2009

Research Design and Statistical Applications

Grayson Holmbeck
Loyola University Chicago, gholmbe@luc.edu

Kathy Zebracki

Katie McGoron

Follow this and additional works at: https://ecommons.luc.edu/psychology_facpubs

Part of the Psychology Commons, and the Statistical Methodology Commons

Recommended Citation

This Book Chapter is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Psychology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
© The Guilford Press 2009
What is the role of research in the field of pediatric psychology? To answer this question, it is useful to imagine what clinical practice would be like if we had no research foundation for our work. Without such a foundation, practitioners would have no basis for suggesting specific interventions or understanding why some interventions are successful and why others fail. Similarly, without a research foundation, assessments conducted with children would be based on unstandardized assessment methods, and no normative data would be available. Clearly, most of us would agree that scientific research is the foundation of pediatric psychology, including all activities in which pediatric psychologists are engaged (Noll, 2002; Roberts & Ilardi, 2003).

The purpose of this chapter is to review research designs and methods in the field of pediatric psychology. We begin with a focus on the importance of theory as a basis for conducting pediatric psychology research, and then move on to a discussion of research questions often posed by pediatric psychologists. Next, we provide an overview of research designs commonly used in pediatric psychology, including a review of challenges faced by pediatric psychologists who conduct research in pediatric settings. Moreover, we discuss several methodological and statistical issues that are important to consider in designing research and conducting data analyses. We conclude with a look to the future, discussing recommendations for research in the field of pediatric psychology.

The Importance of Theory in Pediatric Psychology Research

A conceptual model or theoretical framework facilitates the development of a program of research (as opposed to a set of unrelated studies) and drives all aspects of the research endeavor (Riekert & Drotar, 2000; Thompson & Gustafson, 1996). Influential theories in the field of pediatric psychology tend to share many features: (1) a clarity of focus; (2) a developmental emphasis; (3) the ability to address limitations of previous research; (4) specification of predictors (i.e., independent variables) and outcomes (i.e., dependent variables), with a clear rationale for each; (5) a clear articulation of links between predictors and outcomes (which sometimes involves specification of mediational and moderational effects), with accompanying testable hypotheses; and (6) clear implications for interventions.

Types of Research Questions

After articulating the theory, framework, or model that will be the basis for their investigations, researchers express their research interests in the form of research questions and hypotheses. Kazdin (1999) has outlined several general types of research questions from the field of clinical psychology, and these are the focus of this section.

What Is the Relationship between the Variables of Interest?

Although the first question may be the simplest type of research question, it is also a very common one that has been employed in a variety of research areas. This type of research question incorporates most cross-sectional and longitudinal correlational designs. Although the designs and data analyses used to answer such questions can be quite sophisticated, the correlation is the basis for all of these research questions. In some cases (i.e., cross-sectional designs), one can merely document a statistical association between two variables; in other cases (i.e., longitudinal designs), one may be able to determine which variables temporally precede the onset of other variables or changes over time.

What Factors Influence the Magnitude of the Relationship between the Variables?

Variables that have an impact on the association between two or more other variables are typically referred to as "moderator" variables (Baron & Kenny, 1986; Holmbeck, 1997, 2002). A moderator is a variable that influences the strength or the direction of a relationship between a predictor variable and a criterion variable (Figure 4.1).

![Figure 4.1](https://example.com/fig4.1.png)
I. PROFESSIONAL ISSUES

pose a researcher is interested in examining whether the relationship between familial stress and child adjustment to a chronic condition depends on the level of uncertainty that characterizes a child's condition. That is, a significant association between stress and adjustment may emerge only when there is considerable uncertainty regarding the child’s illness status. By testing “level of uncertainty” as a moderator of the relationship between stress and outcome, the researcher can specify certain conditions under which family stress predicts child adjustment.

Pediatric psychologists often posit moderational processes when conducting studies of risk, protective, and resilience factors (Rose, Holmbeck, Coakley, & Franks, 2004). “Resilience” refers to the process by which children successfully navigate stressful situations or adversity and attain developmentally relevant competencies (Masten, 2001). A “protective” factor either ameliorates negative outcomes or promotes adaptive functioning. The protective factor serves its protective role only in the context of adversity; it does not operate in low-adversity conditions. Protective factors are contrasted with “resource” factors, which have a positive impact regardless of the presence or absence of a stressor (Rutter, 1990; see Figure 4.2). It is also important to note that a protective factor represents a moderational effect (i.e., a statistically significant interaction effect), whereas a resource factor represents an additive effect (i.e., two main effects; Figure 4.2). Risk and vulnerability factors operate in much the same way as resource and protective factors, but in the opposite direction (Figure 4.3). A “vulnerability” factor is a moderator that increases the chances for maladaptive outcomes in the presence of adversity (Rutter, 1990) and only operates in the context of adversity. By contrast, a variable that negatively influences an outcome regardless of the presence or absence of adversity is a “risk” factor (Rutter, 1990; see Figure 4.3).

What Mechanism Explains the Relationship between the Variables?

A mechanism that explains “why” two or more variables are associated is often referred to as a “mediator” variable. Often a mediator variable is conceptualized as the mechanism through which one variable (i.e., the predictor) influences another variable (i.e., the criterion; Baron & Kenny, 1986; Holmbeck, 1997, 2002; MacKinnon, 2008; see Figure 4.4). Suppose a researcher finds that parental intrusive behavior is negatively associated with child adherence to a medical regimen. Given these findings, a researcher could explore whether a third variable (e.g., child independence) might account for or explain the relationship between these variables. In this case, parental intrusiveness would have a negative impact on level of child independence, which in turn would contribute to poor medical adherence (Holmbeck, Johnson, et al., 2002; see Figure 4.4). Although the logic underlying mediational models is quite straightforward, several rather complex mediational models have recently been proposed (e.g., see Bauer, Preacher, & Gil's

To conclude this section, we discuss several challenges that are specific to conducting research designs, (4) single-participant designs, and (5) meta-analytic techniques. Research with pediatric populations.

Research questions often focus on differences between groups—for example, whether children with a chronic condition have the same number of peer friendships as children without a chronic condition. Such research can be very complex, including questions of whether groups differ in adjustment trajectories over time. Although this type of research question is a variation on the correlational question posed above, group differences research tends to focus on the hypothesized differentiation of discrete groups, rather than on associations between two or more continuous variables. Perhaps the most compelling group differences research involves randomized controlled trials, where the investigators are interested in whether outcomes differ between a treatment group and a control condition after participants have been randomly assigned to the different groups. We turn to this type of research in the next section.

Are There Differences between Groups?

Research Designs in Pediatric Psychology

In this section, several types of designs and research strategies are discussed: (1) experimental and treatment outcome research, (2) quasi-experimental designs, (3) observational research designs, (4) single-participant designs, and (5) meta-analytic techniques. To conclude this section, we discuss several challenges that are specific to conducting research with pediatric populations.

Experimental and Treatment Outcome Designs

Well-designed and well-implemented randomized controlled trials (sometimes referred to as randomized clinical trials or RCTs) are considered the “gold standard” in evaluating the efficacy of behavioral interventions and ensuring unbiased comparisons across groups (Altman et al., 2001). Most importantly, they are the basis for determining whether an intervention can be classified as “empirically supported” (i.e., evidence-based; see Nelson & Steele, Chapter 7, this volume; see also Beale, 2006; Chambless & Ollendick, 2001; Kazdin & Weisz, 1998; Spirito, 1999). The most noteworthy feature of an RCT is that participants are randomly assigned to conditions—a design feature that addresses most of the threats to the internal validity of the study. RCTs, however, are not flawless; inadequate methodologies can lead to biased results, which misinform clinical practice and decision making in health care policy (Moher et al., 1998; Schulz, Chalmers, Hayes, & Altman, 1995). Moreover, given that participants are randomly assigned to conditions, such designs do not advance our knowledge of how individuals select, enter into, and engage in treatment.

Internal and External Validity

One of the strengths of RCTs is that they directly address issues related to the internal validity of the study. These threats to the validity of the findings have been discussed in detail in several texts that focus on research methodology (e.g., Kazdin, 2003). Briefly, the degree to which an experiment has internal validity relates to whether group differences (i.e., treatment vs. control) can be attributed to the intervention rather than to other extraneous factors (Kazdin, 1999, 2003). Another way to put it is that the investigators are interested in ruling out alternative explanations for their findings by eliminating all differences between the groups other than the intervention manipulation. Indeed, there are several types of confounds (or factors) that may operate differentially across groups (e.g., historical factors, the effects of assessment on the outcomes of interest, differential attrition; Kazdin, 1999). Threats to the external validity of the study focus on the degree to which the findings of the study can be generalized to circumstances that may differ from the experimental conditions characterizing a given study (Kazdin, 1999, 2003).

Control Groups

A critical decision in designing an RCT is the choice of a control condition (Kendall, Flannery-Schroeder, & Ford, 1999). If one is working in a relatively new area of research, one may ask whether an intervention is more effective than the absence of any form of intervention. In this case, one may be interested in including a no-treatment control group. A useful alternative to the no-treatment control condition is to include either an attention placebo control group or a standard care control condition (Kendall et al., 1999). These types of control groups address concerns related to “attention” from the interventionist. In the case of the attention placebo control group, the participants who have been randomly assigned to the control condition are exposed to a “treatment,” which is expected to be ineffective in producing significant change in the outcome of interest. Standard care control groups can be employed when the popula-
When conducting an RCT, one may find statistical differences between the groups at the end of the study (Kendall et al., 1999). There are two advantages of this strategy: (1) All participants in the study will eventually be given the opportunity to receive the treatment; and (2) the waiting-list condition can be assessed for treatment effects after they have been exposed to the intervention, thus providing a cross-validation of findings. Finally, in the case where there is sufficient evidence that a treatment condition “works” better than no treatment, the treatment of interest can be compared to an alternative treatment that has been shown to be effective in past research.

Intent-to-Treat Analyses

In any longitudinal research, it is rare that all participants who begin a study complete all components of the study over time. The same could be said for an RCT, which is a type of longitudinal study (e.g., the use of pretesting, posttesting, and follow-up assessments). In many studies, there are differences between participants who complete the study and those who do not, which can undermine the external validity of the investigation.

This issue of attrition takes on added importance in RCTs. In an RCT, if one examines treatment effects only for those who completed the study, such effects may be exaggerated (or biased), because those who were not benefiting from the treatment may be the same participants who dropped out of the study. Those who conduct RCTs have developed a method for managing this problem—namely, intent-to-treat analyses (Hollis & Campbell, 1999; LaValley, 2003). When conducting data analyses, an investigator includes all participants from the groups to which they were randomized, regardless of whether they dropped out of the study. Several approaches to intent-to-treat analyses have been employed (Hollis & Campbell, 1999). Some use the last-observation-carried-forward (LOCF) strategy to manage missing values in the context of a longitudinal study (e.g., RCTs). LaValley, 2003; Streiner, 2002). With this approach, the last value reported for a respondent who has dropped out of the study is carried forward and is used for all subsequent “missing” data points. As suggested by Streiner (2002), multiple-imputation analyses or growth curve analyses will be less biased than the LOCF approach. With multiple-imputation analyses, missing values are replaced with values that have been “imputed” (or estimated) from data provided by other participants in the data set (Little & Rubin, 2002). With growth curve analyses, missing values are not imputed; instead, all data from the participants are utilized, and a curve is generated for each participant based on all available data (Singer & Willett, 2003).

Clinical Significance

When conducting an RCT, one may find statistical differences between the groups at posttesting; however, if the sample sizes are quite large, the actual differences between the groups may be very slight. As discussed by Kendall and colleagues (1999), the clinical significance of an intervention is important to assess as an adjunct to an evaluation of statistical significance. With clinical significance, one is assessing the degree to which the participants no longer suffer from the condition that made them eligible for the RCT. Several strategies can be used to document clinical significance (e.g., the number of participants whose scores on the outcome of interest have moved into the normative range, or whether participants continue to meet diagnostic criteria for the condition of interest; Kazdin, 2003).

The CONSORT Criteria

Reporting findings from an RCT in a clear and comprehensive manner is essential for determining the internal and external validity of the intervention. The Consolidated Standards of Reporting Trials (CONSORT) statement, published in 1996 (Begg et al., 1996) and revised in 2001 (Altman et al., 2001), was designed to facilitate critical review and understanding of RCTs by guiding authors on how to report trials and guiding reviewers on how to systematically evaluate the findings of RCTs. The CONSORT statement includes a 22-item checklist (Figure 4.6) and flow diagram (Figure 4.7) of essential data to be included when reporting on an RCT. Readers are referred to www.consort-statement.org for the full statement and a detailed explanation of the checklist items.

The CONSORT Statement was initially developed for use with a two-group, parallel-design medical intervention trial; however, modifications and extensions for use with other designs, types of interventions, and data have been made (Moher, Schulz, & Elbourne, 2004). Sintson, McGrath, and Yamada (2003) found that CONSORT items are applicable to psychological interventions; however, Drotar (2002) found that most reports of pediatric RCTs failed to provide the information necessary to assess the studies' validity and to apply the interventions in clinical practice. Most recently, the CONSORT Group developed an extension for trials assessing nonpharmacological treatments, such as behavioral interventions (Boutron, Lyles, Crepaz, & TREND Group, 2004). Moreover, the Transparent Reporting of Evaluations with Nonrandomized Designs (TREND) statement was developed to provide guidelines for nonrandomized designs similar to those that CONSORT provides for RCTs (Des Jarlais, Lyles, Brezina, & TREND Group, 2004). Readers are referred to www.trend-statement.org for a copy of the TREND checklist.

In addition to the standard CONSORT checklist and flowsheet, Davidson and colleagues (2003) suggest that investigators report on the five following items when conducting RCTs in behavioral medicine: (1) background training and professional credentials of the treatment providers; (2) type, duration, and form of supervision of the treatment providers; (3) treatment preference or allegiance of the treatment providers and patients; (4) manner of testing and treatment delivery; and (5) treatment fidelity. Furthermore, Wysoki (2008) recommends that the following additional elements be considered by those submitting manuscripts reporting RCTs to the Journal of Pediatric Psychology: (1) attention to ethical issues, (2) verification of treatment integrity, (3) attention to cost effectiveness and dissemination of the intervention, and (4) registration of the clinical trial (e.g., www.clinicaltrials.gov).
I. PROFESSIONAL ISSUES

<table>
<thead>
<tr>
<th>PAPER SECTION and topic</th>
<th>Item</th>
<th>Descriptor</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
<td>How participants were allocated to interventions (e.g., "random allocation," "randomized," or "randomly assigned").</td>
<td></td>
</tr>
<tr>
<td>Background</td>
<td>2</td>
<td>Scientific background and explanation of rationale.</td>
<td></td>
</tr>
<tr>
<td>Methods</td>
<td>3</td>
<td>Eligibility criteria for participants, and the settings and locations where the data were collected.</td>
<td></td>
</tr>
<tr>
<td>Interventions</td>
<td>4</td>
<td>Precise details of the interventions intended for each group, and how and when they were actually administered.</td>
<td></td>
</tr>
<tr>
<td>Objectives</td>
<td>5</td>
<td>Specific objectives and hypotheses.</td>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
<td>6</td>
<td>Clearly defined primary and secondary outcome measures, and, when applicable, any methods used to enhance the quality of measurements (e.g., multiple observations, training of assessors).</td>
<td></td>
</tr>
<tr>
<td>Sample size</td>
<td>7</td>
<td>How sample size was determined, and, when applicable, explanation of any interim analyses and stopping rules.</td>
<td></td>
</tr>
<tr>
<td>Randomization—Sequence generation</td>
<td>8</td>
<td>Method used to generate the random allocation sequence, including details of any restrictions (e.g., blocking, stratification)</td>
<td></td>
</tr>
<tr>
<td>Randomization—Allocation concealment</td>
<td>9</td>
<td>Method used to implement the random allocation sequence (e.g., numbered containers or central telephone), clarifying whether the sequence was concealed until interventions were assigned.</td>
<td></td>
</tr>
<tr>
<td>Randomization—Implementation</td>
<td>10</td>
<td>Who generated the allocation sequence, who enrolled participants, and who assigned participants to their groups.</td>
<td></td>
</tr>
<tr>
<td>Blinding (masking)</td>
<td>11</td>
<td>Whether or not participants, those administering the interventions, and those assessing the outcomes were blinded to group assignment. If done, how the blinding was evaluated.</td>
<td></td>
</tr>
<tr>
<td>Statistical methods</td>
<td>12</td>
<td>Statistical methods used to compare groups for primary outcomes; methods for additional analyses, such as subgroup analyses and adjusted analyses.</td>
<td></td>
</tr>
<tr>
<td>RESULTS</td>
<td>13</td>
<td>Flow of participants through each stage (a diagram is strongly recommended). Specifically, for each group, report the numbers of participants randomly assigned, receiving intended treatment, completing the study protocol, and analyzed for the primary outcome. Describe protocol deviations from study as planned, together with reasons.</td>
<td></td>
</tr>
<tr>
<td>Recruitment</td>
<td>14</td>
<td>Dates defining the periods of recruitment and follow-up.</td>
<td></td>
</tr>
<tr>
<td>Baseline data</td>
<td>15</td>
<td>Baseline demographic and clinical characteristics of each group.</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 4.6. CONSORT statement checklist: Items to include in reporting an RCT. From www.consort-statement.org. Copyright by The CONSORT Group. Reprinted by permission. The CONSORT Statement is a document that is periodically updated to account for the evolving nature of the research that supports it. It is currently being updated, with an anticipated publication date of late 2009. Upon publication of this next revision, the CONSORT 2001 checklist and flow diagram being used in this chapter will become outdated. Please refer to www.consort-statement.org to ensure that you are always using the most updated version of the CONSORT Statement.

Quasi-Experimental Designs

As discussed by Greenhoot (2003), the primary difference between experimental and quasi-experimental intervention designs is that the former designs involve random assignment of participants to levels of the independent variable (e.g., intervention vs. control in an RCT), whereas the latter do not involve random assignment. Quasi-experimental designs are often the method of choice when random assignment to conditions is not possible. The most common quasi-experimental design is the nonequivalent control group design. For example, suppose one is interested in comparing outcomes of two camp programs for children with attention-deficit/hyperactivity disorder, and random assignment to camps is not feasible. Of course, the potential limitation of this type of design is that there are selection differences between the camp programs (e.g., there may be demographic differences between the children who select one program vs. the other program). The use of a pretest is an important feature of this design, and demographic differences between groups can be controlled as covariates.

Observational Research Designs

Most research in pediatric psychology employs observational research designs and methods. Kazdin (2003) and Mann (2003) have reviewed different types of designs that fall into this category, including (1) cohort studies and (2) case–control studies. Cohort studies are used to examine variables that precede the development of some outcome. They can also be used to determine the “incidence” of a condition (i.e., the number of new cases of a condition over time within a specified population of interest). For exam-
FIGURE 4.7. The CONSORT flowchart. From www.consort-statement.org. Copyright by The CONSORT Group. Reprinted by permission. The CONSORT Statement is a document that is periodically updated to account for the evolving nature of the research that supports it. It is currently being updated, with an anticipated publication date of late 2009. Upon publication of this next revision, the CONSORT 2001 checklist and flow diagram being used in this chapter will become outdated. Please refer to www.consort-statement.org to ensure that you are always using the most updated version of the CONSORT Statement.

ple, one might examine a cohort of individuals over time to determine what variables are associated with the occurrence of lung cancer or a heart attack (Mann, 2003). Or one might conduct a longitudinal study of children exposed to a hurricane to determine what variables are associated prospectively with the onset of posttraumatic stress disorder symptoms (Kazdin, 2003). The advantage of cohort designs is that they allow one to establish a time line that precedes the outcome of interest with predictors that are not biased by the occurrence of the outcome (Kazdin, 2003). In a case-control study, the investigator identifies samples that do or do not exhibit the outcome of interest (e.g., depression, divorce, a traumatic brain injury). Such a design can also be used to determine the “prevalence” of a condition (i.e., the frequency of a condition’s occurrence at a certain point in time). An important difference between case-control studies and cohort studies is that cohort studies follow a group of participants who have not yet exhibited the outcome of interest to determine who will and who will not exhibit the outcome of interest (Kazdin, 2003; Mann, 2003). In case-control studies, those who already have the outcome are compared with those who do not. The most common case-control design is cross-sectional, in which two groups are compared on variables of interest.

Single-Participant Designs

Single-participant designs have long been used in measuring intervention effects at the individual level (Barlow & Hersen, 1984; Kazdin, 1982) and have significantly contributed to our knowledge base in pediatric psychology (Rapoff & Stark, 2008). Single-participant designs are fundamentally similar to group comparison approaches; however, participants are used as their own controls. Although there are several design options for single-participant techniques, all designs share at least four common characteristics: (1) objective data/baseline assessment, (2) continuous assessment, (3) change in only one variable at a time, and (4) replication across individuals or dependent variables.

There are several single-participant design options, with the most common being (1) A-B designs, (2) reversal designs, (3) multiple-baseline designs, and (4) changing-criterion designs (Barlow & Hersen, 1984; Kazdin, 1982). The simplest method, the A-B design, allows comparison of baseline behavior (i.e., “A,” usual care or no treatment) and behavior after an intervention or treatment (i.e., “B”); it is most suitable for use when a return to a baseline condition is unethical, impractical, or undesired. Reversal designs, also known as A-B-A or A-B-A-B, are extensions of the A-B design with baseline and intervention phases repeated. One strength of such designs (relative to the A-B design) is the ability to show a functional relationship between the intervention and outcome over time. A multiple-baseline design consists of a series of A-B designs that can be implemented within the same individual across different behaviors, within the same individual across different settings, or within the same behavior across different individuals. Finally, a changing-criterion design is an A-B design involving multiple interventions following an initial baseline, with the criterion for successful outcomes becoming more stringent over time.

Single-participant designs have several advantages. First, they allow for examination of interparticipant and intraparticipant variability in outcomes. Second, single-participant designs can accommodate small sample sizes, such as those in studies of rare conditions, and can be used when withholding treatment is unpractical or unethical. Third, these designs may enhance clinical practice by allowing clinicians to monitor...
and assess real-time change and to modify interventions accordingly. Finally, single-participant studies can serve as an initial step in developing empirically validated treatments and evidence-based practices. There are also limitations to using single-participant designs. Lack of generalizability is the most prominent threat to external validity; however, this can be addressed by replication (e.g., repeating the same procedures with several additional patients). There are also several threats to internal validity that need to be considered, such as the impact of extraneous events, maturation effects, carryover effects, and multiple-intervention inference.

Meta-Analytic Techniques

Meta-analysis is a technique used to summarize and pool results from multiple studies to produce aggregated outcomes (Durlak, 1999; Lipsey & Wilson, 2001). Because a major obstacle in conducting research in the field of pediatric psychology is the recruitment of large samples, meta-analysis may have a higher level of utility in this field (by aggregating data across multiple small-sample studies). Within the literature on intervention, meta-analysis can highlight successful treatments as well as promising new directions. At the most general level, a meta-analysis is conducted as follows: (1) A research question is formulated, and hypotheses are clearly stated; (2) a comprehensive sample of studies is obtained (i.e., one conducts a thorough literature review of both published and unpublished studies and selects studies based on explicit inclusionary criteria); (3) information from individual research reports is coded; (4) analyses are conducted with statistics specially designed for meta-analyses; and (5) conclusions are drawn, and recommendations for future research are provided.

Researchers employ measures of effect size to convey results in meta-analysis. Although different studies may make use of different measures of effect size, one common index is Cohen's d. In the context of an RCT, this effect size is calculated by subtracting the mean of the control group from the mean of the target group, divided by a pooled standard deviation (other statistics often used in meta-analysis are the product-moment correlation r and odds ratios). Simply put, effect sizes express the magnitude of difference between two groups in standard deviation units, which allows results across studies to be compared and pooled.

Challenges in Conducting Research with Pediatric Populations

Several research issues pertain specifically to the study of pediatric populations. First, it is important to determine the setting in which the data will be collected. Because many pediatric populations regularly attend hospital clinics, clinic-based data collections may be a relatively efficient strategy. On the other hand, there are certain drawbacks to this strategy: (1) Children and/or parents may be particularly stressed during clinic visits; (2) a child is often accompanied by only one caregiver, making it difficult to assess all family members; and (3) clinic settings are busy environments, which may be distracting to research participants. Data collections from children with a chronic condition may also be complicated if there are cognitive impairments accompanying the condition or if there is a temporary exacerbation of the condition. In a longitudinal study with a pediatric population, a researcher is studying a physical condition that may change over time (with respect to presentation or severity). Moreover, treatments for the condition may also change over time, which could have an impact on the severity of the condition. In such work, whether cross-sectional or longitudinal, sample sizes are another very important concern. Studies in pediatric populations are often underpowered (even when there is a low level of attrition); thus multisite trials are common.

Methodological and Statistical Issues

In this section, we discuss several issues relevant to data collection and statistical analyses in the field of pediatric psychology.

Multisource, Multimethod Data in Pediatric Settings

Once a researcher has formulated a particular research question, decisions need to be made concerning the research design, including the nature of the data to be collected. For instance, what sources or informants will provide the data? And what methods will be used to collect the data? Answers to these questions are critical, because they will have an impact on the ability to rule out alternative explanations for the findings (see Holmbeck, Li, Schurman, Friedman, & Coakley, 2002, for an extended discussion of issues related to the collection and management of multisource, multimethod data; see also Palermo & Wilson, Chapter 15, this volume, for information on methods of collecting data electronically).

Strategies for Managing Attrition and Retention of Participants

In conducting an RCT or any type of longitudinal study, attending to issues of attrition and retention is critical. Several strategies are available to reduce attrition. First, it is helpful to foster the participants' commitment to the study. This can be accomplished by sending project newsletters to participants, although it is critical that the primary hypotheses of the study not be revealed in such newsletters. Second, it is important to develop a tracking system to keep participants' contact information current. Third, at each data collection point, it is important to gather all current contact information (including email addresses), as well as contact information for individuals who will always know the whereabouts of a given participant. Finally, if researchers have funds to compensate participants for their work, they can increase the compensation at each data collection point, with a “bonus” provided to those who complete all data collections (although researchers should avoid making such inducements coercive).

Cleaning Data

Using strategies to ensure the integrity of data is critical (Farrell, 1999). For example, after data have been entered, it is important to run frequency analyses on all variables to check for out-of-range values. Moreover, it is useful to employ double-data-entry procedures to detect errors in data entry. It is beneficial to enter data at the item level, rather than at the scale level, so that psychometrics can be examined (e.g., alpha coef-
given size, one typically conducts a power analysis prior to collecting data (Wilkinson et al., 1999). Several papers have appeared that demonstrate methods for computing effect sizes for an analysis, a correlation coefficient of .30, for example, might be significant in one sample but nonsignificant in another sample, depending on the sample size. But the effect size for an r of .30 would be identical across the two studies (in fact, r is a measure of effect size). Several papers have appeared that demonstrate methods for computing effect sizes (e.g., Rosenthal, 1994). To determine the sample size necessary to detect an effect of a given size, one typically conducts a power analysis prior to collecting data (Wilkinson & Task Force, 1999). Finally, confidence intervals provide “margins of error” around a statistical value; in other words, it is a measure of the precision of a statistical value. For example, one might compute confidence intervals around a mean, which is computationally a function of (but not equivalent to) the standard error (Cumming & Finch, 2005). One then plots one’s findings with confidence intervals (or error bars).

Suggestions for Conducting Data Analyses and Protecting Statistical Conclusion Validity

Perhaps the best advice that can be given about data analyses is the following: “Although complex designs and state-of-the-art methods are sometimes necessary to address research questions effectively, simpler classical approaches can often provide elegant and sufficient answers to important questions. Do not choose an analytic method to impress your readers or to deflect criticism” (Wilkinson & Task Force, 1999, p. 598). More generally, Kazdin (2003) discusses several possible threats to statistical conclusion validity, or the statistical evaluation component of the study, that have an impact on the quality of the study’s conclusions: (1) low statistical power, (2) violated assumptions of statistical tests, (3) a lack of reliability for some or all of the measures, (4) running large numbers of analyses, and (5) random heterogeneity in the respondents.

Conclusions and Recommendations: The State of the Art and a Look to the Future

The purpose of this chapter has been to highlight issues for investigators to consider when designing research in the field of pediatric psychology. We have intentionally begun our discussion with a focus on theory, because we believe that the process of theory generation drives all other aspects of the research endeavor. We now offer several directions for future research in the field of pediatric psychology, based on our review. First, we recommend that more research be longitudinal and developmentally oriented (Holmbeck, Bruno, & Jandasek, 2006). Second, we recommend that researchers go beyond examining bivariate associations between predictors and outcomes in single pediatric samples. Third, we recommend that scholars attempt to specify and examine the influence of moderator variables; in this way, they should be able to determine to whom the effects apply or do not apply. Fourth, for findings that have considerable support in the literature, we suggest that researchers begin to theorize about variables that may explain (or mediate) such associations. Fifth, we recommend careful attention to issues of internal and external validity in designing a study, to rule out alternative explanations for the findings. Finally, we suggest that researchers take good care of their data by minimizing missing data, cleaning the data prior to conducting data analyses, attending to issues of data integrity (data distributions, outliers), and attempting to increase retention. With advances in research on pediatric populations, we will understand better the impact of chronic conditions as these conditions unfold over time. With such understanding, we will be able to design developmentally relevant intervention strategies for such youths and their families.

Acknowledgment

Completion of this chapter was supported by a research grant from the National Institute of Child Health and Human Development (No. R01-HD048629).
References

CHAPTER 5
Health Insurance and Pediatric Psychology Services

WILLIAM DOUGLAS TYNAN
MEREDITH LUTZ STEHL
JENNIFER SHROFF PENDLEY

Mental health insurance and reimbursement of services are of utmost concern to pediatric psychology and its practice. Reviewing the history of private and federal insurance makes it possible to gain a better understanding of the system that guides insurance and reimbursement models that function today. Moreover, the everyday practice of pediatric psychology requires an understanding of managed care, as well as of how to use mental health codes and health and behavior (H & B) codes. Finally, it is important to attend to more specific insurance-related issues that have an impact on pediatric psychology, including integrated care, the use of bundling, and employee assistance programs.

A Brief History of Health Insurance

Payment for health care by government and private insurers has a history that dates back to the 19th century in both the United States and Europe, with the earliest plans emphasizing secondary costs (e.g., loss of patient income, social costs, indirect costs to society) rather than those of direct care. Whereas Europe focused on national systems for compulsory sickness insurance, the United States relied on other means, due to a decentralized federal government and a vast rural population (Starr, 1982). Unions, lodges or societies based on national origin, and other benevolent societies filled the local needs. During this period, Americans also bought accident and life insurance to cover indirect costs for injured workers. Today in the United States, the government and employers are the largest insurers for health—providing coverage to specific populations, but still leaving nearly 46 million people without coverage (Assistant Secretary for Planning and Evaluation, 2005). Employers in this country have a history of furnishing