
ping microinversions reflected independent inversions in
distinct lineages. We identified two overlapping microin-
versions in CLTC and one in CLTCL1; the two overlap-
ping microinversions in CLTC (INV-14 and INV-15; see
Additional file 2, Table S2) also overlapped with one of
the homoplastic microinversions in CLTC (INV-13).
Thus, there were at least 12 inversion events in four
specific regions of the two hotspot loci. There were also
two additional overlapping inversions in low-rate loci
(EEF2 and IRF2). Neither the homoplastic nor the over-
lapping microinversions were associated with stem-loop
motifs (e.g., Additional file 2, Figure S4) or any other
motifs that could be identified using MEME. These

homoplastic and overlapping microinversions indicate
that the actual state space for microinversions is likely
to be smaller than their potential state space.

Are Microinversions useful for Phylogenetics?
Although the existence of homoplastic microinversions
demonstrates that they are not perfect characters, they
still have the potential to be useful phylogenetic mar-
kers. The retention index of microinversions (RIMI =
0.949) given the Hackett et al. [27] tree is substantially
higher than the retention index for nucleotide changes
(RIintron = 0.52, RIcoding exon = 0.54, RIUTR = 0.58). Such
low amount of homoplasy suggests that an appropriate
analytical approach (that accommodates homoplasy and
hemiplasy) should yield an accurate species tree given a
sufficient number of inversions.
Branches at the base of Neoaves are very short and

this radiation is a classic example of a “bush” phylo-
geny [27]. In fact, the base of Neoaves has even been
suggested to be a “hard” polytomy [53]. Hard poly-
tomies reflect genuine multiple speciation events, so
they cannot be represented as bifurcating trees. Even if
Neoaves is a “soft” polytomy, many branches are likely
to be <1 MY in length (Additional File 2, Figure S3;
also see [26,45]). The low estimates of lMI imply that
microinversions will seldom occur along these short
branches. How much sequence data would be neces-
sary to resolve internodes of this length using microin-
versions? Power analysis assuming 1 MY branch
lengths using the rate estimate that excludes the hot-
spot loci [54] indicates ~1.2 Mbp of non-coding
sequence per taxon is needed to find at least one infor-
mative inversion and ~12 Mbp per taxon to identify an
inversion on a specific branch (Additional file 2, Table
S3). This estimate is orders of magnitude larger than
the amount needed for of conventional analyses of
sequence data (cf. Chojnowski et al. [26]). Moreover, it
is desirable to identify multiple informative inversions
along internodes given the potential for hemiplasy and
homoplasy, suggesting that the use of microinversions
as the sole source of information to estimate a phylo-
geny similar to the avian tree of life would require
even more data (Additional file 2, Table S3).

Microinversions and Multiple Sequence Alignment
The identification of microinversions is also important
to ensure correct sequence alignment. Otherwise esti-
mates of the amount of evolutionary change will be dis-
torted, potentially resulting in incorrect phylogenetic
estimation [19]. Algorithms for sequence alignment that
include the possibility of inversions have been proposed
[55-57], and they have the potential advantage of incor-
porating explicit penalties for inversion events. However,
the optimal inversion penalty to limit false positives may
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be difficult to determine and the available algorithms are
limited to the identification of non-overlapping microin-
versions. Overlapping microinversions were found at
four loci that we examined, suggesting that the inability
to identify overlapping inversions may represent a major
limitation. Overlapping and homoplastic microinversions
can be divided into three basic categories (Additional
file 2, Figure S6), and the strategy we employed should
be able to detect two of these categories efficiently. The
third category (type III in Additional file 2, Figure S6,
which corresponds to the case of multiple homoplastic
or overlapping inversion events on a single branch) is
expected to be rare. It may be possible to overcome this
problem in a multiple sequence alignment framework
using a divide-and-conquer approach by selecting sub-
sets of taxa for which overlapping microinversions are
less likely to be present. This would necessitate a subse-
quent assembly of the alignments. Moreover, such an
approach might eliminate the benefits of dense taxon
sampling. Despite these limitations, fully automated
approaches could be less labour intensive than our
approach. However, it is unclear whether microinversion
identification can be fully automated since our results
suggest that short microinversions may always require
manual validation. Taken as a whole, these issues
further emphasize the need to continue to improve algo-
rithms for the detection and alignment of these interest-
ing genomic changes.

Conclusions
These analyses demonstrate that the identification of
microinversions is important, despite the relatively low
rate of accumulation of these genomic changes. This
study revealed that microinversions accumulate more
rapidly in avian genomes than expected based upon
prior analyses of mammalian genomes, although this dif-
ference is likely to reflect the failure to identify very
short inversions in the large-scale comparisons of mam-
malian data. If this failure to identify short microinver-
sion does explain the differences among this and
previous studies, the estimates of lMI presented here,
which are similar to the rate of accumulation of the
most common type of avian TE insertion (Figure 1),
may be more typical of vertebrate genomes. This likeli-
hood that typical vertebrate lMI values may be higher
than suggested by previous studies emphasizes the
importance of understanding the impact of microinver-
sions upon genome evolution. We also documented the
existence of microinversion hotspots, suggesting that
some regions of the genome are especially prone to
these mutations. The identification of additional hot-
spots may provide information about the mechanistic
basis of these mutations. Indeed, we were able to
exclude one proposed mechanism, the existence of

conserved stem-loops, based upon an examination of
the inversion hotspots identified here. Despite our
observation that microinversions can exhibit homoplasy,
they are still relatively reliable RGCs and as such may
define gene tree bipartitions more accurately than con-
ventional sequence data (see Nishihara et al. [58]). In
the future, analytical methods that integrate microinver-
sions with sequence data and information about other
RGCs (and incorporate the potential for both hemiplasy
and homoplasy) will facilitate robust resolution of diffi-
cult nodes in the tree of life and provide additional
insights into the mechanism(s) responsible for their
accumulation over evolutionary time.

Additional material

Additional file 1: Taxon list. List of the taxa used for this analysis and
the accession numbers for the novel CLTCL1 sequences collected for this
study, in Microsoft Excel format.

Additional file 2: Supplementary information. Six figures, three tables,
and supplementary methods (including the details of the literature
survey used to estimate the rates of various types of genomic changes
and the power analysis described in the main text), in pdf format.

Additional file 3: Details of a microinversion search. An example of a
microinversion search (of TPM1 intron 6) is presented along with a
description of the search algorithm using pseudocode, in Microsoft Excel
format.
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