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Abstract

Sports analytics—broadly defined as the pursuit of improvement in athletic performance
through the analysis of data—has expanded its footprint both in the professional sports
industry and in academia over the past 30 years. In this paper, we connect four big ideas
that are common across multiple sports: the expected value of a game state, win probability,
measures of team strength, and the use of sports betting market data. For each, we explore
both the shared similarities and individual idiosyncracies of analytical approaches in each
sport. While our focus is on the concepts underlying each type of analysis, any implementation
necessarily involves statistical methodologies, computational tools, and data sources. Where
appropriate, we outline how data, models, tools, and knowledge of the sport combine to
generate actionable insights. We also describe opportunities to share analytical work, but
omit an in-depth discussion of individual player evaluation as beyond our scope. This paper
should serve as a useful overview for anyone becoming interested in the study of sports
analytics.

Keywords sports analytics · R packages · sports data · pairwise comparisons · datasets

1 Introduction

Insights derived from the analysis of data have transformed the world of sports over the last few decades.
While baseball—a naturally discrete sport with more than a century’s worth of professional data—may be the
sport with the longest relationship with sports analytics, one would be hard-pressed to identify a professional
sport today in which sports analytics is not having an impact. In basketball, analytics has driven a shift in
the conventional wisdom about shot selection. Most teams are shooting more three-pointers, settling for fewer
long two-point shots, deploying more versatile defenders, and relying less on the strategy of pounding the ball
into the paint in an attempt to get a high-percentage shot (Schuhmann, 2021). In American football, teams
are going for it on fourth down far more often than in the past, a direct result of statistical analysis showing
that most teams were previously overly conservative (Lopez, 2020). And, of course, in baseball, teams are
using defensive shifts to maximize the probability of recording an out, encouraging hitters to improve their
launch angles, and optimizing pitcher repertoires to minimize contact (Healey, 2017).
These are just the most obvious examples of strategic changes that are fueled by insights extracted from data
by practitioners of sports analytics. Similar insights are now being made in less obvious settings, including
esports (Clark et al., 2020; Maymin, 2021). These insights come both from academia, where researchers
typically use public data to produce high-caliber, peer-reviewed scientific work, as well as from industry, where
highly-trained analysts work with with players, coaches, and team officials to put new ideas into immediate
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effect thanks to high-resolution, often proprietary data. A growing pool of people move seamlessly between
these two worlds, leading to the formation of partnerships and the cross-pollination of ideas.
Every sport is different, with its own set of rules, strategies, methods of data collection, number of players,
and the magnitude of the role of chance. At the same time, many sports are similar, either because one
evolved from the other, or the structure of the games share certain attributes. Sports that are closely related
historically may or may not share common applications of analytical methods. For example, despite belonging
to the same bat-and-ball family, baseball and cricket differ in strategies such as batting order or sacrifice
plays. Conversely, with just a few small tweaks, analytical metrics might work just as well across sports that
are unrelated and quite different. For instance, an Elo rating could be equally valid for chess players and ice
hockey teams.
In this paper, we explore four key ideas that have widespread applicability across many sports: the expected
value of a game state (Section 2), win probability (Section 3), measures of team strength (Section 4), and the
use of sports betting market data (Section 5). In each case, we define the concept mathematically, explain
how it originated, and give examples of its applications in multiple sports. Our goal is to unify the conceptual
threads, while doing some justice to the customizations necessary to make a metric meaningful in a particular
sport. We include copious references to original works of scholarship.
Doing the work of sports analytics requires computing with data. While the sources of sports data are too
numerous to list, in Section 6 we highlight a few computational tools (including a table of R packages) that
make this kind of work possible. Section 7 lists several opportunities for disseminating work publicly. We
conclude in Section 8 with a short discussion of some ideas that are not explored in this paper. Notably, we
omit a treatment of individual player ratings for team sports, since this concept has been covered ably in
these pages by Albert (2015), and its inclusion would double the length of this manuscript. We do, however,
discuss individual player ratings in the context of one-person teams (e.g., chess, tennis) in Section 4.
We encourage readers to explore Cochran et al. (2017) and Albert et al. (2016) for collections of articles in
sports analytics that provide broad coverage of the field.

2 The expected value of a game state

In many sports, the first step towards an analytical understanding is the estimation of the expected value of
a game state at any given point in it. Mathematically, we define X to be a random variable indicating the
number of points (or runs) that a team will score over some determined amount of time (e.g., remainder of
game, quarter, period, or inning). Let s ∈ S be a tuple that encodes the state of a game. Then our task is to
estimate:

E[X|s] =
∑
x≥0

Pr[X = x|s] · x , (1)

for any state s ∈ S, where Pr[X = x|s] is the probability of scoring x points given that the game is in state s
and S is the set of all possible states.
The concept of a state is easier to grasp in a sport that can be modeled as discrete (in the sense of discrete
event simulation). By discrete, we mean a sport that can be easily broken into short, distinct segments of
action which are typically summarized categorically. Each of these segments might represent a state s. For
example, each pitch in baseball is either a ball or a strike. If the ball is put in play, then there may be a
complex sequence of movements by the players, but ultimately (within a few seconds) that sequence will end
and no more action will be permitted until the next pitch. At the beginning and end of each phase of action,
we will know definitively which team is on offense and defense, which runners are on which bases, the score,
how many outs there are, etc. Tennis could similarly be viewed as a series of discrete actions defined by each
point. To say that a player is winning 6-2, 3-1, 40-15 and serving with one fault committed is to characterize
the state of the match. In American football, the game can be broken down into a discrete sequence based
on each down. Contrast this to sports like lacrosse, soccer, or any variant of hockey, which feature largely
running clocks and continuous player movement. In these sports, it is not obvious how to break up the action
into discrete chunks.
In this Section, we illustrate how the fundamental concept of the expected value of a game state leads to
compelling findings in a variety of sports.
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Table 1: George Lindsey’s expected run matrix. Note how (when reading across the rows) the expected runs
decrease as outs increase for the same configuration of baserunners, while (when reading down the columns)
expected runs generally increase as baserunners advance. 000 means no runners on base, and 110 means
runners on second and third bases.

Out
Base 0 1 2
000 0.461 0.243 0.102
001 0.813 0.498 0.219
010 1.194 0.671 0.297
011 1.390 0.980 0.355
100 1.471 0.939 0.403
101 1.940 1.115 0.532
110 1.960 1.560 0.687
111 2.220 1.642 0.823

2.1 Discrete event analysis

First, we explore results derived from the expected value of a state in sports where discrete event analysis
is common. We draw primarily on baseball and American football, but applications in other sports (e.g.,
tennis) are common (see for example, Kovalchik & Reid (2019)).

2.1.1 In baseball, the expected run matrix

In baseball, s is typically determined by two factors: the configuration of the runners on base (there are 8
possibilities) and the number of outs (3 possibilities). Thus, there are |S| = 24 = 8 · 3 basic states of an inning
in baseball1, and we are often interested in the number of runs that will be scored from some state until the
end of the inning. In this example using baseball, E[X|s] is the expected number of runs scored between now
and the end of the inning given that the inning is currently in state s. The collection of estimates E[X|s] for
all 24 states is called the expected run matrix 2, and it is foundational in baseball analytics.
Early work on this topic can be found in Lindsey (1963), who used play-by-play data to compute an empirical
estimate for the mean number of runs scored in the remainder of the inning for each of these 24 possible
states of an inning. This line of work led to analysis of all types of common baseball strategies. For example,
many baseball teams elect to attempt a sacrifice bunt with a runner on first and no one out in the inning,
with the goal of moving the runner to second base, at the cost of the batter being out. Figure 1 shows a
reproduction of Lindsey (1963)’s original calculations, and Table 1 shows the expected run matrix in its most
common form.
Tango et al. (2007) (and many subsequent analyses) conclude that the sacrifice bunt is rarely worth it,
because most teams would be expected to score more runs with a runner on first and no outs than they
would with a runner on second and one out.
It is worth emphasizing that the values in E[X|s] are estimates, and the precision of those estimates has
many subtleties.
First, the values within the expected run matrix change over time. For example, any estimation of the values
in the expected run matrix based on data from a high-scoring era (e.g., the early 2000s) will yield different
values than equivalent analysis in a low-scoring era. In a high run-scoring environment, where there are
many home runs, the value of a walk may be higher, since a player who walks is more likely to score on a
subsequent home run. Conversely, in a low run-scoring environment where hits are hard to come by, stolen
bases and sacrifice bunts may be comparatively more valuable. Thus, a careful estimate of E[X|s] would
include a time parameter t, indicating when the estimate is appropriate.

125, if you include the absorbing state of 3 outs that describes the end of an inning.
2There is no inherent dimensionality to E[X|s]. The matrix nomenclature stems from its values typically being

displayed in 8 × 3 grid. However, when computing with E[X|s], it is most often convenient to treat it as a 24 × 1
vector.
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Figure 1: Table 1 from Lindsey’s original paper. The column labeled E(T,B) gives the expected run matrix
as a vector, based on Lindsey’s analysis of Major League Baseball data from 1959 and 1960.
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Figure 2: Table 1 from Carter and Machol’s original paper. Note the monotonic increase in expected point
values as the team gets closer to the endzone.

Second, the characterization of S as having 24 states is only the simplest possible. The inning, or the score of
the game, or even the weather, could be incorporated into S, as those conditions might reasonably affect the
estimate of E[X|s]. More definitively, the identity of the current batter, pitcher, or batter on deck, might also
affect the estimate of E[X|s]. Indeed, Tango et al. (2007) show that when a particularly weak-hitting batter
is up (i.e., the pitcher), a sacrifice bunt becomes a more effective strategy.
See Albert & Bennett (2001) for a fuller discussion of the use of the expected run matrix in baseball and
Marchi et al. (2018) for examples of how to estimate the expected run matrix using Retrosheet data and the
R statistical computing language (R Core Team, 2022).

2.1.2 In American football, expected points

The concept of estimating the value of the state of a game is easily extended to other sports. For example, in
American football, s is determined by situational variables such as down, yardage to the next first down,
time remaining in the game, and field position.
The task of estimating expected points of possession in football goes back to Carter & Machol (1971), who
estimate the expected points for 1st and 10 plays in the NFL, given any yard line on the football field. Due
to limitations regarding the amount of data collected, the authors divide football field into 10-yard buckets,
centered at their midpoints (e.g. 5, 15, 25, 35, etc.), before averaging the value of the next scoring instance
across the field to obtain the expected points. Figure 2 shows a reproduction of Carter & Machol (1971)’s
estimates. As expected, the estimated expected points increases monotonically as the teams gets closer to
the endzone. One limitation of this approach is the linearity assumption, which results in a high negative
expected point value when the offensive team is 95 yards away from the opponent’s goal line.
Early work on expected point values in American football can also be found in Carroll et al. (1988). In
particular, the authors consider a similar approach to Carter & Machol (1971) and propose a linear model
for expected points in the NFL. They determine that every extra 25 yards is associated with 2 more points
scored on average for a football team.

5
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Other attempts at modeling expected points in football are Goldner (2012) and Goldner (2017), who propose
a Markov framework. In particular, the author considers a football drive as an absorbing Markov chain,
consisting of distinct absorbing states that include touchdowns, field goals, and other possession outcomes.
An absorbing state is a link in a Markov chain from which there are no possible transitions (i.e., it is the end
of the chain). For any given play, the expected points are calculated using the absorption probabilities for
different scoring events.
A more in-depth overview of the history of expected points in sports is provided in Yurko et al. (2019) (Section
1.1). Most importantly, Yurko et al. (2019) use publicly available data provided by the nflscrapR package
(Horowitz et al., 2020) to model the expected points on a play-by-play level in football. The authors introduce
a multinomial logistic regression approach, which takes into account the current down, time remaining, yards
from endzone, yards to go, and indicators for goal down situation and whether there are less than two minutes
remaining in the half. Their model estimates the probabilities of the following possible scoring outcomes
after each play: no score, safety, field goal, and touchdown for both the offensive and defensive teams, all of
which have a point value. The expected points for a play can then be calculated accordingly, by summing up
the products of the scoring event point values and their associated probabilities (see Equation 1).
In addition, Pelechrinis et al. (2019) develop an expected points framework in the same spirit as the previous
work, but account for the strength of the opponents in their method. They state that by failing to account
for opponent strength appropriately, about 124.8 points per team each season (or about 3.8 wins per season)
are not credited correctly. This is a substantial amount in a 16-game season.

2.1.3 In American football, 4th down strategy

The concept of expected points in American football has many applications. One of the most notable and
well-studied topics is the evaluation of 4th down strategy. There is near universal consensus in the literature
that NFL teams have been too conservative in the past when making 4th down decisions.
Romer (2006) examines 4th down decisions in the NFL using expected points by focusing only on examples
from the first quarter of a game (to avoid issues with end-of-half and end-of-game decision making). They
concluded that teams don’t go for it enough if teams are trying to maximize their probability of winning the
game.
Numerous other papers (see Lopez (2020) for details) use the analysis of the expected number of points to
improve fourth down strategy. In addition to Romer (2006), later work by Yam & Lopez (2019) uses win
probability (see Section 3), rather than expected points, and a causal inference framework to reach similar
conclusions that NFL teams are too conservative in going for it on 4th down. In addition, they estimate that
a better strategy would be worth about 0.4 wins per season on average, a substantial amount comparable to
the effect size reported by Pelechrinis et al. (2019) above.
Lopez (2020) presents an introduction to NFL tracking data, and examines 4th down behavior as an example
of the type of problem that can be more thoroughly studied with the increase in granularity of the tracking
data over traditional NFL data. In the past, when looking at down and distance data to study whether NFL
coaches are making good decisions about whether to “go for it” or punt on 4th down, the distance data is only
a rounded approximation of the true distance “to go” (i.e. 1 yard, 1 foot, and 1 inch will all be recorded as
4th and 1. In fact, anything up to 2 yard will recorded as 4th and 1 (Lopez, 2022). However, a coach on the
field during a game will be able to clearly see the difference between 1 inch and 1 yard, and this information
will factor into their decision making. With tracking data, the “to go” distance can be much more accurately
assessed and therefore evaluation of 4th down coaching decisions can now account for this “extra” information
that is available to a coach on the field of play, but not recorded in traditional NFL data. Many past analyses
of the decision to go for it or not on 4th down conclude that coaches in the NFL are too conservative in their
decision making. Lopez (2020) also concludes that coaches are too conservative on 4th down decision making,
but notes further that past estimates of the magnitude of how conservative coaches are on 4th down may be
overstated due to the way in which to go yardage was recorded only approximately in the past.

2.1.4 Other applications of expected points in American football

Researchers have also applied the notion of expected points to investigate other aspects of the game of
football, including quarterback performance and coaching decisions.
For quarterback evaluation, White & Berry (2002) present a tiered logistic regression method that can be, in
general, applied to any regression setting with a polychotomous response. Using this technique, they estimate
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the value of NFL plays using a simple expected points model with down, yards to go, and yards to goal as
predictors. Accordingly, the model results are utilized to obtain ratings and rankings for NFL passers.
Alamar (2010) implements an expected points framework to examine play calling in the NFL. However, rather
than assessing each play on its own, they evaluate the play in the context of the drive. Based on play-by-play
data from 2005 through 2008, they determine that teams are under-utilizing passing plays in some situations.
Another application of expected points is to evaluate kickoff decisions made by football coaches, as demon-
strated by Urschel & Zhuang (2011). Specifically, they look at surprise on-sides kicks versus regular kickoffs
and the decision to accept a touchback versus returning the kickoff. Using data from the 2009 NFL season,
they conclude, as many have, that coaches in the NFL tend to make conservative decisions.

2.2 Continuous event analysis

Even in sports where the concept of a state is more difficult to define, the value of a possession can be
estimated with the help of tracking data. Over the past decade or so, professional sports leagues have
collected tracking data which record the locations of all players and the ball (or puck) throughout a game.
This high-resolution data allows researchers to produce advanced analyses of the captured spatiotemporal
information and better understand the game. This is a great leap forward from older resources such as
traditional box-score results and play-by-play data.

2.2.1 In basketball, expected point value

In basketball, Cervone et al. (2014) and Cervone et al. (2016) introduce expected possession value (EPV) as
a means toward an assessment of a player’s on-court performance. This metric is a continuous-time estimate
of the expected number of points for the offensive team on a given possession using player and ball locations.
The EPV takes into account all possible outcomes (a shot attempt, a pass, etc.) for a given player with
the ball, with different weights being assigned to each decision. The computation of the EPV statistic is
done using a (technically discrete) Markov model conditioned on spatial locations. Consequently, the authors
derive a metric called EPV-Added (EPVA), measuring a player’s EPV contribution in a given situation
relative to a league-average player.
A demonstration of the EPV model presented in Cervone et al. (2016) is available at https://github.
com/dcervone/EPVDemo. Figure 3 illustrates how the provided tracking data informs the evolution of EPV
throughout the play. It displays a snapshot of a possession during the NBA regular season matchup between
the Miami Heat and the Brooklyn Nets on November 1, 2013. Miami is the team on offense in this possession,
whose outcome is a 26-foot three-point miss by Mario Chalmers. The plot consists of two elements: 1)
(bottom) the player locations on the court at a particular moment in this possession: when the ball just left
Chalmers’s hands, and 2) (top) a line graph showing how the EPV changes continuously throughout the play
until the three-point attempt. For this possession, the estimated EPV for the Miami Heat reaches its peak at
1.276 points at the moment the shot is taken.
Note that Miami starts the play with an EPV of approximately 1.0 points, which indicates their implied
average points per possession. Chalmers’ shot is worth 3 points, so the EPV of 1.276 points implies that the
model estimate of the probability of Chalmers making this shot is 42.5%. A breakthrough in this work is
that this estimate is conditional on the locations of the other 9 players on the basketball court.
Another framework for estimating expected points in basketball is proposed by Sicilia et al. (2019). The
authors offer a different point of view on expected points, where they first consider a classification model which
returns the probabilities for whether a player would commit a foul (shooting and non-shooting), turnover, or
attempt a shot. The values associated with each of those “terminal actions” are then used to compute the
expected points within a basketball play.
See also Bornn et al. (2017) for more information on how tracking data have enabled advanced statistical
analyses of basketball in recent years. The strategy of maximizing expected points in basketball has led
directly to the proliferation of three-point shooting in the NBA.

2.2.2 In American football, yards gained

In Section 2.1.2, we discussed advances in American football analytics based on discrete game states defined by
down, yards to first down, field position, etc. The advent of player tracking data makes it possible to analyze
American football using continuous states. For example, Yurko et al. (2020) use tracking data provided by
the 2019 NFL Big Data Bowl (see Section 7) to model the expected yards gained for a ball-carrier during the
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Figure 3: Player locations and estimated EPV for a possession during the Miami Heat (red) vs. Brooklyn
Nets (black) NBA game on November 1, 2013. The captured moment is when Miami’s Mario Chalmers
just releases a three-point shot, which ends up as a missed field goal. Figure created by Cervone, et al.
https://github.com/dcervone/EPVDemo

course of a play. As an extension to pre-existing approaches, the authors use conditional density estimation to
obtain a probability distribution for the number of yards gained during the play, rather than only producing
a single estimate for the expected yards gained. Accordingly, the probability of various types of outcomes at
the end of a play such as a touchdown or a first-down gain can be computed from the distribution of the
end-of-play yard line.
Expected point value is also the main component of a novel NFL quarterback evaluation metric introduced by
Reyers & Swartz (2021). The authors take advantage of player tracking data to account for different passing
and running options on the football field that are available to the quarterback. The expected points and
probabilities associated with the possible quarterback options are estimated using the method of ensemble
learning via stacking.

2.2.3 In other sports

The notion of expected possession value has also been extended to association football (soccer). Fernandez et
al. (2021) implement deep learning methods to examine the instantaneous expected value of soccer possessions.
This approach considers passes, ball drives, and shots in soccer as the main set of actions used to compute the
EPV metric. Many applications can be derived from this framework, including predicting which footballer on
the pitch is most likely to receive the next pass from the current on-ball player.
Macdonald (2012) uses expected goals to evaluate ice hockey players, but does not have access to player
tracking data necessary to evaluate possessions. Kumagai et al. (2021) offer an EPV metric for ice hockey
via a Bayesian space-time framework.

2.3 Optimal strategies that don’t maximize expected points

Earlier in Section 2, we defined the expected value of a possession based on the state s of the game in terms
of the expected number of points (runs) X that would be scored in the remainder of some period of time.
We then showed how this value could be used to analyze the relative effectiveness of certain strategies, with
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the simple idea that strategies that yield higher expected values are preferable. Generally, the goal of any
sport is to score more points than the other team, which most often means trying to score as many points as
possible, leading to a general strategy of maximizing expected points. However, there are situations in which
maximizing the number of expected points is not the desired strategy.
For example, in the bottom of the ninth inning of a tied baseball game, the optimal strategy for winning
the game is maximizing the probability of scoring at least one run, which may differ from the strategy of
maximizing expected runs. If we let U be the set of all strategies, then we assert that it is not always the
case that the strategy u ∈ U that maximizes the expected number of points will maximize the probability of
winning:

arg max
u∈U

Pr[X > 0|s, u] 6= arg max
u∈U

E[X|s, u] .

Consider the situation where runners are on first and third base, and the score is tied in the bottom of the
ninth inning with no one out. Information derived from Table 1 reveals that the expected number of runs
scored in the remainder of the inning is 1.94 runs, while the probability of scoring zero runs is 0.13. The
defense is in a tight spot, facing an 87% probability of losing the game. However, by walking the hitter to
load the bases, they create the opportunity to force the lead runner at home and thus reduce the chances of
scoring to 82%, even though they raise the expected number of runs scored to 2.22. In this case, the defensive
team is wise to pursue the strategy of maximizing the expected number of runs scored, because it minimizes
the probability of scoring at least one run.
Maximizing the probability of scoring is optimal in any sudden-death situation, which has (but currently
does not) included overtime in American football (Martin et al., 2018).
The situation gets even more interesting when teams modify both their offensive and defensive strategies
simultaneously. For example, in hockey teams will often pull their goalie when trailing in the final period.
This strategy severely weakens their defense but strengthens their offense. The hope is to score a quick
goal to get back in the game, but the risk is falling further behind. Beaudoin & Swartz (2010) show that
NHL coaches do not always employ the optimal strategies, usually by waiting too long to pull their goalies.
Skinner (2011) develops a general framework for these desperation strategies, which include the onside kick
in American football, pulling the infield and/or outfield in baseball, and of course, the fabled Hack-a-Shaq
strategy in basketball.

3 Win probability

A related, but different concept to expected points is the notion of win probability. Win probability is simply
an estimate of the probability that a team will win the game, given its current state s. Extending the
mathematical framework we defined in Section 2, let Wi be a binary random variable that indicates a win for
team i. Then,

Pr[Wi|s] ,
is the win probability for team i in the state s.
This win probability is closely related to the expected value of a state. Albert (2015) defines the win
probability as:

Pr[Wi|s] =
∑
X≥0

Pr[X|s] · Pr[Wi|X, s] ,

where Pr[Wi|X, s] is the probability that team i will win the game given that they score X points from state
s.
Win probability is easily extended to provide a measure of the impact of sports plays and individual player
contributions, as discussed in Albert (2015). Given its popularity, recent books on sports analytics often
dedicate multiple chapters entirely to win probability. These include Albert & Bennett (2001), Schwarz
(2004), Tango et al. (2007), Albert et al. (2016), and Winston et al. (2022).
In this section, we discuss notable previous work on win probability in baseball, American football, basketball,
and several other sports.

3.1 Baseball

The notion of win probability in baseball goes back to at least as early as Lindsey (1961), who calculates the
expected win probability after each inning based on the distribution of runs scored in each inning. Inspired by
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Lindsey (1961)’s work, Mills & Mills (1970) utilize win probability to introduce Player Win Average (PWA),
a measure of a player’s contribution to the game outcome. In particular, PWA is computed as

PWA = Win Points

Win Points+ Loss Points
,

where the win and loss points represent how much the player positively and negatively impacts their team’s
probability of winning after each play. In effect, the win points are the sum of the changes in Pr[Wi|s] from
one state to the next.
Additionally, a mathematical model for estimating win probability in baseball is presented in Tango et al.
(2007). The authors use Markov chains to look at win expectancy throughout the course of a baseball game.
This approach considers different states of the game such as base, inning, outs and score, and outputs win
probabilities accordingly.
See Albert (2015) for a more detailed historical overview of the use of win probability in baseball.

3.2 American football

In recent years, a number of statistical methods have been used to build well-calibrated win probability
models in American football. These are flexible algorithms that have high predictability, can account for
nonlinear interactions between the explanatory variables, require few assumptions, and produce feature
importance scores.
Lock & Nettleton (2014) implement a random forest framework to provide a win probability estimate before
each play in a football game. Covariates included in this tree-based method are the current down, score
differential, time remaining, adjusted score, point spread, number of timeouts remaining for each team, total
points scored, current yard line, and yards to go for a first down. According to this model, the difference
in score between the two teams is the most important feature for predicting win probabilities at any given
moment in an NFL game.
In addition, Yurko et al. (2019) estimate win probability in the NFL using a generalized additive model
(GAM), as part of the nflscrapR package (Horowitz et al., 2020) and nflWAR framework. This model takes
into account the estimated expected points obtained from the model described in Section 2, along with
other predictors for time, current half, and timeouts. The two win probability frameworks proposed by Lock
& Nettleton (2014) and Yurko et al. (2019) were also implemented in Yam & Lopez (2019) with minimal
modifications. Specifically, the authors combined both approaches to estimate the win probability for each
play, with an overall goal of assessing fourth down decision-making in American football.
A vital highlight of Yurko et al. (2019)’s win probability model is that it is fully reproducible and uses
publicly available data. One of Yurko et al. (2019)’s goals was also to encourage researchers to “use, explore,
and improve upon our work,” which ultimately inspired nflfastR (Carl & Baldwin (2022)), now considered
the successor to nflscrapR.
Figure 4 shows a win probability graph for the 2018 NFL Playoffs Divisional Round matchup between the
New Orleans Saints and the Minnesota Vikings on January 14, 2018. We obtain the estimated probability of
winning for each team using the nflfastR R package, which implements a gradient boosting model via the
xgboost library (Chen et al. (2022)) for estimating win probabilities. Minnesota was leading throughout
the first three quarters of the game, having win probabilities of 0.869, 0.941, and 0.742 at the end of the
first, second, and third quarters, respectively. The win probabilities get close to parity late in the fourth
quarter, when the Saints took the lead with 3:01 left in the game. The last play of this game—famously
known as the Minneapolis Miracle—resulted in a drastic swing in win probabilities for both teams. With 10
seconds remaining in the game, the Vikings begin the final possession with a 25.3% chance of winning. Their
probability increased to a perfect 1 when Stefon Diggs scored a game-winning 61-yard receiving touchdown
as the game clock expired.

3.3 Basketball

Stern (1994) provides an investigation of in-game win probability and the scoring process in basketball using
a Brownian motion model. Let p(l, t) represent the win probability for the home team given an l-point lead
after t seconds of game time. The model introduced by Stern (1994) is a probit regression model, which
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Figure 4: Win probability graph for New Orleans Saints vs. Minnesota Vikings in the 2017–18 NFL Playoffs.

provides an estimate for p(l, t). Specifically,

p(l, t) = Φ
(
l + (1− t)µ√

(1− t)σ2

)
.

Here, a Brownian motion process with drift µ points advantage for the home team and variance σ2 is used to
model the score difference between the home and away teams.
On a related note, Deshpande & Jensen (2016) extend Stern (1994)’s framework by applying it in a Bayesian
setting. Deshpande & Jensen (2016) propose a Bayesian linear regression model to assess the impact of
individual players on their team’s chance of winning at any given time of a basketball game. This model
assumes independence of observations and constant variability in win probability.
Moreover, McFarlane (2019) uses logistic regression to estimate win probability for evaluating end-of-game
decisions in the NBA. The approach takes into account the remaining game time, score difference, and point
spread. This win probability model is then applied to the calculation of the End-of-game Tactics Metric
(ETM), measuring how the chance of winning a basketball game differs between the optimal and on-court
actual decisions.

3.4 Other sports

The idea of win probability is also applied to other sports, with a diverse range of statistical techniques being
used to estimate the probability of winning for a player or team. Brenzel et al. (2019) use three-dimensional
Markov models to estimate win probability throughout a curling match. In particular, the authors propose
both homogeneous and heterogeneous Markov models for estimating the chance of winning in curling, with
different independence assumptions on the relationship between performance and the current state of the
game. In esports, Maymin (2021) relies on logistic regression to build a well-calibrated in-game win probability
model for each specific moment during a game of League of Legends. Moreover, Guan et al. (2022) develop
an in-game win probability model for the National Rugby League using functional data analysis. In this
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approach, the rugby play-by-play event data are treated as functional, and the win probability is expressed
as a function of the match time.

4 Team strength

A third crucial idea in sports analytics is the estimation of team strength. First, we briefly introduce a simple
method for estimating team strength based on win-loss record. Next, we detail three other more sophisticated
methods for estimating team strength in sports through pairwise evaluations. The methods in this Section
apply equally well to multiplayer teams and single-player teams.
The impetus for all methods for estimating team strength is the realization that win-loss records are a noisy
measure of team strength. As binary outcomes, and with all sports (except perhaps chess) involving some
element of chance, wins and losses carry some signal of team strength, but we can do better.

4.1 Expected winning percentage

A simple method for estimating team strength that has become popular in sports analytics is expected
winning percentage—often called Pythagorean expectation—developed by James (2003). Later, Miller (2007)
derived the formula as a consequence of assuming that runs (in baseball) are generated by two independent
Weibull processes.
Expected winning percentage is just:

ŵpct = Xα

Xα + Y α
,

where X is the number of points (runs) that a team has scored, and Y is the number of points (runs) that
they have allowed, over some specified time period. James’s work was originally in baseball, and he posited
the value of α = 2. The resemblance to the formula for computing the length of the hypotenuse in a right
triangle provides the nod to Pythagoras.
Subsequent analysts have tried to find the optimal value of α for various time periods. This can be done with
a few lines of code, after observing that

Xα

Xα + Y α
= 1

1 + (Y/X)α

and fitting a non-linear model (see similar discussion in Baumer et al. (2021)). Figure 5 illustrates the quality
of the fit in Major League Baseball since 1954, where the optimal value of α is 1.84.
Many authors have fit expected winning percentage models to other sports—too many to cite here. See, for
example, Hamilton (2011) for association football (soccer), Caro et al. (2013) for Division I college football,
and notably, future NBA general manager Daryl Morey for basketball (Dewan & Zminda, 1993).

4.2 Bradley-Terry models

Perhaps the most widely-used probability model for predicting the outcome of a paired comparison is the
Bradley-Terry model (BTM) (Bradley & Terry, 1952). For a pair of players (or teams) i and j, let Πij denote
the probability that i is preferred to j. Then the BTM is a logistic regression model with parameters βi, βj
such that

log
(

Πij

Πji

)
= βi − βj .

Here, exp (βi) is often viewed as a representation of team i’s ability.
The BTM can be implemented in R via the BradleyTerry2 package (Turner & Firth, 2020). As an example,
we consider the data given in Agresti (2018) (page 247) on tennis results from 2014–2018 for five men’s
professional players: Novak Djokovic, Roger Federer, Andy Murray, Rafael Nadal, and Stan Wawrinka. We
fit a BTM to estimate the win probability for each pair of players and obtain a ranking for this group of five.
Table 2 shows the estimated coefficients of the fitted BTM. According to the abilities, between 2014 and 2018
the players are ranked as follows: 1) Djokovic, 2) Federer, 3) Wawrinka, 4) Nadal, 5) Murray. In addition to
an ordering, the magnitude of the coefficients in Table 2 provide a measure of relative strength.
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Figure 5: Winning percentages vs. runs scored and runs allowed in baseball, 1954–2021. The navy line
represents the expected winning percentage model posited by James, with the exponent value of 2. The gold
line shows the same model with an optimal exponent of 1.84.

Table 2: The estimated abilities (with standard errors) for each tennis player, relative to Wawrinka, obtained
from the fitted Bradley-Terry model.

Player Ability SE
Djokovic 1.176 0.500
Federer 1.136 0.511
Wawrinka 0.000 0.000
Nadal -0.062 0.515
Murray -0.569 0.568

To obtain win probabilities, as an illustration, for the Federer-Nadal matchup, an estimate for the probability
of a Federer victory is:

Π̂24 = exp(β̂2 − β̂4)
1 + exp(β̂2 − β̂4)

= exp(1.136 + 0.062)
1 + exp(1.136 + 0.062) = 0.768 .

4.3 Elo ratings

Another widely known tool for measuring team strength is the Elo rating system (Elo, 1978), which was
originally developed for chess. Given two players i and j with unknown ratings Ri and Rj , the probability
Πij of i beating j is defined as

Πij = 1
1 +K(Rj−Ri)/400 .

13



A preprint - January 11, 2023

In this formula, K is commonly known as the K-factor, or development coefficient. The International Chess
Federation (FIDE) uses K = 10 for players with any previously achieved rating of at least 2400. Finally,
K = 40 is given to new players with under 30 games played, and players under the age of 18 with rating less
than than 2300 (FIDE, 2022).
Another interpretation for Πij is the expected score of the game for player i. The scores of 0, 0.5, and 1 are
associated with three possible game outcomes loss, tie, and win, respectively. After a game, the updated Elo
rating R∗i for player i is

R∗i = Ri +K(Si −Πij) ,
where Si ∈ {0, 0.5, 1}. When a tournament concludes, a post-tournament rating is obtained for each player
based on the rating updates for all games played.
To illustrate, we consider a chess game played on June 1, 2022 on Chess.com by one of the authors, with data
obtained from the chessR package (Zivkovic, 2022) (see Section 6.1). Prior to the game, the author was
rated 1732, whereas his opponent was rated 1683. Since both ratings are below 2400, we apply a development
coefficient of K = 20 to this example. The probability of the author (a) defeating their opponent (b) was

Πab = 1
1 + 20(1683−1732)/400 = 0.591 .

The author won the match: that outcome is associated with a score of Sa = 1. The post-game Elo rating for
the author is thus

R∗a = 1732 + 20(1− 0.591) = 1740 .

Besides chess, the Elo system has also been implemented to estimate team strength in other sports. See
Koning (2017) for more information on applications of the Elo rating in soccer, and Kovalchik & Reid (2019)
and Kovalchik (2016) for Elo ratings in tennis. Furthermore, Elo ratings are used extensively for rankings of
teams in numerous sports by the data journalists at FiveThirtyEight.com.

4.4 Bayesian state-space models

Glickman & Stern (1998) propose a Bayesian state-space model for paired comparisons for predicting NFL
games, allowing team strength parameters to vary over time. In particular, they model point differential in
the NFL by introducing week-to-week and season-to-season as the two primary sources of variation in team
strengths. See also Glickman & Stern (2017) for more discussion on estimating team strengths in American
football.
More recently, Lopez et al. (2018) extend Glickman & Stern (1998)’s state-space model to understand
randomness in the four major American sports leagues. Betting moneylines are used in place of point
differentials in order to estimate team strengths, and this framework also accounts for home advantage. Both
papers motivate the usefulness of model-based measures of team strength by demonstrating their superiority
to low-resolution win-loss records. Apart from sports gambling, having an accurate estimate of team strength
is useful to team officials, who are constantly monitoring and forecasting their team’s ability.
In a similar Bayesian setting, Koopman & Lit (2015) study English Premier League soccer match results
by assuming a bivariate Poisson distribution with time-varying team abilities. This state-space approach
appears to improve on bookmaker’s odds.

5 Sports betting market data

Most of the research in sports analytics is fueled by the analysis of data recorded from the outcome of sports
contests. However, a growing body of literature is informed by data from sports betting markets. Since the
2018 United States Supreme Court decision in Murphy v. National Collegiate Athletic Association, sports
gambling has exploded in the U.S. The increasing interest in sports gambling has led to increasing interest in
sports gambling data, and that data has proven useful to researchers in at least two major ways.
First, betting market data is probably the best source for estimating the true probability of a team winning a
game. The efficiency of betting market data in this respect has been demonstrated time and time again. The
utility of these estimates have then informed research that has helped us learn about the sports themselves.
In this sense, data generated by sports gambling has been an important source of data useful for sports
analytics (see Section 5.2).
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Table 3: 2023 NBA Championship odds for the top 6 and bottom 6 teams. Retrieved from FanDuel Sportsbook
on January 9, 2023.

Rank Team Line Odds Prob. Prob. Normalized
1 Boston Celtics 390 4.9 0.204 0.163
2 Milwaukee Bucks 500 6.0 0.167 0.133
3 Brooklyn Nets 800 9.0 0.111 0.089
4 Golden State Warriors 900 10.0 0.100 0.080
5 Los Angeles Clippers 1000 11.0 0.091 0.073
6 Denver Nuggets 1100 12.0 0.083 0.067
25 Oklahoma City Thunder 50000 501.0 0.002 0.002
26 Orlando Magic 50000 501.0 0.002 0.002
27 Charlotte Hornets 50000 501.0 0.002 0.002
28 Houston Rockets 50000 501.0 0.002 0.002
29 San Antonio Spurs 50000 501.0 0.002 0.002
30 Detroit Pistons 50000 501.0 0.002 0.002
Total - 496590 4995.9 1.253 1.000

Second, sports analytics researchers have studied various types of sports gambling outlets (including fantasy
sports). This research has estimated probabilities, evaluated common strategies, and offered optimized
approaches for a variety of different games of chance (see Section 5.3). Some researchers have then tried to
demonstrate a positive return on some of these betting strategies, with very limited success.

5.1 Example: Win probabilities from betting market data

To see how betting market data can be used to estimate team strengths, consider the betting lines posted
on FanDuel Sportsbook for the 2023 NBA Champion on January 9, 2023 and shown in Table 3. This is
a futures market, because the actual NBA champion will not be determined until June 2023. The Boston
Celtics are the favorite to win, with a moneyline of +390, meaning that a $100 bet on the Celtics to win the
championship will pay back the original bet and an additional $390 if the Celtics win it all. This style of
odds are sometimes called American odds. The corresponding fractional odds have the Celtics at 4.9:1 to win
the championship. Conversely, six teams share the lowest odds at +50000.
These moneylines (`i) can be converted into an implied probability (pi) using the formula:

pi = 100
100 + `i

.

The sum of those probabilities is greater than one—this is why the sportsbook makes money regardless
of who wins the championship. However, the implied probabilities can be normalized by dividing by their
sum to recover true probabilities of each team winning the championship. Many different researchers have
shown that these normalized implied probabilities are accurate, unbiased, and efficient estimates of the true
unknowable probabilities (see Lopez et al. (2018) for discussion and an extensive list of references).
In this case, the FanDuel futures market suggests that the Celtics have a 16.3% chance of winning the
championship, while the Milwaukee Bucks have the second best chance, at 13.3%. These implied probabilities
can be used to fit various models for team strength, as described in Section 4.

5.2 The use of betting market data for sports analytics

While Lopez et al. (2018) use betting market data to model team strengths, they do not directly address
strategies for betting or inefficiencies in betting markets. Early work by Gandar et al. (1988) examine
the rationality of NFL betting markets and concludes that statistical tests fail to reject the hypothesis of
rationality. Related work such as Lacey (1990) and Boulier et al. (2006) explores the efficiency of NFL betting
markets in the mid-1980s and late-1990s, respectively. Neither paper finds strong evidence for inefficiencies
in the markets. Boulier & Stekler (2003) compare the predictive performance of power rankings and media
experts to the betting market for NFL games and found that the betting market is the best for predicting
winners. Lopez & Matthews (2015) show that betting market data was most useful in predicting men’s
college basketball tournament outcomes.
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Sports betting market data has also been used to investigate competitive behavior within leagues. Soebbing
& Humphreys (2013) find evidence that sports bettors think tanking in the NBA is occurring, although the
evidence for whether it actually is remains mixed.

5.3 Analytics for sports betting

Many different types of bets can be placed on sports. For individual contests, bets involve point spreads,
moneylines (see Section 5.1 for an example), odds, or other ways of handicapping which team will win.
Money can also be wagered on futures, where odds are given in advance for events that may or may not
transpire (e.g., a certain team making the playoffs, or a certain player winning the MVP award). Here, we
focus on betting pools, in which a group of people compete to predict winners in multiple contests (often a
tournament). We also address the inevitable question of whether strategies exist that will consistently beat
the market.

5.3.1 Betting pools

One popular type of betting pool is a survivor pool, in which participants stay in the competition as long
as they continue to successfully pick winners. Bergman & Imbrogno (2017) present formal optimization
approaches for NFL survivor pools and conclude that planning for only part of the season yields optimal
results in terms of maximizing survival probability. Imbrogno & Bergman (2022) estimate the probability of
having to share the winning pot in NFL survivor pools.
Perhaps the most commonly-studied sports betting market surrounds the NCAA men’s college basketball
tournament. Breiter & Carlin (1997) use Monte Carlo methods to study the standard “office pool.” Kaplan
& Garstka (2001) consider a variety of NCAA college basketball pools, and find that the simple strategy
of picking the team with the better seed is generally, but not always, optimal. Metrick (1996) finds that
bettors overback the heaviest favorites. Niemi et al. (2008) show an improved return on investment by
picking an undervalued champion and then completing the rest of one’s bracket by using published odds.
Clair & Letscher (2007) develop and test strategies for maximizing expected return in both survivor and
tournament-style pools.

5.3.2 Beating the market

Naturally, after studying the efficiency of sports betting markets, researchers try to find inefficiencies that
can be exploited for financial gain. Not surprisingly (given the efficiency of these markets), such gains are
hard to come by.
Sauer (1998) finds that while racetrack betting markets are generally efficient, information asymmetry plays
a role in creating inefficient markets. Nichols (2014) concludes that the impact of travel is not completely
incorporated into the betting markets, but that any effect is too small to find any profitable advantage. Paul
& Weinbach (2014) investigate the less-saturated betting market for the WNBA and fail to find strategies
for positive return on investment. Spann & Skiera (2009) show no way to beat the market in the German
premier soccer league, given the high fees associated with placing bets.
More successfully, Buttrey (2016) explores the NHL betting market and produces a model to predict win
probabilities in given games, then tests the model by placing market price bets in games where the predicted
probability differs from the market. They find that their methods were able to produce a positive return on
investment.

6 Tools

Analytical work in sports requires facility with an ever-changing set of computational tools for working with
data. Sources of authoritative data about sports are myriad, and are too numerous to list here. Software tools
for sports analytics are similarly numerous. For R, we maintain a CRAN Task View for Sports Analytics
that catalogs R packages published on the Comprehensive R Archive Network (CRAN) and organizes them
by sport (Baumer et al., 2022). Table 4 provides an overview of the currently available sport-specific CRAN
packages. Recently, Casals et al. (2022) offer a systematic review of sport-related packages on CRAN. Further,
a more general collection of software tools is being curated by the SportsDataverse initiative (Gilani, 2022).
In the remainder of this section, we highlight a few tools for sports analytics that are of general interest and
illustrate a common paradigm for how these tools can be used in conjunction.
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Table 4: A summary of sport-specific packages available on the Comprehensive R Archive Network (CRAN)
as of October 16, 2022. While the major North American sports dominate the list, perhaps the fastest-growing
collection is for esports.

Sport Number of Packages List of Packages
American Football 12 nflverse, nflfastR, nflreadr, nfl4th, nflseedR,

nflplotR, NFLSimulatoR, fflr, ffscrapr,
ffsimulator, gsisdecoder, cfbfastR

Association Football (Soccer) 9 worldfootballR, engsoccerdata, socceR,
ggsoccer, footballpenaltiesBL, footBayes,
itscalledsoccer, FPLdata, EUfootball

Basketball 8 BAwiR, AdvancedBasketballStats, uncmbb,
BasketballAnalyzeR, NBAloveR, wehoop,
hoopR, toRvik

Baseball/Softball 7 Lahman, retrosheet, pitchRx, mlbstats,
baseballDBR, baseballr, runexp

Chess 5 chess, stockfish, bigchess, rchess, chessR
Esports 5 CSGo, rbedrock, ROpenData, opendotaR,

RDota2
Hockey 5 hockeyR, NHLData, nhlapi, nhlscrape,

fastRhockey
Cricket 4 yorkr, cricketr, cricketdata, howzatR
GPS Activity Tracking 3 trackeR, trackeRapp, rStrava
Track and Field 2 combinedevents, JumpeR
Australian Rules Football 1 fitzRoy
Swimming 1 SwimmeR
Volleyball 1 volleystat

6.1 Case study in how tools fit together: chess

Many tools in sports analytics provide the ability to read, write, and plot data stored in a sport-specific
format. For example, consider chess, where the sequence of moves in games is often recorded in Portable
Game Notation (PGN). Software tools can then be built around this well-defined format. The chess package
(Lente, 2020) provides R users with the ability to read, write, display, and manipulate chess data in PGN
format.
Application programming interfaces (APIs) are also a common source for data retrieval. In chess, the chessR
package (Zivkovic, 2022) allows R users to download game data from the Chess.com API. This type of
infrastructure, where one package is the “workhorse” that facilitates common generic data operations, and
other packages layer on specific functionality, is common in sports analytics. See Section 4.3 for an example
of how the chessR package can be used to compute Elo ratings.
Figure 6 shows a rendering of the starting chess board obtained via the chess package, along with the final
position in the game won by one of the authors mentioned earlier in Section 4.3 (with data downloaded via
the chessR package). We note how the contextual information provided by the chessboard is instrumental
in helping the reader understand the data (How many of us can visualize PGN directly?). In Section 6.2, we
outline a collection of graphical tools that provide similar context for different playing surfaces.

6.2 Graphical tools

Creating effective data graphics is a key component of statistical communication, and sports is no exception.
We highlight a few packages that assist with the creation of data graphics about sports.
Each professional sports team has its own brand, most obviously identified by a team logo and set of colors.
The teamcolors R package (Baumer & Matthews, 2020) provides color palettes and logos for men’s and
women’s professional and collegiate sports teams, as well as color and fill scale functions compatible with
ggplot2 (Wickham et al., 2022). For example, the NFL teams’ colors and logos shown in Figure 4 were
provided by the teamcolors package. Figure 7 illustrates how the use of team colors, which have a natural
association for many sports fans, can help to untangle what would otherwise be messy data graphics. In Figure
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Figure 6: At left, the starting chess board printed via the chess package. At right, the final position for one
of the authors’ recent wins (a checkmate playing Black).

7, 30 different lines are plotted on top of one another, crisscrossing and intersecting in various unpredictable
ways. However, the use of team colors to identify the lines makes it possible to follow the trajectory of most
teams over the course of the season.
nflplotR (Carl, 2022) has a similar goal to teamcolors. It also provides ggplot2 extensions but is designed
specifically for the NFL. A great feature of nflplotR is the collection of geom_*() (geometric object) functions
that enhance high-quality plotting of NFL team logos and player images with ggplot2. Figure 8 shows a
scatterplot of offensive and defensive expected points added for NFL teams in the 2021 regular season. The
logos of all 32 American football clubs are plotted in place of the usual dots, making it easier for the reader
to identify which team each data point represents.
Player tracking data contains coordinates that reveal player movement, and these coordinates are always
understood in context relative to reference points on the field, court, ice, board, or pitch for a particular sport.
Orienting these points graphically may require drawing a complex set of guidelines that provide that context
to readers. Thankfully, the sportyR package (Drucker, 2022) contains generic playing surfaces for baseball,
basketball, curling, American football, ice hockey, soccer, and tennis that can be added to ggplot graphics
with a single function call. The surfaces plotted in Figure 9 are helpful in contextualizing player tracking
data (such as those shown in Figure 3) and would be laborious for each analyst to have to create on their
own. With the increased availability of player tracking data, this particular tool should see increased usage.

6.3 Case study in the evolution of tools and research: baseball

As the granularity of baseball data has evolved over time, so too have the statistical methodologies for
modeling that data, and the tools for working with it.
For example, before George Lindsey’s work (see Section 2), most of the baseball data that was publicly
available was seasonal: it showed only season totals for each player. These data, now available through
the Lahman package (Friendly et al., 2022), were sufficient to study broad trends in baseball, and led to
insights such as the value of expected winning percentage (see Section 4.1) and the importance of on-base
percentage relative to batting average. These relatively simple insights fueled the “Moneyball” (Lewis, 2004)
era revolution in sports analytics (B. Baumer & Zimbalist, 2014).
Over time, the resolution of baseball data has improved to include play-by-play data, pitch-by-pitch data,
and now player tracking data.
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Figure 7: The progression of National Leauge team standings during the 2021 Major League Baseball season.
Note how the use of team colors makes it possible to untangle what would otherwise be a messy jumble of
indistinguishable lines. Data provided by retrosheet and colors provided by teamcolors.

The retrosheet package (Douglas & Scriven, 2021) now provides access to the historical play-by-play data
available from Retrosheet (this is a comprehensive version of what Lindsay collected for his research). This
play-by-play data allowed researchers to learn about strategies, like those that we discussed in Section 2. In
baseball, this deepened our understanding of bunting, stolen bases, handedness, batting order, and many
other aspects of the game. Play-by-play data underlies much of the analysis in Tango et al. (2007).
The pitchRx package (Sievert, 2015) provides access to pitch-by-pitch data that fueled innovative research
into catcher framing (Deshpande & Wyner, 2017), pitch values (Healey, 2019), and pitch classification (Sidle
& Tran, 2018). Catcher framing is a notable example of a concept that scouts talked about for decades, but
that could not be quantified by analysts until data of the appropriate resolution became available.
While play-by-play data allows us to make valuations between plays, player tracking data allows us to make
valuations within plays. The baseballr package (Petti & Gilani, 2022) now provides access to player tracking
data from Statcast. These data have led to investigations into how defensive shifts affect batting performance
(Bouzarth et al., 2021), as well as how launch angles affect the probability of hitting a home run (Marchi et
al., 2018).
As we saw above with chess, the packages in baseball fit together in creative ways. In Figure 7, we showed
how teamcolors can illuminate data pulled from retrosheet to make an informative data graphic. One
could just as easily use sportyR to generate a field graphic, and then overlay player tracking data obtained
from baseballr to depict defensive shifts.
Thus, these R packages enable research by making data more easily available. Moreover, because R is
scriptable, they make it easier to share research that is reproducible. Recent conferences, such as the Carnegie
Mellon Sports Analytics Conference, have included a reproducible research competition to foster these efforts
(see Section 7).
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Figure 8: Offensive and defensive expected points added per play for the 2021 NFL regular season, plotted
with nflplotR using data from nflfastR.

Figure 9: At left, an NBA basketball court drawn by sportyR. At right, an NHL hockey rink drawn by
sportyR.
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7 Opportunities

Public research in sports analytics is driven in part by several notable competitions and conferences. These
venues have been an important source of new ideas and have contributed to the diversification of the field by
breaking down barriers to entry.
In 2014, Kaggle launched its first March Machine Learning Mania competition for predicting the outcome of
the NCAA men’s basketball tournament. 243 entrants competed for the $15,000 cash prize by submitting
predicted probabilities for every possible pairwise matchup among the 68 college basketball teams in the
tournament (Glickman & Sonas, 2015). Subsequently, the Journal of Quantitative Analysis in Sports (JQAS)
released a special issue on prediction methodology for the NCAA men’s basketball tournament. Among the
published papers, we learned that the winning entry was based on a fairly simple logistic regression model
trained on betting market data (Lopez & Matthews, 2015). Thus, the competition not only sparked interest
in sports analytics, but also resulted in peer-reviewed research which, in that case, demonstrated the value of
quality data over sophisticated modeling.
Perhaps motivated by his success in the Kaggle March Madness competition, Michael Lopez joined the
National Football League and launched the Big Data Bowl in 2019. This annual competition has similarly
fueled new research directions in American football and a JQAS special issue on player tracking data in the
National Football League (Lopez, 2020). Successful entries and their corresponding publications (Chu et
al., 2020; Deshpande & Evans, 2020; Yurko et al., 2020) have launched the careers of several of the most
prominent early-career researchers in sports analytics.
Similar competitions that provide opportunities for aspiring researchers to tackle sports analytics problems
include the Big Data Cup for ice hockey and the SABR Diamond Dollars Case Competition for baseball, and
the Big Data Derby for horse racing.
As the field of sports analytics has grown, a proliferation of sports specific and regional sports analytics
conferences have arisen. The biennial New England Symposium on Statistics in Sports is likely the longest-
running academic conference devoted to sports analytics. Its West Coast counterpart is The Cascadia
Symposium on Statistics in Sports. Many influential results have been showcased for the first time at these
conferences. Other prominent sports analytics conferences include the Carnegie Mellon Sports Analytics
Conference, UConn Sports Analytics Symposium, and MathSport International.
The highest-profile sports analytics conference is undoubtedly the Sloan Sports Analytics Conference, which
draws academics, industry professionals, vendors, and media organizations. While the conference holds a
research competition and has certainly drawn attention to sports analytics, it has also been criticized for
a variety of shortcomings. These criticisms include a lack of emphasis on reproducibility in the research
competition, high ticket prices, the large salaries taken by the organizers, and the lack of diversity among
attendees and presenters (Funt, 2022).
It is also worth noting that a significant, but unknown, proportion of the most innovative research is being
conducted by professional sports teams. This research will likely never be published, because each team
will use it to their competitive advantage. Part of what enables this research is better data. For example,
professional sports teams can collect biometric data on their own players, and use that data to learn about
how their workouts, sleep patterns, and diets impact their athletic performance. While this research may
constitute “emerging methodologies,” it unfortunately will take years, if at all, before the public benefits
from it.

8 Conclusion

As an applied science, sports analytics may lack a grand unified theory that succinctly characterizes game play
across all sports. However, as a maturing discipline, sports analytics has been able to address fundamental
questions common to many sports. In this paper, we explore three of those big questions: Who are the best
teams and how good are they? What is the likelihood of each team winning the game at any given juncture?
Is there a generic framework for evaluating strategies at any given juncture in a game?
Other fundamental questions are addressed elsewhere. How significant is the element of chance in a particular
sport? Given that we know who the best teams are, who are the best players and how can we quantify their
relative contributions? What combinations of players work best together in a particular sport? In particular,
see Lopez et al. (2018) for estimations of the element of chance across four major sports. The second question
is often addressed using a formulation of wins above replacement (WAR)—see Baumer et al. (2015) and
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Yurko et al. (2019) for details in baseball and American football. Recent work by Che & Glickman (2022)
also addresses this question across sports. The third question is most compelling in sports like basketball,
ice hockey, and soccer, where substitutions are common and it is obvious that different combinations of
players with different sets of skills will result in squad of varying strengths and weaknesses. The concept of
plus-minus, and then adjusted plus-minus is frequently applied to address this question (see Hvattum (2019)
for a comprehensive overview of applications).
In drawing together these three big ideas in sports analytics, we have also drawn attention to new uses of
sports betting market data, some computational tools for doing sports analytics work, and opportunities
to showcase that work. Our discussion in Section 6.3 shows how the increased resolution of available data
has catalyzed new research directions in baseball, but this same dynamic is playing out in all sports. It is
through these exchanges of ideas, tools, models, and data that analytics moves our collective understanding
of sports forward.
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