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Singlet-doublet Dirac dark matter and neutrino masses
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Walter Tangarife ‡
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(Received 3 July 2019; published 26 August 2019)

We examine an extension of the Standard Model that addresses the dark matter puzzle and generates
Dirac neutrino masses through the radiative seesaw mechanism. The new field content includes a scalar
field that plays an important role in setting the relic abundance of dark matter. We analyze the
phenomenology in the light of direct, indirect, and collider searches of dark matter. In this framework,
the dark matter candidate is a Dirac particle that is a mixture of new singlet-doublet fields with mass
mχ0

1
≲ 1.1 TeV. We find that the allowed parameter space of this model is broader than the well-known

Majorana dark matter scenario.

DOI: 10.1103/PhysRevD.100.035029

I. INTRODUCTION

There is substantial evidence that supports the existence of
dark matter (DM). Some of that evidence includes velocity
dispersion in clusters of galaxies [1] (see [2] for a recent
review), galaxy rotation curves [3,4], the cosmic microwave
background (CMB) [5], galaxy cluster collisions [6], and
weak and strong gravitational lensing [7,8]. Currently, it is
well established that DMmakes up about 27% of the energy
density of the Universe, although its nature and properties
remain an open puzzle.N-body simulations of early structure
formation andCMBdata suggest thatDM ismade up of cold,
collisionless particles [9]. In light of this indication, there has
been a vast exploration of candidates for DM during the last
few decades, but no detection experiment has been able to
find the DM particle. In addition to the DM problem, one of
the open issues in the Standard Model (SM) is the fact that
neutrinos have mass, which has been confirmed by neutrino-
oscillation experiments [10]. The DM problem and the
neutrino mass puzzle make clear the necessity of beyond-
the-Standard-Model physics.
In this article, we study these two puzzles within a simple

extension of the singlet-doublet Dirac dark matter (SD3M)

model [11]. In singlet-doublet DM scenarios, a singlet and
a doublet fermionic field are added to the SM and a mixture
of such fields is a Majorana DM candidate [12–23]. In the
singlet-doublet Dirac dark matter model, the DM candidate
is a Dirac particle, which opens a vector portal to the SM
via the Z gauge boson, resulting in a richer phenomenol-
ogy. In general, this portal is not present in the singlet-
doublet DM model with Majorana fermions, which is a
generalization of the supersymmetric Higgsino-bino case
[19]. The SD3M model addresses the DM problem while
being consistent with indirect and direct experiments, as
studied in Ref. [11]. In addition, it can be tested in future
experiments such as LZ [24] and its low mass region could
be probed at the Large Hadron Collider (LHC). This simple
model, however, does not generate neutrino masses. Thus,
in this work, we enlarge this framework with a minimal set
of scalar singlet fields in order to explain Dirac masses of
SM neutrinos. These Dirac neutrino masses are generated at
one-loop level in a similar fashion as in the scotogenic class
of models introduced first in [25]. An additional feature of
this mechanism is the enhancement of the scalar portal that
is suppressed in the minimal framework of the SD3M
model studied in Ref. [11].
We describe our model in Sec. II. In Sec. III, we present

the generation of the neutrino masses. Section IV includes
the DM analysis and numerical results, and we close with
Conclusions.

II. DESCRIPTION OF THE MODEL

In this model, we extend the symmetry of the SM with
two discrete symmetries, Z2 and Z0

2. Z2 stabilizes the DM
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particle and Z0
2 forbids the generation of neutrino masses

via the seesaw mechanism at tree level [26,27]. All SM
particles are even under these discrete symmetries. This
model also includes the following additional fields: a real
scalar singlet S ¼ ðS0 þ vSÞ=

ffiffiffi
2

p
, two real scalar singlets σi

(which are needed to obtain a rank-2 neutrino mass matrix),
two chiral fermionic singlets ψL and ψR, one Dirac SU(2)
vectorlike fermion Ψ with hypercharge −1=2, and three
right-handed neutrinos ναR. In addition, we assume that
global Uð1ÞB−L is conserved and that the new fermions are
charged under this symmetry. A result of this assumption is
that Majorana mass terms are forbidden, leading to Dirac
neutrino masses. The particle content is also listed in
Table I.1

The most general Lagrangian, invariant under the sym-
metries mentioned above, contains the terms

L ⊃ −MΨΨ̄Ψ − VðH; σi; SÞ
þ ½hβia L̄βΨσi þ hαib ψLνRασi þ hcψRψLS

þ hdΨ̄ H̃ ψR þ H:c:�; ð1Þ

where h’s are Yukawa couplings, which we assume
to be real parameters for the sake of simplicity, and
H̃ ¼ iσ2H�. Notice that the vectorlike fermion Ψ can be
written in terms of two chiral doublets ΨL ¼ ðΨ0

L;Ψ−
LÞT

and gðΨRÞ ¼ ð−ðΨ−
RÞ†; ðΨ0

RÞ†ÞT with opposite hypercharge
[28], as shown in the Appendix.

The scalar potential is given by

VðH; σi; SÞ ¼ −μ2H†H þ λ1
2
ðH†HÞ2 þ 1

2
m2

σiσ
2
i

þ λσHi H†Hσ2i þ
λσi
2
σ4i þ

1

2
m2

SS
2

þ λSHH†HS2 þ λSσiS2σ2i þ
λS

2
S4: ð2Þ

The condition that the potential is bounded from below is
fulfilled by imposing μ2 > 0, m2

σi > 0, m2
S > 0, together

with the copositivity of the potential [29], which yields

λ1 ≥ 0; λσi ≥ 0; λS ≥ 0; ð3Þ

λσHi
2

þ ffiffiffiffiffiffiffiffiffi
λ1λ

σ
i

p
≥0;

λSH
2

þ
ffiffiffiffiffiffiffiffiffi
λ1λ

S
q

≥0;
λSσ

2
þ

ffiffiffiffiffiffiffiffiffi
λσi λ

S
q

≥0;

ð4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1λ

σ
i λ

S
q

þλσHi
2

ffiffiffiffiffi
λS

p
þλSH

2

ffiffiffiffiffi
λσi

p þλSσii

2

ffiffiffiffiffi
λ1

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
λσHi
2

þ ffiffiffiffiffiffiffiffiffi
λ1λ

σ
i

p ��
λSH
2

þ
ffiffiffiffiffiffiffiffiffi
λ1λ

S
q ��

λSσi

2
þ

ffiffiffiffiffiffiffiffiffi
λσi λ

S
q �s

≥0:

ð5Þ

These conditions are trivially satisfied if we demand that all
λ’s be positive.

A. Symmetry breaking and spectrum

The scalar potential (2) allows a vacuum expecta-
tion value (VEV) for the singlet scalar, hSi ¼ vS=

ffiffiffi
2

p
, in

addition to the Higgs VEV, hHi ¼ v=
ffiffiffi
2

p
. These VEVs are

given by the tadpole equations

tH ¼
�∂V
∂v

�
¼ −μ2vþ λ1v3

2
þ λSH

2
vv2S ¼ 0; ð6Þ

tS ¼
�∂V
∂vS

�
¼ m2

SvS þ λSHv2vS þ λSv3S ¼ 0; ð7Þ

which are used to eliminate the parameters μ and mS. The
scalar spectrum contains the Z2-even scalars h0, S0, and
Z2-odd scalars σi. In the basis ðh0; S0Þ, the mass matrix for
the Z2-even scalars is given by

m2
h ¼

0
B@−μ2þ 1

2
v2SλSHþ 3λ1v2

2
vvSλSH

vvSλSH
m2

s
2
þ 3

2
λSv2Sþ v2λSH

2

1
CA; ð8Þ

which is diagonalized by a unitary transformation

TABLE I. Particle content of the model.

Leptons and
scalars fields ðSUð2ÞL;Uð1ÞYÞ Z2 (DM) Z0

2 Uð1ÞB−L

Lβ ¼
� νL
lL

�
β

ð2;−1=2Þ þ þ −1

lαR (1,0) þ þ −1
H ¼ ðHþ; h

0þvffiffi
2

p ÞT ð2; 1=2Þ þ þ 0

S (1,0) þ − 0
σi (1,0) − − 0
ψL (1,0) − þ −1
ψR (1,0) − − −1

Ψ ¼
� Ψ0

Ψ−

� ð2;−1=2Þ − − −1

ναR (1,0) þ − −1

1A different Uð1ÞB−L charge assignment, in radiative Dirac
neutrino mass models, was made in Ref. [28] for the case of
complex σi.
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ZHm2
hZ

H† ¼ m2
h;diag; ð9Þ

such that

�
h0
S0

�
¼ ZH

�
h1
h2

�
¼

�
cos α sin α

− sin α cos α

��
h1
h2

�
: ð10Þ

The lightest eigenstate, h1, is identified with the SM Higgs
boson, whereas the heavier one will be a heavy Higgs
boson not yet discovered at the LHC. The existence of a
second Higgs can be beneficial in order to stabilize the
metastable electroweak vacuum of the SM, as argued in
Ref. [30]. However, some constraints need to be taken into
account. The Higgs-boson mixing (10) generates the
effective interaction terms

L ⊃
h1 cos αþ h2 sin α

v

×

�
2m2

WW
þ
μ Wμ− þm2

ZZμZμ −
X
f

mff̄f

�
; ð11Þ

which suppress the partial decay of h1 to SM fields by the
factor ∼ cos2 α. Similarly, the heavier scalar h2 could have a
decay width Γðh2 → h1h1Þ ∼ sin2 α if it is kinematically
allowed. In addition, h2 is constrained by the electroweak
oblique parameters since, formh2 ≫ mh1, it has been shown
that [30]

T ≈ −
3

8πcos2θW
sin2α logðmh2=211 GeVÞ; ð12Þ

S ≈
1

6π
sin2α logðmh2=81 GeVÞ: ð13Þ

Further constraints are provided by LEP and LHC searches
for Higgs-like scalars. For instance, processes such as
hi → γγ, h2 → ZZ, h2 → WW, etc., have been analyzed in
the literature [31–34]. As shown in Ref. [30], by combining
the experimental constraints and taking care of the vacuum
stability in the evolution of the renormalization group
equations up to the Planck scale, these observables and
constraints are under control if we demand a mixing
jsin αj≲ 0.3, which has been taken into account in this
work. On the other hand, the Z2-odd scalar sector is
assumed to be already in the diagonal basis,

m2
σ ¼

0
B@m2

σ1þv2λσ1H1 þv2Sλ
Sσ1 0

0 m2
σ2þv2λσ2H2 þv2Sλ

Sσ2

1
CA:

ð14Þ

While the lightest of these scalars could be a suitable
candidate for DM, in this work we focus instead on
fermionic DM. The scalar DM phenomenology is expected

to be rather similar to the one in the Majorana version for
both DM and neutrino masses [19,35]. Therefore, we will
assume the σi fields to be heavy (mσi > 1 TeV) while
playing an important role only in the generation of neutrino
masses, as shown in the next section.
Regarding the Z2-odd fermionic sector, this model

contains one charged Dirac fermion Ψ� with mass MΨ
and two neutral Dirac fermions, χ0j (j ¼ 1, 2). In the basis

NLi ¼ ðΨ0
L;ψLÞ, N†

Ri ¼ ððΨ0
RÞ†; ðψRÞ†Þ, the fermionic

mass matrix is given by

mψ0 ¼
�
MΨ

hdvffiffi
2

p

0 MN

�
; ð15Þ

where MN ¼ hcvS=
ffiffiffi
2

p
is the Dirac mass term for ψL;R,

which results after the Z0
2 symmetry breaking. This matrix

is diagonalized by the biunitary transformation

V�mψ0U† ¼ mdiag
χ0i

; ð16Þ

where the mass eigenstates, χ0j ¼ ðχL; χ†RÞj, are defined by

χLj ¼ VjiNLi ¼
�

cos θL sin θL
− sin θL cos θL

��
Ψ0

L

ψL

�
;

χ†Rj ¼ UjiN
†
Ri ¼

�
cos θR sin θR
− sin θR cos θR

�� ðΨ0
RÞ†

ðψRÞ†
�
; ð17Þ

where θL;R are mixing angles. In this work, the lightest of
these Dirac fermions, χ01, is the candidate for the DM
particle. Notice our choice to parametrize the fermionic
sector using mχ0

1
, mχ0

2
, θL, and θR, instead of MΨ, hc, hd,

and vS.

III. DIRAC NEUTRINO MASSES

In this framework, the scalarsH and S acquire VEVs. As
a result of this symmetry breaking, neutrinos get masses via
the five-dimensional effective operator

LD
5 ¼ −

gαβ
Λ

L̄αH̃νRβSþ H:c:; ð18Þ

which is generated at the one-loop level. The authors of
Ref. [36] have performed a systematic study of the one-
loop topologies that give rise to this operator.2 In our
specific scenario, Dirac neutrino masses arise from the one-
loop diagram shown in Fig. 1. In the limit of low neutrino
momentum, that diagram yields the mass matrix

2In particular, the model proposed in this work is similar to the
topology T1-2-A-I (α ¼ 0) in Ref. [36]. However, in that case all
new fermions are vectorlike. Instead, we use chiral fermions with
fewer degrees of freedom.
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Mαβ ¼
X2
i¼1

X2
j¼1

Uj1Vj2

16π2
× hαib h

βi
a mχ0j

×

�m2
χ0j
lnðm2

χ0j
Þ −m2

σi lnðm2
σiÞ

ðm2
χ0j
−m2

σiÞ
�
;

¼
X2
i¼1

hαib × Λi × hβia ; ð19Þ

where Λi is the loop factor, defined as

Λi ¼
X2
j¼1

Uj1Vj2

16π2
×mχ0j

×

�m2
χ0j
lnðm2

χ0j
Þ −m2

σi lnðm2
σiÞ

ðm2
χ0j
−m2

σiÞ
�
;

¼
X2
j¼1

Uj1Vj2

16π2
×mχ0j

×

� m2
χ0j

ðm2
χ0j
−m2

σiÞ
ln

�m2
χ0j

m2
σi

��
: ð20Þ

In the last equation, we used the relation

X2
j

mχ0j
Uj1Vj2 ¼ 0; ð21Þ

which is a consequence of Eqs. (15) and (16).
We need to set the correct Yukawa couplings in the

Lagrangian (1) in order to reproduce the current neutrino
oscillation data to 3σ [10]. That is, we need to invert the
problem and use the neutrino parameters to choose our
Yukawa couplings. This can be done by using the fact that,
in the basis where ναR are mass eigenstates, the neutrino
mass matrix can be written as [37]

Mαβ ¼ ðUPMNSÞαβðmνÞβ; ð22Þ

where UPMNS is the Pontecorvo-Maki-Nakagawa-Sakata
matrix [38] and mν are the neutrino mass eigenvalues. It is
well known that current neutrino oscillation data allow for
normal or inverted ordering, mν1 < mν2 < mν3 or
mν3 < mν1 < mν2, respectively. In this work, we choose
the normal ordering. Using the Eqs. (19) and (22), we
obtain 12 unknown parameters, hβia , hαib , with 9 equations.

We can further simplify our analysis by imposing mν1 ¼ 0,
which allows us to set h1ia ¼ 0, leaving the couplings h2ia
and h3ia as free parameters. With these assumptions, we
obtain the following relations:

h1ia ¼ 0;

h2i;3ia ¼ free;

hα1b ¼ −
1

Λ1

�
h32a mν2Uα2 − h22a mν3Uα3

h22a h31a − h21a h32a

�
;

hα2b ¼ −
1

Λ2

�
h31a mν2Uα2 − h21a mν3Uα3

h22a h31a − h21a h32a

�
: ð23Þ

It is noteworthy that, with this choice of parameters, some
lepton-flavor-violation (LFV) processes such as μ → eγ are
suppressed since they are proportional to the h1ia coupling.
However, other processes, like τ → μγ, are still allowed
with much lower experimental restrictions.

IV. DARK MATTER

In this work, the Dirac fermion χ01 is the DM candidate
while the scalars σi are chosen to be much heavier than χ0j .
In this section, we discuss the main process that sets the
relic abundance of DM as well as the direct detection of
such a particle.

A. Dark matter relic density

In the class of models that we study in this article, χ01
couples to the Higgs and to the Z boson through the
singlet-doublet mixing. This implies that the couplings of
the DM particle to the Z vector are largely constrained
by direct detection experiments, leading to a mostly
singlet DM candidate as seen numerically in the next
section. In Ref. [11], this fact restricted the allowed
parameter space to quasidegenerate mass eigenstates for
the fermionic fields and the DM abundance was determined
mainly through coannihilations. In our work, the presence
of the additional scalar S adds new annihilation channels,
opening up the range of masses for the fermions and
providing a richer phenomenology. Specifically, the
processes involved in the calculation of the DM relic
abundance include χ0i χ̄j

0→ hkhl, χ0i χ̄j
0→WþW−, χ0i χ̄j

0 →
ZZ, χ�χ∓ → ff̄, χ0i χ

þ → ff̄0, χ0i χ
� → A=ZW�, and

χ�χ∓ → WþW−. As explained in the next section, our
numerical analysis takes into account all these channels;
however, the most relevant process is χ01χ̄

0
1 → h2h2, which

gets contributions from the diagrams shown in Fig. 2.
The early thermal evolution of our DM candidate follows

the standard weakly interacting massive particle (WIMP)
freeze-out mechanism. In the initial state, the DM species
was in thermal equilibrium with the rest of the particles in
the Universe. As the Universe adiabatically cools down to a
temperature below the DM mass, the DM annihilation rate

FIG. 1. One-loop generation of Dirac neutrino masses. The
arrows represent the flow of Uð1ÞB−L charges.
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is overtaken by the expansion of the Universe, Γ ≪ H, and
a relic density of DM is frozen out. The current relic
abundance of DM is computed by solving the Boltzmann
equation, which yields [39]

Ωχ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π3g�ðmχÞ

45

s
8π

90H2
0

xf
hσvi

T3
0

M3
Pl

; ð24Þ

where hσvi is the thermally averaged annihilation cross
section, g�ðmÞ is the effective number of degrees of
freedom at T ¼ m, and xf ≡m=Tfreeze−out. The factor of
2 in front of the right-hand side of the equation above is due
to the fact that we have a Dirac particle and nDM ¼ nχ þ nχ̄
[40]. The partial-wave expansion of the annihilation cross
section, hσvi ≈ aþ bv2 þOðv4Þ, leads to the well-known
expression

Ωχh2 ≈ 2
1.04 × 109xf

MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðmχÞ

p ðaþ 3b=xfÞ
; ð25Þ

where h is today’s Hubble parameter in units of
100 km=s=Mpc. The χ01χ̄

0
1 → h2h2 annihilation cross sec-

tion has no s-wave contribution, which means that a ¼ 0.
In order to achieve the measured relic density, Ωχh2 ¼
0.1200� 0.0012 [5], the annihilation cross section is
required to be approximately hσvi ∼ 3 × 10−26 cm3 s−1.
For illustrative purposes, let us write the specific expression
for the cross section in the limit where DM is purely singlet,

χ0j ¼
�ψL

ψ†
R

�
:

hσvi¼h2c
ffiffiffiffiffiffiffiffiffiffiffi
1−μ2

p
16πm2

χ0

�
9ðλSHÞ2v2S

16m2
χ0ðμ2−4Þ2

−
hcλSHvSð20−13μ2þ2μ4Þ
2

ffiffiffi
2

p
mχ0ðμ2−4Þ2ðμ2−2Þ2þ

h2cð9−8μ2þ2μ4Þ
6ðμ2−2Þ2

�
v2;

¼bv2; ð26Þ

where μ≡mχ0=mh2 < 1. The first term corresponds to the
s channel while the last one comes from the t and u
channels and their interference. The second term results
from the interference between the s and the t, u channels

(see Fig. 2). In the next section, we present the numerical
results of this computation and the corresponding relic
abundance. Finally, let us mention that there is a clear
consequence of having p-wave annihilation of DM for
indirect-detection searches. Since σv ∝ v2, the annihilation
rate is suppressed by several orders of magnitude in the
low-velocity limit (today) compared to the value in the
early Universe, escaping the bounds from current indirect
searches, which require σv≲ 3 × 10−26 cm3 s−1.

B. Direct detection of DM

As mentioned above, since χ01 couples to scalars
and the Z boson, there are direct and indirect detection
restrictions that can be imposed on this model. Regarding
elastic scattering of χ01 with nuclei, we have two different
contributions, the scalar/vector or spin-independent (SI)
interaction and the axial-vector or spin-dependent (SD)
interaction. It is noteworthy that in the SUSY analog
of the singlet-doublet model, i.e., the Higgsino-bino model,
the SI interaction is only due to the scalar portal. In that
case, the vector portal with the Z boson is closed since the
DM particles are Majorana fermions. However, in our
scenario, the SI interaction of DM with nucleons
contains both portals: a t channel mediated by the Higgs
bosons hk and a t channel mediated by the Z gauge boson,
which correspond to the diagrams shown in Fig. 3.
We use the standard nucleon-form-factor formalism
to incorporate these processes into the WIMP-nucleon
amplitudes [41]. Given the interaction Lagrangian LSI

e;o ¼
λN;eψ̄ χψχψNψN þ λN;oψ̄ χγ

μψχψNγμψN , N ¼ p, n, the scat-
tering cross section per nucleus is given by

FIG. 2. Diagrams that contribute to the annihilation process χ01χ̄
0
1 → h2h2.

FIG. 3. SI-independent DM-nucleon interactions: scalar (left)
and vector (right) portals.
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σSI0 ¼ 4μ2χ
π

ðλpZ þ λnðA − ZÞÞ2; ð27Þ

where μχ ¼ mχMA=ðmχ þMAÞ is the WIMP-nucleus
reduced mass; Z is the nucleus charge; A is the total
number of nucleons; and λp, λn are related to λN;e, λN;o, as
we will show in the next paragraph. When implementing
experimental bounds, the relevant quantity is the scattering
cross section per nucleon, which is written as

σSIN ¼ m2
N

μ2χA2
σSI0 ; ð28Þ

where mN is the nucleon mass.
Using the nucleon-quark operator formalism, λp, λn are

found to be [41]

λp¼
λp;e�λp;o

2
¼
�
gχ0

1
χ0
1
hk

1

m2
hk

mp
P

qf
p
q

v
�

X
q¼u;d

fpVqλq;o

�
=2;

ð29Þ

λn¼
λn;e�λn;o

2
¼
�
gχ0

1
χ0
1
hk

1

m2
hk

mn
P

qf
n
q

v
�

X
q¼u;d

fnVqλq;o

�
=2;

ð30Þ

where the þð−Þ signs correspond to WIMP (anti-WIMP)
interaction;

P
qf

p
q ≈

P
qf

n
q ¼ fN ≈ 0.3 is the form factor

for the scalar interaction [42,43]; fNVq counts the number of
quarks u, d inside the nucleon (fpVu ¼ 2, fpVd ¼ 1, fnVu ¼ 1,
fnVd ¼ 2); and λq;o are the vector form factors, which, in our
model, follow the relations

X
q¼u;d

fpVqλq;o ¼
MZðcos2θL þ cos θ2RÞ

2v
×

1

M2
Z

×
e

4 sin θW cos θW
ð1 − 4 sin θ2WÞ; ð31Þ

X
q¼u;d

fnVqλq;o ¼
MZðcos2θL þ cos θ2RÞ

2v
×

1

M2
Z

×
ð−eÞ

4 sin θW cos θW
: ð32Þ

In the above formulas, θW is the weak-mixing angle and
θL;R are the mixing angles defined in Eq. (17). Therefore,
the total SI cross section can be written as

σSIN ¼ σSIN;e þ σSIN;o; ð33Þ

where the vector SI cross section is given by (see [11,44])

σSIN;o ¼
G2

Fm
2
N

4πA2
ðcos θ2L þ cos θ2RÞ2

× ½ð1 − 4sin2θWÞZ − ðA − ZÞ�2; ð34Þ

and the scalar SI cross section is given by

σSIN;e ≈
m4

Nf
2
N

πv2

�gχ0
1
χ0
1
h1

m2
h1

þ
gχ0

1
χ0
1
h2

m2
h2

�
2

; ð35Þ

with DM coupling to the Higgs fields written as

gχ0
1
χ0
1
hk ¼

−iffiffiffi
2

p sin θRðhd cos θLZH
k1 þ hc sin θLZH

k2Þ: ð36Þ

In the model presented in Ref. [11], which is a limiting case
of our model and where the DM particle is mainly singlet,
direct detection bounds imply that the mixing angles θL;R
need to be very small. In that case, the only way to achieve
the current value of the relic density of DM is via
coannihilations, forcing the neutral fermions to be quasi-
degenerate, MΨ ∼MN . In this work, however, that is not
the case because of the presence of the new scalar S, which
facilitates the depletion of DM during the early stages of the
Universe. This allows us to obtain the correct relic density
without coannihilations playing an important role, as we
will show numerically in the next section.
Finally, the axial-vector interaction of DM with nucleons

yields the SD scattering cross section, which has been
probed by several experiments such as XENON1T [45] and
LUX [46]. As we will see in Sec. IV C, the SD interactions
provide less stringent restrictions on our scenario than the
SI interactions.

C. Numerical results

In order to study the phenomenology of this model, we
have performed a random scan of the parameter space,
varying the free parameters as described in Table II. We
implemented the model in SARAH [47–51], coupled to the
SPheno [52,53] routines. In order to obtain the DM relic

TABLE II. Scan range of the free parameters of our model. The
remaining parameters are obtained from the ones in this table. In
particular, hα1b and hα2b are fixed by Eq. (23), resulting in the range
10−8 < hα1;α2b < 1.

Parameter Range

MΨ (GeV) 102–104

mσi (GeV) 103–2 × 104

vS (GeV) 102–105

jhcj, jhdj 10−6–3

λHσi , λS, λSσi , λSH , λσi 10−4–3

jh2i;3ia j 10−6–1
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density, we used MicrOMEGAs 4.2.5 [54], which takes
into account all the possible channels contributing to the
relic density, mentioned in Sec. IVA, including special
processes such as coannihilations and resonances [55]. We
selected the models that fulfill the current value Ωχh2 ¼
ð0.120� 0.001Þ to 3σ [5] and, at the same time, reproduce
the neutrino parameters described in Sec. III. For those
points, we computed the SI DM-nucleus scattering cross
section, shown in Eq. (33), and checked it against the
current experimental bounds of XENON1T [56], PandaX
[57], and prospect bounds of LZ [58] and DARWIN [59].
The results are shown in the left panel of Fig. 4. We
analyzed the vector and scalar SI cross sections separately
in order to discern the behavior of these two contributions
to the total SI cross section and we found that the vector
contribution dominates the region above the XENON1T
limit. Therefore, it needs to be suppressed in order to escape
the current bounds. The majority of models with a large
vector SI cross section are excluded; these correspond to
large mixing angles θL;R, as seen from Eq. (34). Thus, the
viable DM candidate needs to be mostly singlet in order to
suppress the Z-portal and fulfill the current direct detection
constraints. An analytic estimate tells us that this is
achieved by requiring cos θL;R ≤ 0.1. For illustrative pur-
poses, in the right panel of Fig. 4, we show the ratio
between the scalar and vector SI cross sections. The red
stars correspond to the viable models that are not excluded
by XENON1T. These models have a sizable scalar con-
tribution (σSIN;e ¼ σSI

h0k
) and low vector cross section

(σSIN;o ¼ σSIZ ), except for some points that fall below the
blue line which have a dominant vector cross section while
escaping the direct detection (DD) bounds as analyzed
in Ref. [11].
In order to complete this analysis, we show in the left

panel of Fig. 5 the behavior of the WIMP-neutron spin-
dependent (SD) cross section for the points in the parameter

space that yield the expected value of the relic abundance
and reproduce the neutrino physics. We also show the
IceCube [62] limits on the WþW− channel (black solid
line) for DM annihilation at the sun, the limits from LUX
[46] (yellow solid line), the current and most restricted
limits from XENON1T [45] (green solid line), and the
expected sensitivities of LZ [58] (red dashed line) and
DARWIN [59] (magenta dotted line). As in the case
of the SI cross section, we can see that DARWIN [59]
could probe some region of the parameter space of this
model. Evidently, the points that are below the neutrino
floor could be confused with the neutrino scattering with
nucleons and they would need a special analysis that is
beyond the scope of this work.
Finally, in the right panel of Fig. 5, we show today’s

annihilation cross section times velocity, σv, which allows
us to look at indirect detection (ID) constraints. We used
MicrOMEGAs 4.2.5 to compute σv today for each point
of the scan. Notice that these results show the expected
suppression due to the p-wave nature of the DM annihi-
lation. Therefore, the indirect DM detection prospects
of this model are significantly low. For instance, the points
with mχ0

1
≲ 100 GeV could have a large branching ratio of

the annihilation channel χ01χ̄1
0 → bb̄, leading to DM

annihilation into bb̄ signals from dwarf galaxies (dSphs)
[63]. However, as seen previously, those points are already
excluded by DD. Combining the direct and indirect
detection constraints, we conclude that all models with
mχ0

1
≲ 65 GeV are excluded, except for the funnel region

due to resonances with the Z and the h1 gauge bosons.
Following the analysis described above, we project the

scanned points on the MΨ −MN plane and show it in
Fig. 6. In the figure, the blue dots show the models that
yield the correct value of the relic density and reproduce the
neutrino parameters while the green-shaded region is
excluded by DD experiments. The pink shade shows the

FIG. 4. Left: The SI cross section (blue dots) and the current experimental constraints from XENON1T [56], PandaX [57], and
prospects from LZ [58] and DARWIN [59]. We also show the neutrino coherent scattering (NCS) [60,61]. Right: The grey dots show the
ratio between the scalar and vector SI cross sections. The red stars are those models that are below the XENON1T limit.
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region where a larger, Ωχ0
1
> ΩDM, or smaller, Ωχ0

1
< ΩDM,

relic density is obtained. Notice that, in our scenario, the
region that leads to the correct abundance is much wider
than in the Majorana fermion case [16,17,19,20] and the
original SD3M proposal [11], allowing the parameter MN
up to 2 TeV as shown in the figure.
In general, for models with MΨ > MN , outside the

region where coannihilations are relevant, the relic density
is set through different channels in the early Universe. As
argued in Sec. IVA, the main process is χ01χ̄1

0 → h2h2. In
that case, we have checked that the expression shown
in Eq. (25) is in good agreement. Finally, in the coanni-
hilation region (MΨ ≈MN), the main contributions to the
relic density come from χ02χ

þ → ff̄0ðνē; ud̄;…Þ mediated

by theW� boson, followed by χ02χ̄2
0→ ff̄ and χ−χþ → ff̄.

In this limit, processes involving the DM particle have a
negligible contribution to the relic density because they are
characterized by low Yukawa couplings as described
in Ref. [11].
Finally, regarding collider searches, this scenario can be

tested using the search for electroweak production of
charginos χ� decaying in final states with two leptons
and missing transverse momentum in pp collisions at the
LHC [64]. Those analyses have been done in the context of
simplified SUSY models and can be recast in this analysis.
The observed limit rules out masses up to 120 GeV for χ01,
with mχ� ≲ 420 GeV. However, in that case, the χ� are
winolike particles with a production cross section that is
larger than in this model, where χ� are Higgsino-like
particles [SUð2Þ doublet]. With this in mind, we estimate
that the low production rate decreases the values ofMN that
can be probed to MN ≲ 100 GeV, which makes it inap-
plicable to our allowed region of parameter space.
Nevertheless, a better analysis needs to be done in this
direction and we leave it for future work.

V. CONCLUSIONS

After several decades of model building and experimen-
tal search, the nature of DM is still unknown. Among the
many possible scenarios, a Dirac fermion is a viable
candidate within the singlet-doublet scenario SD3M [11].
In this paper, we have minimally extended that model in
order to generate Dirac neutrino masses via the radiative
seesaw mechanism. We have scanned the parameter space
requiring that the correct DM relic abundance and current
neutrino data be reproduced while being compatible with
direct detection experiments. We found a DM candidate
that is a Dirac fermion resulting from a mixture of new
singlet-doublet fields with mass 65 GeV≲mχ0

1
≲ 1.1 TeV.

FIG. 5. Left: WIMP-neutron SD cross sections and the current experimental constraints from XENON1T [45], LUX [46], Ice-Cube
[62], and prospects as LZ [58] and DARWIN [59]. Right: Annihilation cross section today. We also show the typical thermal value
hσvi ∼ 3 × 10−26 cm3 s−1 in the early Universe and the experimental limit for DM annihilation into bb̄ in dwarf galaxies (dSphs) [63].

FIG. 6. MΨ −MN plane for the scan done in this work. The
blue dots give the correct relic abundance and reproduce the
neutrino parameters. The pink-shaded region corresponds to
overabundance or underabundance of DM. The green-shaded
region is excluded by DD experiments.
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The inclusion of the new scalar S opens a new portal,
which, in association with the vector Z portal, contributes
to the SI cross section, widening the allowed parameter
space while opening up the testing prospects in future direct
detection experiments. Additionally, unlike in the original
SD3M proposal, coannihilations do not play a central role
in setting the relic abundance in our model. Regarding
indirect detection, this framework does not provide clear
prospective signatures since the annihilation cross section
is p-wave suppressed.
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APPENDIX: LAGRANGIAN IN TERMS
OF WEYL SPINORS

The Lagrangian in Eq. (1) can be written in terms of
chiral spinors as follows:

L ⊃ −MΨΨ̄Ψ ¼ −MΨðΨ0;Ψ−Þ
�
Ψ0

Ψ−

�

¼ −MΨðΨ0Ψ0 þ Ψ−Ψ−Þ ¼ −MΨððΨ0Þ†γ0Ψ0 þ ðΨ−Þ†γ0Ψ−Þ

¼ −MΨ

�
ðΨ0

R;Ψ0
LÞ†

�
0 1

1 0

��
Ψ0

R

Ψ0
L

�
þ ðΨ−

R;Ψ−
LÞ†

�
0 1

1 0

��Ψ−
R

Ψ−
L

��

¼ −MΨ½ðΨ0
LÞ†Ψ0

R þ ðΨ−
LÞ†Ψ−

R þ H:c:�

¼ −MΨ

�
ð−ðΨ−

RÞ†; ðΨ0
RÞ†Þ

�
0 −1
1 0

��
Ψ0

L

Ψ−
L

�
þ H:c:

�
¼ −MΨ½ gðΨRÞ · ΨL þ H:c:�; ðA1Þ

where the dot product represents the iσ2 matrix and gðΨRÞ ¼ ð−ðΨ−
RÞ†; ðΨ0

RÞ†ÞT , ΨL ¼ ðΨ0
L;Ψ−

LÞT are two chiral doublets of
SUð2Þ with opposite hypercharge. In the same way,

L ⊃ hdΨ̄ H̃ ψR þ H:c: ¼ hdðΨ0;Ψ−Þ
� ðH0Þ�

−H−

�
ψR þ H:c: ¼ hd½ðΨ0

LÞ†ðH0Þ�ψR − ðΨ−
LÞ†H−ψR þ H:c:�

¼ hd½ðψRÞ†H0Ψ0
L − ðψRÞ†HþΨ−

L þ H:c:� ¼ hdðψRÞ†ðHþ; H0Þ
�
0 −1
1 0

��
Ψ0

L

Ψ−
L

�
þ H:c:

¼ hdðψRÞ†H · ΨL þ H:c: ðA2Þ
L ⊃ hβia L̄βΨσi þ H:c: ¼ hβia ððνLÞ†βΨ0

R þ ðeLÞ†βΨ−
RÞσi þ H:c: ¼ hβia ððΨ0

RÞ†ðνLÞβ þ ðΨ−
RÞ†ðeLÞβÞσi þ H:c:

¼ hβia ð−ðΨ−
RÞ†; ðΨ0

RÞ†Þ
�
0 −1
1 0

�� ðνLÞβ
ðeLÞβ

�
σi þ H:c: ¼ hβia gðΨRÞ · Lβσi þ H:c: ðA3Þ

L ⊃ hαib ψLνRασi þ hcψRψLSþ H:c: ¼ hαib ψ̄PRνασi þ hcψ̄PLψSþ H:c:

¼ hαib ðψR;ψLÞ†
�
0 1

1 0

��
νRα

0

�
σi þ hcðψR;ψLÞ†

�
0 1

1 0

��
0

ψL

�
Sþ H:c:

¼ hαib ðψLÞ†νRασi þ hcðψRÞ†ψLSþ H:c: ðA4Þ

Therefore, replacing Eqs. (A1), (A2), (A3), and (A4) in Eq. (1), we obtain

L ⊃ −MΨ½ gðΨRÞ ·ΨL þ H:c:� − VðH; σi; SÞ
þ ½hβia gðΨRÞ · Lβσi þ hαib ðψLÞ†νRασi þ hcðψRÞ†ψLSþ hdðψRÞ†H · ΨL þ H:c:�: ðA5Þ
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