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ARTICLE

Culturing of female bladder bacteria reveals an
interconnected urogenital microbiota
Krystal Thomas-White1, Samuel C. Forster 2,3,4, Nitin Kumar2, Michelle Van Kuiken5, Catherine Putonti6,7,8,

Mark D. Stares2, Evann E. Hilt1, Travis K. Price1, Alan J. Wolfe1 & Trevor D. Lawley2

Metagenomic analyses have indicated that the female bladder harbors an indigenous

microbiota. However, there are few cultured reference strains with sequenced genomes

available for functional and experimental analyses. Here we isolate and genome-sequence

149 bacterial strains from catheterized urine of 77 women. This culture collection spans

78 species, representing approximately two thirds of the bacterial diversity within the

sampled bladders, including Proteobacteria, Actinobacteria, and Firmicutes. Detailed genomic

and functional comparison of the bladder microbiota to the gastrointestinal and vaginal

microbiotas demonstrates similar vaginal and bladder microbiota, with functional capacities

that are distinct from those observed in the gastrointestinal microbiota. Whole-genome

phylogenetic analysis of bacterial strains isolated from the vagina and bladder in the same

women identifies highly similar Escherichia coli, Streptococcus anginosus, Lactobacillus iners, and

Lactobacillus crispatus, suggesting an interlinked female urogenital microbiota that is not only

limited to pathogens but is also characteristic of health-associated commensals.
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Contrary to medical dogma, urine is not sterile, even in
asymptomatic individuals1–5. For over 60 years, the stan-
dard urine culture protocol has represented the primary

tool for detecting bacteria in clinical microbiology laboratories.
This aerobic protocol was designed to detect causative agents of
pyelonephritis6 and is particularly effective at detecting abundant
Escherichia coli (>105 colony-forming unit (CFU)/ml) but little
else7. Culture-independent analysis of urine obtained by supra-
pubic aspirate, which bypasses the vulva, vagina, and urethra,
demonstrates the presence of bacteria in the bladders of women1.
The microbial profiles observed in aspirated urine are similar to
those in urine obtained by transurethral catheter (TUC), indi-
cating the avoidance of urethral contamination in catheterized
samples1. We note the difference between TUC, which is tran-
sient and not associated with catheter-associated urinary tract
infection (CAUTI), and indwelling catheters that are known to
harbor biofilms and result in CAUTI. Analyzing urine sampled by
TUC, we previously found that the majority of asymptomatic
women contain bacterial genera typically not detected by stan-
dard urine culture1,3. These genera, including Lactobacillus,
Gardnerella, Streptococcus, Staphylococcus, and Corynebacterium,
tend to be in low abundance (between 10 and 104 CFU/ml)3 and
require growth conditions and carbon sources not available in
standard urine culture2,8. Therefore, we developed an expanded
quantitative urine culture (EQUC) protocol that captures a broad
range of bacterial taxa3.

Previous studies, using EQUC in combination with 16S rRNA
sequencing2,3,9, suggest the bladder microbiota of asymptomatic
women typically contains low bacterial diversity, with increases in
diversity indicative of urgency urinary incontinence symptoms
and a decreased response to anticholinergic medication2,9,10.
They also highlight bacterial species (e.g., Streptococcus anginosus
and Gardnerella vaginalis) that are associated with urgency
urinary incontinence symptoms and others (e.g., Lactobacillus
crispatus) that are associated with the lack of lower urinary tract
symptoms2. Evidence also exists that women with communities
dominated by specific Lactobacillus species are less likely to
develop post-instrumentation and postoperative urinary tract
infections (UTIs)8,11. However, owing to the lack of bladder-
specific bacterial reference genomes, high-resolution taxonomic
characterization to the bacterial strain level, functional analysis,
and comparison to other microbiota communities remain to be
performed.

In the present study, we combined EQUC with large-scale
whole-genome sequencing to comprehensively characterize the
microbiota composition of the female bladder in symptomatic
and asymptomatic peri-menopausal women. We compared this
new culture collection to previously collected gut and vaginal
collections and identified similarities between the bladder and
vagina but not the gut. Finally, we identified highly similar species
that reside in both the bladder and vagina of individual women
indicative of interconnected urogenital microbiota.

Results
The bladder microbiota culture collection. Overall, we archived
and genome-sequenced 149 isolates representing 3 phyla, 7
classes, 11 orders, 23 families, 36 genera, and 78 species (Fig. 1;
Supplementary Data 1). These organisms were isolated from 38
asymptomatic individuals (67 isolates) and 39 symptomatic
individuals (82 isolates) (Supplementary Data 1). Uropathogenic
species, such as E. coli, Klebsiella pneumoniae, Proteus mirabilis,
Enterobacter cloaceae, Morganella morganii, and Pseudomonas
aeruginosa, represented only 7.7% (6/78) of the phylogenetic
diversity cultivatable from the bladder. In fact, other than these
uropathogens, very few Proteobacteria or even Gram-negative

organisms were found. Instead, the largest number of isolated
species was from the Gram-positive phyla Firmicutes (47.4%, 37/
78) and Actinobacteria (38.5%, 30/78), particularly the families
Streptococcaceae (11.0%, 9/78), Lactobacillaceae (11.0%, 9/78),
Corynebacteriaceae (10.3%, 8/78), and Actinomycetaceae (10.3%,
8/78). To understand the extent of the total bacterial community
represented by this culture collection, we next undertook whole-
genome metagenomic sequencing on 12 samples. This analysis
suggests that EQUC captures approximately 66.4% of bacterial
abundance within the bladder microbiota representing approxi-
mately 72.0% of the genera (Supplementary Table 1). The only
genera detected by metagenomics without representative strains
within our culture collection were anaerobes from the phyla
Actinobacteria (Propionimicrobium, Varibaculum, and Atopo-
bium), Firmicutes (Peptoniphilus, Megasphaera, Finegoldia), and
Bacteroidetes (Prevotella).

Comparison of bladder, gut, and vaginal isolates. To place the
bladder microbiota in the context of other well-studied body sites,
we compared our bladder genome collection with strains from 67
publicly available vaginal (Supplementary Table 2) and 120 gas-
trointestinal (Supplementary Table 3) species cultivated from
unrelated healthy women. Based on whole-genome pairwise
average nucleotide identity (ANI)12–14, only one species, Bifido-
bacterium bifidum, was detected in all three body sites (pairwise
ANI > 95%, indicating same species). In contrast, 23 species were
found in both the bladder and vaginal microbiota (ANI > 95%).
We also identified seven species typically associated with UTIs (E.
cloacae, E. coli, P. aeruginosa, Bacillus infantis, K. pneumoniae,
Gardnerella terrae, and Bacillus idriensis), with three species
isolated only from the bladder of symptomatic women (P. aeru-
ginosa, K. pneumoniae, and E. cloacae) (Supplementary Table 4).
Remarkably, from unrelated women, four species were identified
(Actinomyces neuii, Lactobacillus crispatus, L. gasseri, and L.
jensenii) that were highly similar between the bladder and vagina
(Supplementary Table 5).

Protein-coding functions of bladder isolates from asympto-
matic individuals. To determine the protein functions encoded
by the genomes of members of the healthy bladder microbiota
and its relationship to the functions encoded by the genomes of
microbiota from other body sites, we analyzed the genomes of
bladder strains isolated from asymptomatic women, with gas-
trointestinal and vaginal strains isolated from other asymptomatic
individuals. Applying conserved domain database (CDD)15 and
discriminant analysis of principle components (DAPC)16, we
compared the protein domains of the 67 bladder strains from
healthy women with protein domains of existing 92 publicly
available vaginal and 152 gastrointestinal strains cultivated from
unrelated healthy individuals17,18. Consistent with the species
analysis, this comparison demonstrates clear overlapping protein
functions within the bladder and vaginal strains that were largely
separated from protein functions found in the gastrointestinal
strains (Fig. 2). Taken together, these results indicate the presence
of shared functions across the bladder and vaginal microbiota
that are clearly distinct from those of gastrointestinal species.

To understand the characteristics that differentiate vaginal and
bladder bacteria from gastrointestinal tract bacteria, we next
performed functional genomic comparisons. Applying Clusters
of Orthologous Groups of proteins (COG) analysis, we
identified significant enrichment of functional domains in the
urogenital-associated bacteria associated with almost the entire
mevalonate-dependent pathway for isoprenoid biosynthesis
(Supplementary Table 6): 3-hydroxy-3-methylglutaryl CoA
synthase (q < 1.33 × 10−18), 3-hydroxy-3-methylglutaryl CoA
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reductase (q < 5.17 × 10−11), mevalonate kinase (q < 5.84 × 10−14),
and mevalonate pyrophosphate decarboxylase (q < 8.15 × 10−15).
Also enriched was pantothenate kinase, a protein involved the
biosynthesis of the coenzyme A required for isoprenoid
biosnthesis (q < 1.1 × 10−10). Other enriched functional
domains included several transport systems [the permease
component of a predicted ABC-type exoprotein transport system
(q < 5.71 × 10−15) and L-asparagine transporter and permeases
(q < 1.40 × 10−13)] and a component of the Co/Zn/Cd efflux
system (q < 2.53 × 10−13) involved in metal resistance. Also
enriched were protoheme ferro-lyase (q < 4.40 × 10−14), the
luciferase family of flavin-dependent oxidoreductases (q < 2.74 ×
10−13), NAD(P)H-dependent FMN reductase (q < 6.52 × 10−16), a
protein involved in ribonuclease reduction (q < 5.76 × 10−16), and
the epsilon subunit of RNA polymerase, recently discovered in

A/T-rich Gram-positive bacteria and thought to protect against
phage infection (q < 5.71 × 10−15). In contrast, COG analysis
identified significant enrichment of 5 functional domains
associated with spore formation [YlmC (q < 1.67 × 10−21),
SpoIIIAA (q < 2.61 × 10−21), CwlJ (q < 7.18 × 10−20), CotJC (q <
7.27 × 10−19), and SpmB (q < 5.31 × 10−16)], as well as iron-
dependent oxidoreductases (q < 2.67 × 10−17) and aldo/keto
oxidoreductases (q < 7.85 × 10−21) in the gastrointestinal tract
(Supplementary Table 7). These results suggest spore formation
and oxygen survival, while critical for transmission of gastro-
intestinal microbiota19, are significantly underrepresented in
bacteria of the urogenital tract.

Functional enrichment of key metabolic pathways suggests
specific nutritional selection on bacteria of the urogenital
environment absent in bacteria of the gastrointestinal tract.
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Fig. 1 Phylogenetic tree representing diversity of bacteria cultured from the female bladder. A representation of the full bacterial diversity (n= 149 isolates)
that can be isolated using the expanded quantitative urine culture (EQUC) method from catheterized urine samples (n= 77 patients)
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Isoprenoids are essential to life, playing indispensable roles in
membrane and peptidoglycan biosynthesis and electron trans-
port. The vast majority of bacteria use the methylerythritol
phosphate (MEP) pathway for isoprenoid biosynthesis. Intrigu-
ingly, this pathway concludes with two Fe-S cluster enzymes20. In
contrast, the less common mevalonic acid (MVA) pathway,
which is enriched in urogenital bacteria Actinomyces neuii,
Lactobacillus crispatus, L. gasseri, and L. jensenii, contains no Fe-S
clusters. Thus the enrichment of the MVA pathway over the more
common MEP pathway may relate to iron availability within the
vagina and bladder.

Comparison of vaginal and bladder strains within individual
women. Given the significant taxonomic and functional overlap
of vaginal and bladder strains in asymptomatic women, we
hypothesized the existence of interconnected urogenital micro-
biota, which we then sought to assess by culturing bacterial
strains from the vaginal and bladder microbiota within an inde-
pendent cohort of women with urgency urinary incontinence
symptoms but no clinically detectable urinary infections. Four
women contained a species in both anatomical sites (Supple-
mentary Table 8), including S. anginsosus, which is associated
with urgency urinary incontinence2, a putative non-pathogenic E.
coli, and L. iners and L. crispatus. Both of these Lactobacillus
species are associated with health in the vagina21, with the latter
also associated with the bladder of asymptomatic women2.

To determine whether these shared species belong to the same
or distantly related bacterial lineages, we next sequenced and
compared their genomes to each other and to the genomes of
publicly available reference strains (Supplementary Table 9),

using the 40-marker gene analysis22,23 and ANI analysis. In all
the four strain sets tested, the vaginal strain was highly similar to
the bladder strain (Fig. 3, blue and red dots). One individual
contained E. coli strains that were 99.72% similar by ANI at both
sites. These strains, which occurred in the absence of a clinically
diagnosed urinary infection, were most closely related to known
commensal strains and lacked both a Type III secretion system
and other previously characterized pathogen-associated genes24

(Fig. 3a, Supplementary Table 10). The emerging uropathogen S.
anginosus showed 99.77% similarity between strains from each
site (Fig. 3b, Supplementary Table 11). Finally, the commensal L.
iners and health-associated L. crispatus strains shared 99.99%
(Fig. 3c, Supplementary Table 12) and 99.80% (Fig. 3d,
Supplementary Table 13) similarity between the vagina and
bladder. The existence of these closely related isolates provides
strong evidence that bacterial movement between the vaginal and
bladder microbiota is not only limited to ascending uropatho-
genic species, such as E. coli, as described previously25, but also
includes health-associated commensal bacteria.

Discussion
A growing body of work using catheterized urine in women has
found associations between bladder microbiota composition and
urgency urinary symptoms, response to anticholinergic medica-
tion9, risk of postoperative11,26 and post-instrumentation UTIs8,
and kidney stones27. Here we provide an extensive, genome-
sequenced culture collection representing approximately two
thirds of bacterial strains detected in the sampled female bladders
during both health and disease. Direct cultivation paired with
whole-genome sequencing provides the ability to move beyond

Bladder
Gut
Vagina

Vagina

Bladder

Gut

Fig. 2 Functional diversity between genomes of bacterial strains isolated from the bladder, vagina, and intestine. Discriminant analysis of principal
components using conserved protein domains (CDD). Each color dot represents a strain from 3 different niches: blue (vagina; n= 92), red (bladder;
n= 67), and green (gut; n= 152)
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broad phylogenetic relatedness to perform strain-level tracking
and functional analysis of these microbes and communities. The
creation of this comprehensive reference collection, capturing the
complete phylogenetic diversity currently cultivated from the
bladder, represents a valuable resource to explore the function of
both pathogenic and commensal bladder bacteria.

We have demonstrated for the first time that, like some
pathogens, highly similar strains of health-associated commensal
bacteria are found in both the bladder and vagina of the same
individual. Previously, it was thought that a healthy vaginal
microbiota was the major factor in preventing ascending infec-
tions from migrating into a sterile bladder. The data presented
herein suggests that microbial sharing between the vaginal and
bladder microbiota is not limited to known and emerging uro-
pathogens, such as E. coli and S. anginosus, but also includes
health-associated commensal bacteria, such as L. iners and L.
crispatus. Now, we propose that some bacteria that can reside in
both the bladder and vagina could provide protection against
urinary infection, suggesting that the microbes of these adjacent
pelvic floor niches could be considered to be a single urogenital
microbiota. This insight, combined with this unique genome-

sequenced culture collection, should alter the way we view the
bacteria of the female pelvic floor both by enabling further
research and by providing new diagnostic and treatment options
for UTIs, urgency urinary incontinence, and other associated
urinary tract disorders.

Methods
Patient recruitment. Following Loyola University Medical Center (LUMC)
Institutional Review Board approval, participants gave verbal and written consent
for chart abstraction and urine collection with analysis for research purposes.
Recruitment and urine collection was performed by members of the Loyola
Urinary Education and Research Collaborative who are part of the clinical practice
of the Female Pelvic Medicine and Reconstructive Surgery Center at LUMC.
Exclusion criteria for both cohorts included current UTI (based on urine dipstick)
or history of recurrent UTI, antibiotic exposure in the past 4 weeks for any reason,
immunologic deficiency, neurological disease known to affect the lower urinary
tract, pelvic malignancy or radiation, untreated symptomatic pelvic organ prolapse
(POP) greater than POP-Q stage II (vaginal protrusion >1 cm outside of the
vaginal hymen), or pregnancy.

Patients were recruited as part of separate studies2,9,27–29. In the current study,
representative isolates were selected for whole-genome sequencing in order to build
as phylogenetically complete a dataset as possible. For this reason, only a few
isolates from some patients have been included. For complete understanding of

P1 bladder isolate

E. coli UPEC CFT073

E. coli B12

E. coli K12 MG1655

P1 vaginal isolate

E. coli 083H1
Tree scale 0.001

a E. coli

S. anginosus SA1

P2 vaginal isolate

S. anginosus MAS624

S. anginosus C105–1

P2 bladder isolate

S. anginosus SK1138

S. anginosus C238

b S. anginosus

L. iners DSM 13335

L. iners Lactin V11-V1d

P3 vaginal isolate

P3 bladder isolate

L. iners AB1

L. iners ATCC 55195

Tree scale 0.0001

c L. iners

P4 bladder isolate

L. crispatus FB077

P4 vaginal isolate

L. crispatus 2141

L. crispatus FB049

L. crispatus 125-CHN

L. crispatus CT05

L. crispatus ST1

L. crispatus JV-V01
Tree scale 0.001

d L. crispatus

Tree scale 0.0001

Bladder isolates Vaginal isolates

Fig. 3 Phylogenetic comparison of bladder and vaginal strains isolated from individual women using the 40 universal core genes. a Maximum likelihood
tree constructed from E. coli strains isolated from the bladder (red) and vagina (blue) of individual patient (P1) and four reference strains. b Maximum
likelihood tree constructed from S. anginosus strains isolated from the bladder (red) and vagina (blue) of individual patient (P2) and five reference strains. c
Maximum likelihood tree constructed from L. iners strains isolated from the bladder (red) and vagina (blue) of individual patient (P3) and four reference
strains. d Maximum likelihood tree constructed from L. crispatus strains isolated from the bladder (red) and vagina (blue) of individual patient (P4) and
seven reference strains
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each patient’s microbiome or for additional metadata, please refer to the primary
publications listed in Supplementary Data 1.

Urine collection and EQUC bacterial culturing. Urine was collected aseptically
via TUC and was placed in a BD Vacutainer Plus C&S preservative tube for
culturing. Previous work has shown that the microbiota detected in suprapubic
aspirates are indistinguishable from the microbiota detected in urine obtain by
TUC but distinct from the microbiota in voided urine and vaginal swabs1. Thus
aspiration and catheterization sample the same niche. Since aspiration bypasses the
vulva, vagina, and urethra, this niche must be the bladder. Since it is less invasive
than aspiration, TUC is the urine sampling method of choice. We note that because
TUC is a transient procedure lasting no more than a few seconds, it is not asso-
ciated with CAUTI. This study does not use nor address indwelling catheters that,
due to biofilm formation, are associated with CAUTIs.

Four patients were chosen to sample both the bladder and vaginal environments
(Fig. 3). For these women, the vaginal swab was collected from the posterior fornix
prior to the catheterized urine collection.

All samples underwent standard urine culture (SUC) as well as EQUC. For
SUC, 1 µl of urine was inoculated onto 5% sheep blood agar plate (BAP) and
MacConkey agar plate (BD BBL prepared plated media), incubated aerobically at
35 °C for 24 h. The detection level was 1000 CFU/ml, represented by 1 colony of
growth on either plate. If no growth was observed, the culture was reported as “no
growth”, indicating no growth of bacteria at the lowest dilution, i.e., 1:1000. SUC
results are listed in Supplementary Data 1.

EQUC was performed as described previously3. Briefly, 100 µl of urine was
grown under five conditions with BD BBL prepared plated media: (1) BAP in CO2

for 48 h, (2) chocolate agar (CHOC) in CO2 for 48 h, (3) colistin and nalidixic acid
(CNA) agar in CO2 for 48 h, (4) CDC anaerobe BAP in an anaerobic jar for 48 h,
and (5) BAP in aerobic conditions (BD GasPak Anaerobe Sachets) for 48 h. The
detection level was 10 CFU/ml, represented by 1 colony of growth on any of the
plates. EQUC results are listed in Supplementary Data 1.

Vaginal swabs were collected using BD Liquid Amies Elution Swab (ESwab)
collection system. To compare vagina and bladder culture data (Fig. 3,
Supplementary Table 9), vaginal samples were cultured using a modified EQUC
protocol, with 10 µl of urine plated onto BAP and CNA grown for 48 h in 5% CO2,
and anaerobic BAP grown for 48 h under anaerobic conditions (BD BBL prepared
plated media and BD GasPak Anaerobe Sachets).

Each morphologically distinct colony type was isolated on a different plate of
the same medium to prepare a pure culture that was used for identification. Matrix-
assisted laser desorption ionization–time of flight mass spectrophotometry with the
MALDI Biotyper 3.0 software program (Bruker Daltonics, Billerica, MA) was used
to identify the bacterial strains, as described elsewhere3.

The 149 bacterial strains are available upon request.

Genome sequencing and annotation. The isolates were grown in their preferred
medium and pelleted. Genomic DNA was extracted from pelleted cells using a
phenol–chloroform method30. DNA was prepared and sequenced using the Illu-
mina Hi-Seq platform with library fragment sizes of 200–300 bp and a read length
of 100 bp at the Wellcome Sanger Institute, as previously described31. Annotated
assemblies were produced using the pipeline described previously32. For each
sample, sequence reads were used to create multiple assemblies using Velvet v1.233

and VelvetOptimiser v2.2.5 (https://github.com/tseemann/VelvetOptimiser). An
assembly improvement step was applied to the assembly with the best N50 and
contigs were scaffolded using SSPACE34 and sequence gaps filled using GapFiller35.
Automated annotation was performed using PROKKA v1.1136.

Whole-genome metagenomic analysis. Whole-genome metagenomic sequencing
was performed on the Illumina HiSeq 2500 as described previously18 with human
contaminating reads filtered by mapping to the Human reference genome (hg19)
with bowtie237. Filtered sequences were compared at the genus and species levels
using lowest common ancestor analysis previously described38 and by relative
abundance at the sequence level by alignment using the bowtie2 algorithm to the
complete bladder culture collection genome catalog.

Phylogenetic analysis and average nucleotide identity analysis. The phyloge-
netic analysis was conducted by extracting amino acid sequence of 40 universal
single copy marker genes22,23 from bacterial collection using SpecI39. The protein
sequences were concatenated and aligned with MAFFT v. 7.2040, and maximum-
likelihood trees were constructed using FastTree41 with default settings. All phy-
logenetic trees were visualized in iTOL42. ANI was calculated by performing
pairwise comparison of genome assemblies using MUMmer43.

Functional genomic analysis. To identify protein domains in a genome, we
performed RPS-BLAST using CDD44. All protein domains were classified in dif-
ferent functional categories using COG database45 and were used to perform
DAPC16 implemented in the R package Adegenet v2.0.146. Domain enrichment
was calculated using one-sided Fisher’s exact test with p-value adjusted by Hoch-
berg method in R v3.2.2.

Data availability. Genome and metagenome sequences have been deposited in the
European Nucleotide Archive. Accession codes for genome sequences are listed in
Supplementary Data 1 and all supplementary tables. Metagenomic sequences are
listed in Supplementary Table 1. Other relevant data supporting the findings of the
study are available in this article and its Supplementary Information files or from
the corresponding authors upon request.
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