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We report Kondo resonances in the conduction of single-molecule transistors based on transition metal
coordination complexes. We find Kondo temperatures in excess of 50 K, comparable to those in purely
metallic systems. The observed gate dependence of the Kondo temperature is inconsistent with obser-
vations in semiconductor quantum dots and a simple single-dot-level model. We discuss possible
explanations of this effect, in light of electronic structure calculations.

DOI: 10.1103/PhysRevLett.95.256803 PACS numbers: 73.22.�f, 73.23.Hk, 85.65.+h

In the Kondo Hamiltonian [1], one of the most well-
studied many-body problems in physics, an unpaired spin
localized in a singly occupied electronic level, is coupled
via tunneling to an electronic bath. On-site Coulomb re-
pulsion forbids real double occupancy of the level, but
virtual processes favor antiferromagnetic exchange be-
tween the local spin and the electronic bath. As T is
reduced below a characteristic Kondo temperature, TK,
these exchange processes ‘‘screen’’ the local moment.
The Kondo problem has undergone a resurgence, with
atomic-scale studies of Kondo physics by scanning tunnel-
ing microscopy (STM) [2,3], and the realization of tunable
Kondo systems in semiconductor quantum dots [4–7].
With the recent development of single-molecule transistors
(SMTs) based on individual small molecules [8], Kondo
systems now include organometallic compounds [9,10]
and fullerenes with normal [11] and ferromagnetic [12]
leads.

In this Letter, we report Kondo physics in SMTs incor-
porating transition metal complexes designed to contain
unpaired electrons. As a function of gate voltage, VG, we
observe transitions from Coulomb blockade conduction to
Kondo conduction, manifested as a strong peak in the
differential conductance, G � @ID=@VSD, at zero bias,
VSD � 0, in one charge state. At fixed VG, the temperature
dependence of the conductance peaks’ amplitudes and
widths agree well with the expected forms for spin-1=2
Kondo resonances. Observed SMT Kondo temperatures
are >� 50 K, comparable to those in purely metallic
Kondo systems. We find that TK�VG� is strongly inconsis-
tent with the simple model of Kondo physics as seen in
semiconductor devices [6,7]. We discuss explanations for
this anomalous gate dependence in light of spin-resolved
electronic structure calculations of the complexes.

Figure 1(a) shows the simple single-level picture often
used to describe Kondo physics in single-electron transis-
tors (SETs). The intrinsic width of the single-particle level

is � � �S � �D, determined by overlap of the single-
particle state with the conduction electron states of the
source and drain. The charging energy Ec is the Coulomb
cost of adding an extra electron to the molecule. The
energy difference between the singly occupied level and
the source/drain chemical potential is �, which is zero at
charge degeneracy and varies linearly with VG.

Figure 1(b) shows the structure of the neutral transition
metal complexes measured in this study, as synthesized.
Two planar, conjugated ligands provide an octahedral co-
ordination [compressed along the interligand (z) axis] of a
transition metal ion,M. We have examined complexes with
M � Co, Cu, and Zn, as well as individual ligands and
alkane chains. The Kondo devices in this Letter contain
Co(II) and Cu(II). The as-synthesized molecules are char-
acterized by EPR, SQUID, x-ray diffraction, cyclic vol-
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FIG. 1 (color online). (a) Energy level diagram of a typical
SET in the Kondo regime. (b) Structural formula of transition
metal complex before self-assembly. (c) Map of G�VSD; VG�
showing transition to Kondo resonance at 5 K. Brightness scales
from G � 0 (black) to 0:3� 2e2=h. (d) G vs VSD at VG � 50 V
[as indicated with arrow in (c)] at (top to bottom) 5 K, 16 K, and
30 K.
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tammetry (CV), IR, and Raman spectroscopy. The Co(II)
complex is high spin (3=2), with CV in solution confirming
easily accessible Co�II� $ Co�III� redox transitions. The
Cu(II) complex is spin 1=2, with CV supporting easily
accessible Cu�II� $ Cu�I� redox transitions. These com-
plexes self-assemble on Au in tetrahydrofuran (THF)
through loss of the �CN moieties and formation of Au-S
covalent bonds [13–15]. In principle, the ligands and re-
maining �SCN groups can also change their charge state.

Devices are fabricated using Au source and drain elec-
trodes on degenerately doped p� silicon substrates which
are used as the gate, with 200 nm of gate oxide. Source/
drain electrodes are created by the controlled electromi-
gration [16] from lithographically defined Ti=Au
(1 nm=15 nm thick) constrictions that are exposed for
1 min to oxygen plasma after lift-off, followed by self-
assembly of molecules in solution (2 mM in THF) for
48 hours. After rinsing and drying with dry nitrogen,
substrates are placed in a variable temperature probe sta-
tion for electromigration and measurement, with fabrica-
tion statistics comparable to past results [11,14].

dc measurements of ID-VSD are performed with the
source electrode grounded, at various VG. Differential
conductance is computed by numerical differentiation,
with spot checks by lock-in amplifier techniques. Device
stability limits jVSDj 	 100 mV, while gate oxide limits
jVGj 	 100 V. We consider only devices with significant
gate response such that a charge transition is detected in
maps of G�VSD; VG� to distinguish molecule-based effects
from artifacts (e.g., metal nanoparticles).

Figure 1(c) shows a conductance map for a typical
device exhibiting a Kondo resonance. We have sufficient
gate coupling to observe only a single charge degeneracy
point for each device. From the slopes of the boundaries of
the blockaded regime, one can estimate the constant of
proportionality between changes in eVG and � as expected
from the model of Fig. 1(a). For the device shown, �� 

�CG=Ctot�e�VG 
 10�4e�VG. The average value of this
coefficient is 10�3. The width of the charge degeneracy
resonance on the blockaded side of the degeneracy point
sets an upper limit on � for the level participating in the
redox state change. The T ! 0 limit of that width is
proportional to �, while the degeneracy resonance is ther-
mally broadened at finite temperature. Typical � values
inferred from 5 K data in these devices are 3–30 meV. We
note that the edges of Coulomb blockade diamonds, while
usually distinct in the non-Kondo charge state, are often
much weaker or apparently absent in the Kondo charge
state, as also mentioned in Ref. [12].

Figure 1(d) showsG�VSD; VG � 50 V� at three tempera-
tures. The resonant peak decreases in magnitude while
increasing in width as T is increased. Figures 2(a) and
2(b) show the peak height and width, respectively, as a
function of temperature. The solid line in (a) is a fit to the
semiempirical expression [4] for the spin-1=2 Kondo reso-
nance in conduction, G�T� � Gc�1� 21=s�1 T2

T2
K
��s, with

s � 0:22. After the subtraction of a smooth background
conductance, the adjustable parameters are the overall
conductance scale, Gc, and TK. Similarly, the solid line
in (b) is a fit to the expected form [3] for the full width at

half maximum, FWHM � 2
e

�������������������������������������������
��kBT�

2 � 2�kBTK�
2

p
, where

the only adjustable parameter is TK. The numerical coef-
ficients are accurate to within a factor of order unity; other
observations [7,10] find better quantitative consistency
with TK as inferred from G�VSD � 0; T� if the FWHM is
assumed to be 
 �2kBTK�=e. We adopt this latter assump-
tion, and find good quantitative consistency between TK

values inferred from resonance height and width.
Figures 2(c) and 2(d) are histograms of Kondo tempera-

tures inferred from resonance widths for 26 Co-containing
Kondo devices (out of 921 electrode pairs examined at low
temperatures) and 12 Cu-containing Kondo devices (out of
397 electrode pairs examined at low temperatures). Only
devices exhibiting zero-bias resonances and clear charge
degeneracy points are considered here. The observed weak
dependence of TK on VG (see Fig. 3 and later discussion)
means that these distributions are relatively insensitive to
the choice of VG at which TK is inferred. No Kondo
resonances were observed in 370 control devices using
alkanethiol chains, bare metal electrodes, and electrodes
exposed to solvents and poor vacuum.

Kondo physics in these complexes is clearly strong, with
TK values similar to those reported in STM measurements
of Co atoms on Au(111) [2]. The Kondo temperature is
expected to be [7,17]:

kBTK �

���������
�Ec

p

2
e�������Ec�=�Ec (1)

outside the mixed valence (�=�< 1) regime. For small
molecules, Ec is likely to be hundreds of meV, while � is
empirically tens of meV. The prefactor in (1) then implies
TK can be as large as hundreds of Kelvin.
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FIG. 2. (a) Temperature dependence of Kondo resonant peak
height for the device of Fig. 1(c) at VG � 50 V. Solid line is the
expected semiempirical functional form for spin-1=2 Kondo,
with TK � 69 K. (b) Temperature dependence of Kondo peak
FWHM for the same device and VG, with fit to expected func-
tional form for spin-1=2 Kondo. Setting FWHM in the low-T
limit to 2kBTK=e gives TK � 65 K. (c), (d) Histograms of TK as
inferred from peak widths for Co and Cu complex devices,
respectively.

PRL 95, 256803 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
16 DECEMBER 2005

256803-2



Assuming a model as in Fig. 1(a), � � 0 at the charge
degeneracy point. Normalizing the difference in VG away
from charge degeneracy by the width in VG of the charge
degeneracy resonance in the Coulomb blockade regime
gives a lower limit on �=�. Figure 3 shows (normalized)
TK as inferred from low-T resonance FWHM �2kBTK=e
as a function of inferred �=� for several devices.
Equation (1) predicts a quadratic dependence of logTK

on �, with a minimum in TK at � � Ec=2. The measured
dependence of inferred TK�VG� is much less steep; indeed,
for Sample CuM7, TK actually increases as VG is shifted
away from the nearest charge degeneracy. Thus, the simple
model of Fig. 1(a), which works well for semiconductor
quantum dot experiments [6,7], is inconsistent with these
data. We note that the TK�VG� dependence reported in
Ref. [9] for �=� > 1 is also surprisingly weak.

We consider explanations for this deviation from simple
expectations. We dismiss as unlikely that the zero-bias
peak may not be a true Kondo resonance, given (a) quanti-
tative consistency of the functional forms for the resonance
G�VSD; T� with Kondo expectations; (b) the appearance of
the zero-bias resonance coincident with passing through
charge degeneracy points; (c) the lack of such resonances
in control devices; (d) the similarity to other Kondo data
reported in SMTs [9,10].

The natural explanation for the anomalous gate depen-
dence is that the normalized �VG used as �=� in Fig. 3 is
not the true �=� relevant to the Kondo Hamiltonian that
gives Eq. (1). In semiconductor quantum dots [6], infer-
ring �=� by normalizing �VG is quantitatively consistent
with Eq. (1). Presumably some mechanism intrinsic to the
molecular system renormalizes either the effective �, the
effective �, or both, away from the simple picture of
Fig. 1(a).

Orbital degeneracy for the unpaired spin is one possi-
bility [18]. When an N-fold degeneracy exists, TK as
defined by Eq. (1) is enhanced, such that the denominator

of the exponent becomes N�Ec. Thus the normalization of
the abcissa in Fig. 3 would effectively be too large by a
factor of N, qualitatively explaining the apparently weak
dependence of TK�VG� if N � 5. However, EPR spectra of
both the Co- and Cu-based complexes in solution phase
show no indication of such a large degeneracy. Further-
more, we have performed spin-resolved calculations on the
transition metal complexes to examine their electronic
structure, as shown in Fig. 4 [further details are available
[15] ]. In neither complex are large degeneracies expected.
While it is conceivable that the self-assembled compounds
could have different orbital degeneracies than the isolated
molecules, it seems unlikely that both complexes, with
their differing isolated electronic structures, would have
such similar properties.

The electronic structure calculations reveal an additional
energy scale that is often small in semiconductor dots, but
in the molecular system is comparable energetically to the
inferred �, Ec, �, and expected single-particle level spac-
ing: intramolecular exchange. In both Co and Cu com-
plexes, intramolecular exchange is strong. In the Co case,
to a good approximation ligand field effects split the d
states into one doubly degenerate, one nearly doubly de-
generate, and one singly degenerate set of states. The
complex has a total spin of S � 3=2, as confirmed by
EPR. A minority spin half-occupied d state is at the
Fermi level with two nearly degenerate d states 1.1 eV
above the Fermi level and the remaining occupied minority
d electron 0.5 eV below the Fermi level. Exchange split-
tings pull the majority d band down significantly, with the
highest occupied majority d state 1.8 eV below the Fermi
level. The fermiology is complicated by an additional
delocalized unpolarized twofold degenerate carbon 2p
state lying 0.05 eV below the Fermi level. Also there is a
delocalized doubly degenerate molecular state 0.85 eV
below the Fermi level. The Cu complex has a total spin
of S � 1=2, with the Fermi level unchanged in comparison
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to Co. This means that the minority spin d states are pulled
to lower energies by approximately 1.1 eV as shown in the
figure. The structure calculations also confirm significant
delocalization of the majority spin states, extending into
the ligands, consistent with large � values for these sys-
tems. Jahn-Teller distortion is not considered, since the
substrate-complex interaction is expected to be large com-
pared to this effect.

The occasional observation of Kondo resonances with
similar TK values on both sides of charge degeneracy
points further indicates that intramolecular exchange can-
not be neglected in these devices. However, it is not
immediately clear how this strong interaction could lead
to the observed phenomenon.

Vibrational effects are another piece of physics intrinsic
to the molecular system. The signature of electron-phonon
interactions has been observed in inelastic electron tunnel-
ing spectra of SMTs made with these complexes [14].
Moderate coupling of charge and vibrational modes [19]
localized to the molecule can strongly both increase TK

and decrease its gate dependence relative to the case with
no vibrational coupling [20]. A quantitative estimate of
electron-vibrational couplings would facilitate testing this
hypothesis, and should be obtainable from further quantum
chemistry calculations.

Finally, it is also possible [21] that screening correla-
tions in the mixed valence regime can renormalize the
measured � to a value different than the � relevant to the
Kondo temperature. Full quantum chemistry calculations
of molecules bound to realistic Au leads including Kondo
and many-body correlations [as done for Co atoms on
Au(111) [22] ] are essential to better understanding the
observed effects, and are beyond the scope of this Letter.

In measuring the electronic properties of single-
molecule transistors containing transition metal com-
plexes, we observe strong Kondo physics, indicating that
conjugated ligands can provide extremely effective cou-
pling of spin degrees of freedom to metal leads. We also
find a TK�VG� that is vastly weaker than that seen in
semiconductor quantum dot realizations of the Kondo
effect and expected for the simple model of Fig. 1(a). We
have discussed possible explanations for this anomalous
dependence in light of electronic structure calculations of
the complexes. While a complete understanding will re-
quire more sophisticated modeling and further measure-
ments, these data demonstrate that correlated states
involving SMTs can exhibit rich effects not seen in their
semiconductor quantum dot counterparts.
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