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Abstract: We consider different sets of AdS2 boundary conditions for the Jackiw-

Teitelboim model in the linear dilaton sector where the dilaton is allowed to fluctuate

to leading order at the boundary of the Poincaré disk. The most general set of boundary

conditions is easily motivated in the gauge theoretic formulation as a Poisson sigma model

and has an sl(2) current algebra as asymptotic symmetries. Consistency of the variational

principle requires a novel boundary counterterm in the holographically renormalized action,

namely a kinetic term for the dilaton. The on-shell action can be naturally reformulated

as a Schwarzian boundary action. While there can be at most three canonical boundary

charges on an equal-time slice, we consider all Fourier modes of these charges with respect

to the Euclidean boundary time and study their associated algebras. Besides the (center-

less) sl(2) current algebra we find for stricter boundary conditions a Virasoro algebra, a

warped conformal algebra and a u(1) current algebra. In each of these cases we get one

half of a corresponding symmetry algebra in three-dimensional Einstein gravity with neg-

ative cosmological constant and analogous boundary conditions. However, on-shell some

of these algebras reduce to finite-dimensional ones, reminiscent of the on-shell breaking of

conformal invariance in SYK. We conclude with a discussion of thermodynamical aspects,

in particular the entropy and some Cardyology.

Keywords: 2D Gravity, AdS-CFT Correspondence, Topological Field Theories

ArXiv ePrint: 1708.08471

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP10(2017)203

mailto:grumil@hep.itp.tuwien.ac.at
mailto:rmcnees@luc.edu
mailto:salzer@hep.itp.tuwien.ac.at
mailto:valcarcel.flores@gmail.com
mailto:dvassil@gmail.com
https://arxiv.org/abs/1708.08471
https://doi.org/10.1007/JHEP10(2017)203


J
H
E
P
1
0
(
2
0
1
7
)
2
0
3

Contents

1 Introduction 2

2 Jackiw-Teitelboim as Poisson sigma model 6

3 Action and degrees of freedom 8

3.1 Auxiliary asymptotic conditions 8

3.2 Asymptotic AdS2 conditions 9

3.3 Action in first order formalism 10

4 Second order formalism 11

4.1 Action 12

4.2 Solutions and general boundary conditions 13

4.3 On-shell action and on-shell variation 13

4.4 Diffeomorphisms and asymptotic symmetries 14

5 Schwarzian action 15

5.1 Comments on the variational principle 15

5.2 Schwarzian action 18

6 Menagerie of AdS2 boundary conditions 19

6.1 Loop group boundary conditions 20

6.2 Conformal boundary conditions 20

6.3 Warped conformal boundary conditions 23

6.4 u(1) boundary conditions 25

7 Thermodynamics and entropy 26

7.1 Wald’s method 26

7.2 Cardyology 28

8 Conclusions 29

A Modified bracket for diffeomorphisms 30

B Toy models (batteries included) 32

B.1 Abelian BF -theory as Casimir sector of generic Poisson sigma models 32

B.2 Darboux sector of generic Poisson sigma model 33

B.3 Implications for dilaton gravity 35

– 1 –



J
H
E
P
1
0
(
2
0
1
7
)
2
0
3

1 Introduction

The study of dilaton gravity in two dimensions began in the 1980s with the introduction of

the Jackiw-Teitelboim (JT) model [1, 2], and has been punctuated by periods of increased

interest in the community. For instance, in the early 1990s, work on the string theory

black hole [3–6] and the CGHS model [7] triggered a new round of activity and led to the

emergence of a host of new models [8, 9]. Neglecting global effects, the path integral for

all of them was calculated in [10]. See the book by Brown [11] for an account of the first

five years, the review [12] for a summary of the first eighteen years, and table 1 in [13] for

a (non-exhaustive) list of models.

Naturally, only after the late 1990s dilaton gravity was revisited in the context of

AdS/CFT [14–16] and holographic renormalization [17–20]. Interest in AdS2 holography

has been re-invigorated by recent work [21] on the Sachdev-Ye-Kitaev (SYK) model [22–

25].1

The main goal of the present paper is to provide the most general AdS2 boundary

conditions for the JT model, to examine stricter sets of boundary conditions and their

associated asymptotic symmetry algebras, and to consider their application in AdS2 holog-

raphy. Since there are numerous different approaches to AdS2 holography we list below

distinguishing features of our approach and contrast them with selected earlier work:

• Linear dilaton holography. There is a simple, though incorrect, argument that

the linear dilaton sector cannot have asymptotic symmetries containing the AdS2
isometries, sl(2,R). Namely, only one of the three AdS2 Killing vectors ξ is capable

of obeying LξX = ξµ∂µX = 0 if the dilaton X is not constant. While this observation

is correct, it does not imply that the asymptotic symmetries (which are not necessarily

isometries) cannot contain the AdS2 isometries — they just cannot be isometries of

the combined metric and dilaton system. Instead, they must transform the dilaton

in a non-trivial way. If this is allowed by the boundary conditions then the AdS2
isometries remain part of the asymptotic symmetries. By contrast, the constant

dilaton sector maintains all AdS2 isometries as asymptotic symmetries in a more

obvious way. Partly for this reason, partly for simplicity, and partly because constant

dilaton vacua naturally emerge in near horizon extremal geometries [56], most of the

early literature on AdS2 holography focussed on the constant dilaton sector [57–68].

• Black hole holography. This point is related to the previous one. For constant

dilaton solutions, while there exists a horizon, it does not make sense to interpret

the corresponding spacetime as a black hole. Even though these spacetimes formally

have an entropy proportional to the value of the dilaton at the horizon, Xh, this

value is not well-defined since translation invariance allows to shift Xh → Xh+const.

Also the evaluation of the quantum partition function reveals that there is only one

physical state for constant dilaton vacua [69]. By contrast, for linear dilaton solutions

there is a unique center, namely the point where the effective Newton constant (given

1For additional work related to the SYK model, see e.g. [26–55]. This list of references is necessarily

incomplete, and we apologize for omissions.
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by the inverse of the dilaton) tends to infinity. The existence of such a center breaks

translation invariance and gives the value of entropy an operational meaning. Also

the partition function turns out to be non-trivial for linear dilaton solutions [70].

Thus, using the linear dilaton sector also allows to address aspects of holography of

black holes in two dimensions.

• Fluctuating dilaton holography. Earlier work on linear dilaton holography im-

posed Dirichlet boundary conditions on the dilaton, see [70, 71] and references therein.

By contrast, in the present work we do not impose such conditions and instead let

the dilaton fluctuate to leading order at the boundary.

• Euclidean Poincaré holography. To the best of our knowledge, the first holo-

graphic approach allowing for a fluctuating dilaton at the boundary was [72]. How-

ever, in that paper a well-defined variational principle was only achieved in the pres-

ence of a disconnected boundary (i.e., global AdS2 with topology of a strip) so that

non-vanishing variations from one boundary component are cancelled by a similar

contribution, but with opposite sign, from the other boundary component. By con-

trast, in the present work we put the Lobachevsky plane on the Poincaré disk and thus

have an S1 as boundary (we work in Euclidean signature, so the “angular” coordinate

ϕ of the disk is Euclidean time and its periodicity related to inverse temperature).

• Pure dilaton gravity holography. Many earlier papers considered an additional

Maxwell field, whose presence was often crucial to provide non-trivial features of

the model (e.g. to provide a constant dilaton solution [65] or a state-dependent

cosmological constant [73]), or additional (scalar) matter fields (e.g. to provide a

carrier of Hawking quanta, to address black hole evaporation, scattering and backre-

actions [7, 74–78]). By contrast, in the present work we stick to pure dilaton gravity

without a Maxwell field (though our discussion readily generalizes to the case with

gauge fields) and without extra matter fields.

• General boundary conditions. All previous approaches considered a metric that

was fixed at the boundary. By contrast, in our most general setup the metric is

allowed to fluctuate to leading order at the AdS2 boundary. Restricting the metric in

various ways then leads to different sets of boundary conditions with corresponding

sets of asymptotic symmetries. In essence, our discussion of boundary conditions

follows the AdS3 discussion in [79].

• Canonical boundary charges. Most previous approaches either disregarded the

canonical boundary charges, concluded that they vanish (which for many cases, such

as constant dilaton, is true) or found non-integrable results, see [69] and refs. therein.

For the boundary conditions discussed in this work we find finite, non-trivial and

integrable charges.

Actually, let us expand on the last point. As we shall review, standard canonical analy-

sis leads to at most three canonical boundary chargesQI(ϕ) that may depend on the bound-

ary coordinate ϕ. This necessarily implies that the canonical realization of the asymptotic

– 3 –
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symmetry algebra leads to finite dimensional algebras like u(1); in particular, no Virasoro or

current algebra can emerge in this way, which means that one cannot apply Cardyology to

AdS2 black holes in any obvious way. As we shall demonstrate, off-shell (and in some cases

also on-shell) some of the charges have an infinite tower of Fourier modes with respect to ϕ.

Geometrically, this is related to the ϕ-dependence of the dilaton field at the boundary

S1. Since there is always a diffeomorphism mapping a non-round S1 to the round one, one

could conclude that all such ϕ-dependence is spurious. Whether or not this is the right

conclusion depends on whether or not these diffeomorphisms are proper ones. Actually, this

question is analogous to its higher-dimensional version of whether or not near horizon soft

hair [80] is associated with physical states. At least for the boundary conditions introduced

in [81, 82] it turns out that the diffeomorphisms that map the non-round horizon S1 of

black flowers to a round S1 of black holes (“soft boosts”) are not proper ones as they do

change the physical state.

For similar reasons, in the present work we keep all the Fourier modes of the charges

QI(ϕ). Technically, it is then useful to work with “time-averaged charges”, i.e., charges

integrated over the boundary S1, since this allows to partially integrate and drop total

derivative terms (this trick was already used in [83]). We then study the algebra associated

with all these Fourier modes and find sets of boundary conditions where this algebra is

infinite dimensional on-shell. In the remaining cases the algebra looks infinite-dimensional

off-shell, but reduces to a finite-dimensional subalgebra on-shell.

We summarize now the main results that we find by implementing the approach out-

lined above.

• We present the loosest set of boundary conditions, (3.1)–(3.13), for the JT model

(in first order formulation), leading to a generalized Fefferman-Graham expansion of

metric (3.18) and dilaton (3.19).

• We show that the variational principle is well-defined in the first order formulation,

provided a certain quantity (denoted by 1/Y ) has a fixed zero-mode (3.24).

• We provide a pair of counterterms, supplementing the action of [70] with a bound-

ary kinetic term for the dilaton, that holographically renormalize the second order

action (4.1). Consistency of the variational principle again requires 1/Y to have a

fixed zero mode (4.19).

• The asymptotic symmetries (i.e., diffeomorphisms that leave the action invariant

modulo diffeomorphisms that reduce to identity at the boundary), see (4.22), coincide

with the large gauge transformations in the Poisson sigma model formulation (3.9),

which form an sl(2) current algebra for the loosest set of boundary conditions.

• The on-shell action reduces in general to dAFF conformal quantum mechanics [84]

at the boundary (5.18).

• Eliminating a term from the on-shell action in conflict with homogeneity in the dilaton

allows to represent the on-shell action as Schwarzian action (5.21).

• The canonical realization of the asymptotic symmetries (in the sense explained above)

leads to a centerless sl(2) current algebra for the loosest set of boundary conditions.

– 4 –
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• Fixing the leading order boundary metric and demanding time-inversion invariance

leads to conformal boundary conditions, where the remaining function appearing in

the metric transforms under a diffeomorphism of the boundary by an infinitesimal

Schwarzian derivative. The final result for the charges also leads to a Virasoro algebra

off-shell, but only to a single generator (essentially the mass) on-shell (6.22). Thus,

like in SYK we have an on-shell breaking of conformal symmetry.

• Keeping the assumption of time-inversion invariance but allowing the leading order

boundary metric to fluctuate enhances the Virasoro to a warped conformal alge-

bra (6.28) or (6.31). Otherwise, we recover the same SYK-like features discussed

above.

• The final set of boundary conditions leads to a u(1) current algebra (6.45) (both

off-shell and on-shell).

• Our on-shell action leads to the correct free energy and entropy, compatible with the

first law, see (7.7)–(7.10).

• Finally, we employ some Cardyology to recover the macroscopic result of entropy

from a chiral Cardy formula (7.14). A key result here is the non-zero central charge

c = 6kȲ /π derived in (6.21), where k is essentially the inverse two-dimensional

Newton constant and 1/Ȳ the zero mode of 1/Y . The reason our result is not in

conflict with the usual lore that two-dimensional quantum gravity must have c = 0

(see e.g. [85–87]) is that our central charge (and the associated Virasoro algebra)

appears only off-shell, but not on-shell. We also match with the warped conformal

entropy formula (7.18).

This paper is organized as follows. In section 2 we introduce the JT model in the

gauge theoretic formulation as Poisson sigma model. In section 3 we present our loosest

set of boundary conditions in the first order formulation. In section 4 we translate our

results into second order formulation and holographically renormalize the action to show

that we have a well-defined variational principle. In section 5 we make contact with SYK

and derive the Schwarzian action, as well as conformal quantum mechanics. In section 6

we discuss the canonical boundary charges for several different sets of boundary conditions.

In section 7 we address thermodynamics and entropy of AdS2 black holes. We also show

that naive Cardyology works, not just in the Virasoro case but also for warped conformal

boundary conditions, in the sense that the chiral Cardy formula (and its warped conformal

generalization) lead to a result for entropy compatible with the macroscopic Wald entropy.

In section 8 we conclude. Appendix A provides the relation between asymptotic symmetries

in first and second order formulations. Appendix B discusses toy models that amount

to Poisson sigma models in Casimir-Darboux coordinates, which elucidates some of the

subtle issues encountered in the main text and paves the way towards generic models of

two-dimensional dilaton gravity.

– 5 –
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2 Jackiw-Teitelboim as Poisson sigma model

Before starting we mention some of our conventions. We work in Euclidean signature

throughout and assume that our two-dimensional manifold has the topology of a disk.

Where applicable, we use the notations and conventions of [69, 88].

Like in three dimensions, where the first order formulation as Chern-Simons theory [89,

90] has many technical advantages, also in two dimensions the first order formulation is

useful. In this section we briefly summarize this formulation, with particular focus on the

JT model.

The bulk action for the JT model in the first order form reads

IJT = − k

2π

∫ (
Xa(dea + ǫ b

a ω ∧ eb) +Xdω +
1

2
Xǫabea ∧ eb

)
. (2.1)

The indices a, b take values 0 and 1, with ea the vielbein and Xa a pair of Lagrange

multipliers enforcing the torsion constraint. The dilaton itself is denoted by X, and ω is

the (dualized) spin connection. Forming the tripletXI = {X0, X1, X} from the dilaton and

Lagrange multipliers, and collecting the vielbein and spin connection one-forms together

in AI = {e0, e1, ω}, the JT model can be written as a Poisson sigma model (PSM) [91, 92]

IJT = − k

2π

∫ (
XIdAI +

1

2
P IJ(XK)AI ∧AJ

)
, (2.2)

with Poisson tensor (P IJ = −P JI , P IL∂LP
JK + cycl(I, J,K) = 0)

PXb = Xaǫa
b P ab = Xǫab . (2.3)

Extremizing the PSM action yields the equations of motion

dXI + P IJAJ = 0 dAI +
1

2
∂IP

JKAJ ∧AK = 0 . (2.4)

Because the Poisson tensor is linear in theXI , it follows from the second equation of motion

that the action (2.2) vanishes on-shell. If the Poisson tensor also vanishes on-shell (for JT

this means X = Xa = 0) we have a constant dilaton solution, otherwise a linear dilaton

solution.

The PSM action is exactly invariant under the non-linear gauge transformations

δλX
I = P IJλJ δλAI = −dλI − ∂IP

JKλKAJ , (2.5)

where λI is a triplet of gauge parameters. Introducing a metric ηIJ = diag(+1,+1,−1) on

the target space, with volume form ǫ01X = 1, the (linear) gauge transformations for the

JT model can be expressed as

δλX
I = ǫIJKλJXK δλAI = −dλI − ǫIJKAJλK . (2.6)

Now choose so(2, 1) generators JI satisfying the algebra

[J0, J1] = JX [J1, JX ] = −J0 [JX , J0] = −J1 , (2.7)

– 6 –
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with invariant bilinear form given by

〈JIJJ〉 =
1

2
ηIJ . (2.8)

Then in terms of the Lie-algebra valued quantities X = XIJI , A = AIJ
I , and λ = λIJ

I ,

the transformations are

δλX = [λ,X] δλA = −Dλ ≡ −(dλ+ [A, λ]) . (2.9)

It will be convenient to pass back and forth between so(2, 1) and sl(2) bases for the

fields. The transformation to sl(2) generators is given by

L0 = J1 L+ = J0 + JX L− = JX − J0 , (2.10)

with inverse transformation

JX =
1

2
(L+ + L−) J0 =

1

2
(L+ − L−) . (2.11)

The sl(2) generators obey the commutation relations

[LI , LJ ] = (I − J)LI+J I, J = +1,−1, 0 , (2.12)

with invariant bilinear form given by

〈LILJ〉 = κIJ ≡




0 0 −1

0 1/2 0

−1 0 0




IJ

. (2.13)

Thus, the action (2.2) can also be written as

I =
k

π

∫

M

tr(X(dA+A ∧A)) , (2.14)

with equations of motion

DA = dA+A ∧A = dA+
1

2
AI ∧AJ [LI , LJ ] = 0 (2.15a)

DX = dX+ [A,X] = 0 . (2.15b)

Throughout most of this paper, we work in the sl(2) basis. Since both bases have an element

labeled “0”, we henceforth use hatted indices 0̂ and 1̂ for components in the so(2, 1) basis.

The dictionary relating the components of the fields to the geometric variables of (2.1) is

eµ0̂ = A+
µ −A−

µ X 0̂ = X+ −X− (2.16a)

eµ1̂ = A0
µ X 1̂ = X0 (2.16b)

ωµ = −A+
µ −A−

µ X = X+ +X− . (2.16c)

The components appearing on the right-hand-side of these formulas correspond to the

coefficients of L±,0 in the sl(2) valued fields X and A. By the hatted indices 0̂ and 1̂ we

denote the components in the so(2, 1) basis.

– 7 –
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3 Action and degrees of freedom

In this section we identify the boundary degrees of freedom in the JT model, describe the

mapping to AdS2 asymptotics, and establish a non-trivial action for the theory in the first

order formalism.

3.1 Auxiliary asymptotic conditions

We denote the coordinate along the boundary by ϕ and the bulk coordinate by ρ. We

will consider spacetimes M with the topology of a disk (or possibly of a cylinder,2 after

suitable modifications) such that the boundary ∂M is S1.

Let us consider an auxiliary asymptotic value problem where all fields tend to some

finite values on the boundary. In the sl(2) basis, the boundary values of the canonical

variables may be written in a ρ-independent way as

aϕ(ϕ) = L+L+(ϕ) + L0L0(ϕ) + L−L−(ϕ) (3.1)

x(ϕ) = L+X+(ϕ) + L0X 0(ϕ) + L−X−(ϕ) . (3.2)

They have to satisfy the equations of motion that follow from varying Aρ in the action

(X±)′ ± (L±X 0 − L0X±) = 0 (3.3a)

(X 0)′ + 2(L+X− − L−X+) = 0 . (3.3b)

Here (and elsewhere) the prime denotes a derivative with respect to ϕ. The ansatz for the

boundary values (3.1), (3.2) is the most general one possible.

Taken together, the equations imply that a particular combination of the X I is con-

stant. If we define the Casimir C as

C = X+X− − 1

4
(X 0)2 (3.4)

then C′ = 0. The remaining equations may be enforced by solving for, say, L0 and L− in

terms of L+ and the X I . It is convenient to parameterize L+ in terms of its ratio with

X+, so that

L+ =
1

Y
X+ (3.5)

L0 =
1

Y
X 0 +

(X+)′

X+
(3.6)

L− =
1

Y
X− +

(X 0)′

2X+
(3.7)

where Y = X+/L+ is, for the moment, an arbitrary function of ϕ.

If the gauge parameter λ does not vanish at ∂M, the corresponding gauge transfor-

mations act on the asymptotic values of the fields. In the sl(2) basis the components of λ

at the boundary are

λ|∂M ≡ ε(ϕ) = L+ ε+(ϕ) + L0 ε
0(ϕ) + L− ε−(ϕ) . (3.8)

2For the Hamiltonian reduction of generic PSMs on the cylinder, see [93].

– 8 –
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The response of the fields to such a transformation is given by

δεL± = ±ε± L0 ∓ ε0 L± − ε±′ δεL0 = 2 ε+ L− − 2 ε− L+ − ε0′ (3.9a)

δεX± = ±ε±X 0 ∓ ε0X± δεX 0 = 2 ε+X− − 2 ε−X+ . (3.9b)

The Casimir C is invariant, while the ratio 1/Y appearing in (3.5) transforms as a total

derivative plus a term proportional to the equation of motion (3.3a):

δεC = 0 δε

(
1

Y

)
= −∂ϕ

(
ε+

X+

)
− ε+

(X+)′ + L+X 0 − L0X+

(X+)2
. (3.10)

The transformations of X I and LI are identical to those of an sl(2) current, with an

anomalous term in the case of the LI . As we shall see below, the canonical charges are

constructed from X I .

3.2 Asymptotic AdS2 conditions

The auxiliary asymptotic conditions (3.1), (3.2) may be mapped to asymptotic AdS2 con-

ditions by means of the transformation (cf. [72])

A = b(ρ)−1
(
d+aϕ(ϕ) dϕ

)
b(ρ) (3.11)

X = b(ρ)−1 x(ϕ) b(ρ) (3.12)

with some group element b that depends only on the “radial” coordinate ρ. Equations (3.11)

and (3.12) fix the asymptotic form of the fields. The choice of the group element is irrelevant

for the gauge theoretic interpretation of the theory and only becomes relevant for a geomet-

ric interpretation. Throughout this paper we fix the group element to allow an asymptotic

AdS2 interpretation of our results. A convenient choice in most (but not all) cases is

b = eρL0 . (3.13)

For arbitrary boundary data L±,0 and X±,0, and using the Baker-Campbell-Hausdorff

identities b−1L±b = L±e
±ρ, we then obtain

A =
(
dρ+ L0 dϕ

)
L0 +

(
eρL+L+ + e−ρL−L−

)
dϕ (3.14)

X = eρX+L+ + X 0L0 + e−ρX−L− . (3.15)

From these formulas one can easily extract the zweibein and the spin connection

eρ0̂ = 0 eρ1̂ = 1 ωρ = 0 (3.16)

eϕ0̂ = eρL+ − e−ρL− eϕ1̂ = L0 ωϕ = −
(
eρL+ + e−ρL−

)
(3.17)

which corresponds to the asymptotically AdS2 line element

ds2 = dρ2 + 2L0 dρ dϕ+
( (

eρL+ − e−ρL−
)2

+
(
L0

)2 )
dϕ2 . (3.18)

The generalized Fefferman-Graham expansion of the metric (3.18) is reminiscent of its

AdS3 version [79]. Likewise, the dilaton is

X = eρX+ + e−ρX− . (3.19)

Notably, the leading order coefficients in the metric, L+, and dilaton, X+, are allowed to

fluctuate. These fluctuations are almost independent from each other; as we shall explain

in the next subsection, the ratio L+/X+ = 1/Y must have a fixed zero mode.
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3.3 Action in first order formalism

The action (2.1) reproduces the equations of motion for the JT model, but it is trivial in

the sense that it is exactly zero for any solution of those equations. We wish to find an

action that yields the same equations of motion and is invariant under the same gauge

transformations, but is also generically non-zero when evaluated on solutions.

The action (2.2) is equivalent to the ‘bulk’ term in the more familiar second-order

formulation of the JT model. So let us supplement it with a number of boundary terms to

give an action of the form

Γ = IJT +
k

2π
b0

∫

∂M

dϕ

(
Xωϕ +

X

A2
ϕ0̂

+A2
ϕ1̂

(Aϕ0̂A
′

ϕ1̂
−Aϕ1̂A

′

ϕ0̂
)

)
(3.20)

+
k

2π
b1

∫

∂M

dϕ
(
XaAϕa + LCT(x, a)

)
,

where b0 and b1 are constants, and LCT is some function of the boundary values of the

fields. The first boundary term in (3.20), with coefficient b0, is the Gibbons-Hawking-York

(GHY) term expressed in terms of the so(2, 1) components of the bulk fields. Our initial

expectation is that some values for the constants b0 and b1 and an appropriate choice of

LCT will give an action that admits a well-defined variational principle for the boundary

conditions (3.1), (3.2), possibly subject to further restrictions.

The first variation of the action should vanish when evaluated on solutions of the equa-

tions of motion, for all field variations that keep some as-yet-undetermined combination of

the fields fixed on ∂M. Here we take ∂M to be the ρ → ∞ limit of a constant ρ surface.

This immediately places a condition on b0 and b1. The variation of the bulk term (2.2)

gives a boundary integral of XI δAI , which is independent of ρ. But the variations of Xωϕ

and XaAϕa each include terms proportional to e2ρ, which must cancel against each other

for δΓ to be defined as ρ → ∞. This is accomplished by setting b0 = b1. Then we have

δΓ
∣∣∣
EOM

=
k

2π

∫

∂M

dϕ

[
(1− b0) 4 C δ

(
1

Y

)
+ (1− 2b0)

2

Y
δC (3.21)

+ b0 δ

(
LCT − (∂ϕX+)2

L+X+

)]
,

where total boundary derivatives have been discarded, and the results have been expressed

in terms of Y , C, and boundary quantities in the sl(2) basis. Requiring the term on the

second line to cancel gives a variational principle that fixes, depending on the choice of

b0, either Y , C, or some combination of these quantities at ∂M. Since this cancellation

only determines the on-shell value of δLCT in the ρ → ∞ limit, there are in principle many

functions of the fields which are consistent with this condition. A convenient choice which

will have a natural interpretation in the second-order formalism is to set

LCT =
(X ′)2

X
√
A 2

ϕ0̂
+A 2

ϕ1̂

, (3.22)

in which case

LCT

∣∣∣
EOM

=
(∂ϕX+)2

L+X+
+ . . . , (3.23)
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where the ellipsis denotes terms which vanish as ρ → ∞.

We are primarily interested in the case b0 = 1
2 , which cancels the δC term in (3.21).

This leaves

δΓ
∣∣∣
EOM

=
k

π

∫

∂M

dϕ C δ

(
1

Y

)
=

k

π
C
∫

∂M

dϕ δ

(
1

Y

)
, (3.24)

which gives a well-defined variational principle with boundary conditions that fix only 1/Y

on ∂M. In fact, the boundary conditions are less restrictive than this: since C is indepen-

dent of ϕ on-shell, it is sufficient to fix only the zero-mode of 1/Y . This is the boundary

condition we will use in the rest of the paper. Of course, we must also verify that the asymp-

totic symmetries maintain the value of this zero mode. This will be shown in section 4.4.

Under the gauge transformation (3.8), the bulk term in the action is exactly invariant.

The change in our new action Γ is a boundary term of the form (3.24). And since 1/Y

transforms as a total derivative on-shell [see (3.10)], the constraint C′ = 0 implies δλΓ = 0.

Thus, the action is invariant under the same gauge transformations as the bulk-term (2.1).

Evaluated on-shell, this action is non-zero and given by

Γ
∣∣
EOM

= −k

π
C
∫

∂M

dϕ

Y
. (3.25)

While the bulk term (2.14) is manifestly SL(2) invariant, the full action (3.20) appears to

break this symmetry. In order to make the symmetry more transparent it is convenient to

rewrite the full action as

Γ = IJT +
k

2π

∫
dϕ

1

Y
tr
(
X2

)
. (3.26)

The action (3.26) is now manifestly SL(2) invariant due to the fact that 1/Y transforms

on-shell as a total derivative. This action leads to the same variational principle (3.20)

for variations that obey the linearized equations of motion, i.e., the variation of the on-

shell relations (3.5)–(3.7). Since tr (X2) = −2(X+X− − 1
4(X 0)2) = −2C the action (3.26)

reproduces the on-shell action (3.25).

We have therefore constructed an action for the PSM with the same equations of motion

and invariances as the bulk action, but which is non-zero for solutions of the theory. These

properties extend to other values of b0 = b1. In that case, δλΓ will have the form (3.21),

which vanishes by (3.10) and the on-shell condition C′ = 0. Thus, b0 parameterizes a

family of actions with well-defined variational principles, which are invariant under the

same gauge transformations as the bulk term (2.1) and are generically non-zero (and finite)

when evaluated on solutions of the theory. For our choice b0 =
1
2 the on-shell action (3.25)

essentially is given by the value of the Casimir C.

4 Second order formalism

The boundary degrees of freedom and symmetries of the JT model are especially clear in

the first order formalism, but it is useful to see how these emerge in the more familiar

second order formalism. In this section we provide the second order action for the theory,

recover the boundary degrees of freedom found in the previous section, and show how the

gauge transformations of the PSM arise from bulk diffeomorphisms.
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4.1 Action

In the second-order formalism, the variables are the dilaton X and the metric gµν defined

on the manifold M. The action consists of the usual bulk term, a GHY boundary term

with the standard coefficient, and a pair of boundary terms (also known as “holographic

counterterms”)

Γ = − 1

2κ2

∫

M

d2x
√
g X (R+ 2)− 1

κ2

∫

∂M

dx
√
γ X K

+
1

κ2

∫

∂M

dx
√
γ

(√
X2 + c0 +

1

2X
γµν ∂µX∂νX

)
, (4.1)

where γ is the induced metric on ∂M, K is the trace of the extrinsic curvature of ∂M
embedded in M, and κ2 is related to the PSM coupling k by 1/κ2 = k/(2π). The variation

of this action yields

δΓ =
k

4π

∫

M

d2x
√
g
[
Eµν δgµν + EX δX

]
(4.2)

+
k

2π

∫

∂M

dx
√
γ
[ (

πµν + pµν
)
δgµν +

(
πX + pX

)
δX

]
.

Setting to zero the bulk terms gives the equations of motion

Eµν = gµν X +∇µ∇νX − gµν ∇2X = 0 (4.3a)

EX = R+ 2 = 0 , (4.3b)

while the coefficients of the field variations appearing in the boundary term are

πµν =
1

2
γµν nλ∇λX (4.4)

pµν = −1

2
γµν

√
X2 + c0 +

1

2X

(
γµλ γνσ − 1

2
γµν γλσ

)
∂λX ∂σX (4.5)

πX = K (4.6)

pX = − X√
X2 + c0

+
1

2X2
γµν ∂µX ∂νX +Dµ

(
1

X
DµX

)
. (4.7)

The π’s come from the variation of the terms in the first line of (4.1), while the p’s come

from the variation of the holographic counterterms in the second line.

The first holographic counterterm in the second line of (4.1) was obtained in [70] via

variational arguments and the Hamilton-Jacobi approach to holographic renormalization.

However, that derivation assumed that the boundary ∂M was an isosurface of the dila-

ton, which is not the case here. Solving the Hamilton-Jacobi equation order-by-order in a

boundary derivative expansion yields the final term in (4.1). The first holographic coun-

terterm contains a constant c0. This constant was set to zero in [70], to preserve a stringy

symmetry of the action (Buscher duality). We will not set it zero immediately. Indeed,

we will find in section 5.2 that it has a natural interpretation in terms of the conformal

quantum mechanics of dAFF [84].
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4.2 Solutions and general boundary conditions

Let us now solve the second order equations of motion (4.3). To recover the content of

the PSM, we partially fix the gauge by setting gρρ = 1, and consider metrics which can be

written in the form

ds2 = dρ2 + 2 j(ϕ) dρ dϕ+
(
h(ρ, ϕ)2 + j(ϕ)2

)
dϕ2 . (4.8)

The Ricci scalar is then R = −2h−1 ∂ρ
2h, so the equation of motion EX = 0 immediately

gives

h(ρ, ϕ) = eρ L+(ϕ)− e−ρ L−(ϕ) . (4.9)

Likewise, combining the different components of Eµν = 0 yields the following equation for

the dilaton

∂2
ρX = X , (4.10)

which is solved by

X(ρ, ϕ) = eρX+(ϕ) + e−ρX−(ϕ) . (4.11)

Comparing with (3.18)–(3.19), and making the identification j = L0, the functions appear-

ing in the metric and dilaton are precisely the PSM variables in the sl(2) basis.

The contraints of the PSM are obtained from various components of the Eµν = 0

equations of motion. The equations Eρϕ = 0 and Eρρ = 0 together give the condition

∂ρ

(L0 ∂ρX − ∂ϕX

h

)
= 0 . (4.12)

The quantity in parentheses must be a function of ϕ, which we identify as X 0. As a result,

the functions in (4.9) and (4.11) satisfy

(X±)′ ±
(
L±X 0 − L0X±

)
= 0 , (4.13)

where a prime indicates a derivative with respect to ϕ. Finally, if we evaluate Eρρ = 0

using (4.9), (4.11), and (4.13), we find one last condition

(X 0)′ + 2
(
L+X− − L−X+

)
= 0 . (4.14)

The equations (4.13)–(4.14) are equivalent to the PSM equations of motion (3.3). Thus, a

general solution of the JT model in the second order formalism contains the same degrees

of freedom and constraints as the PSM.

4.3 On-shell action and on-shell variation

Solutions of the equations of motion (4.3) have constant negative curvature, R = −2, and

hence the bulk term in the action (4.1) vanishes. The non-zero contributions come from

the boundary terms

Γ
∣∣
EOM

= − k

2π

∫

∂M

dx
√
γ

(
XK −

√
X2 + c0 −

1

2X
γµν ∂µX∂νX

)
. (4.15)
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Taking the boundary ∂M as the ρc → ∞ limit of the surface ρ = ρc, the on-shell value is

Γ
∣∣
EOM

= − k

2π

∫
dϕ

L+

2X+

(
4 C − c0

)
. (4.16)

Obtaining this result involved integrating-by-parts, imposing the constraints, and dropping

total (boundary) derivatives. Except for the term involving c0, this takes the same value

as the first order action in section 3.2 with b0 =
1
2 .

Evaluating the variation of the action (4.2) on a solution of the equations of motion,

we have

δΓ
∣∣∣
EOM

=
k

2π

∫
dϕ

[
1

4X+L+

(
4 C + c0

)
e−2ρ δgϕϕ − L+

2 (X+)2
(
4 C + c0

)
e−ρ δX

]
. (4.17)

From the powers of e−ρ, we see that on-shell δΓ vanishes for any variations of the fields that

grow more slowly than the leading terms in gϕϕ and X as ρ → ∞. This is what one expects

for an action that admits a variational principle with Dirichlet boundary conditions on the

fields at ρ → ∞. But if we consider variations of the leading terms in the fields, this becomes

δΓ
∣∣∣
EOM

=
k

2π

∫
dϕ

[
1

2X+

(
4 C + c0

)
δL+ − L+

2 (X+)2
(
4 C + c0

)
δX+

]
. (4.18)

As in section 3.1, we write L+ = X+/Y and the on-shell variation reduces to

δΓ
∣∣∣
EOM

=
k

4π

∫
dϕ (4 C + c0) δ

(
1

Y

)
=

k

4π
(4 C + c0)

∫
dϕ δ

(
1

Y

)
. (4.19)

Thus, the on-shell variation of the action is zero even for variations of the leading terms

in the fields, provided the zero-mode of the ratio L+/X+ = 1/Y is held fixed. This is the

same result found in the first order formalism in section 3.3.

4.4 Diffeomorphisms and asymptotic symmetries

Under a diffeomorphism xµ → xµ − ξµ, the bulk fields transform with the Lie derivative

£ξ along the vector field ξ.

δξgµν = £ξgµν = ξα∂αgµν + gµα∂νξ
α + gνα∂µξ

α δξX = £ξX = ξα∂αX (4.20)

Diffeomorphisms which act at ∂M but leave the action invariant, modulo diffeomorphisms

which reduce to the identity at ∂M, are the asymptotic symmetries of the theory. We

show now, with the help of appendix A, that these symmetries are precisely the large

gauge transformations of the PSM.

In a neighborhood of ∂M (ρ → ∞), the most general diffeomorphism that preserves

the gauge gρρ = 1 and the generalized Fefferman-Graham form of the fields is given by

ξϕ = σ(ϕ) + e−2ρ α(ϕ) +O(e−4ρ) (4.21a)

ξρ = λ(ϕ)− L0(ϕ) ξϕ . (4.21b)

– 14 –



J
H
E
P
1
0
(
2
0
1
7
)
2
0
3

The action of this diffeomorphism on the fields is

δξL+ = λL+ − L0 σL+ + (σL+)′ (4.22a)

δξL0 = λ′ − 2 (L+)2 α (4.22b)

δξL− = −λL− + L0 (σL− − αL+) + (σL− − αL+)′ (4.22c)

δξX+ = λX+ − σL+X 0 (4.22d)

δξX 0 = −2σL+X− + 2 (σL− − αL+)X+ (4.22e)

δξX− = −λX− + (σL− − αL+)X 0 . (4.22f)

To recover the transformations found in the PSM, we make a field-dependent mapping

between the functions in ξµ and the parameters of the large gauge transformation (3.8)

λ = −ε0 σ = − ε+

L+
α =

1

L+
ε− − L−

(L+)2
ε+ . (4.23)

With this identification, (4.22) are equivalent to the transformations in section 3.1. Re-

producing the symmetry algebra of the PSM is complicated by the field-dependence of the

parameters appearing in the diffeomorphism, and requires the introduction of a modified

bracket as in [94]. This is discussed in detail in appendix A.

Under the diffeomorphism (4.21), the response of the on-shell action has the

form (4.19). As in the PSM, the ratio L+/X+ = 1/Y transforms on-shell as a total

derivative

δξ

(
1

Y

)∣∣∣∣
EOM

=

(
σ

Y

)′

. (4.24)

This means in particular that the zero mode of 1/Y is not changed, which is a non-trivial

consistency check of our variational principle. Thus, the action (4.1) is invariant under

diffeomorphisms that take the form (4.21) in a neighborhood of ∂M. The asymptotic

symmetries are therefore the same as the large gauge transformations of the PSM.

5 Schwarzian action

We have shown that the variational principle is well-defined, in both the first and second-

order formulation, if the zero-mode of the ratio L+/X+ = 1/Y is fixed. In this section

we clarify the interpretation of this variational principle and, provided with these results,

show its relation to the Schwarzian action that rose to prominence recently in the context

of SYK (-like) models.

5.1 Comments on the variational principle

As equation (4.24) shows, the quantity 1/Y transforms as a total derivative under an

infinitesimal change of the boundary coordinate ϕ 7→ ϕ + σ(ϕ). The quantity Y itself

transforms as a vector on-shell

δξY
∣∣
EOM

= Y ′σ − σ′Y (5.1)
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under this infinitesimal change of coordinates and is a well-defined, nowhere vanishing vec-

tor field on ∂M for the following reasons. For consistency, L+ must be a nowhere vanishing

positive function such that the induced metric on the cut-off surface ρc is Euclidean and

non-singular in the limit ρc → ∞. Similarly, the leading order component of the dila-

ton, X+, must be a non-zero (positive) function everywhere if we want to interpret the

asymptotic region ρ → ∞ as a weak coupling region X → ∞. Consequently, the quantity

Y
−1 ≡ 1

β

β∫

0

dϕ

Y
(5.2)

that we keep fixed as part of our boundary conditions is well-defined.

Furthermore, let us define the mass function M(ϕ),

M = T − P2 − P ′ (5.3)

where

T = L+L− P =
1

2
L0 − (L+)′

2L+
. (5.4)

This can be regarded as a boundary stress tensor obtained by a (twisted) Sugawara

construction (5.3) from the sl(2) generators L±,L0. It transforms with an infinitesimal

Schwarzian derivative,

δξM = σM ′ + 2σ′M +
1

2
σ′′′ (5.5)

under infinitesimal reparametrizations of the boundary coordinate. Under finite transfor-

mations, ϕ 7→ f(ϕ), where f(ϕ) is a diffeomorphism on S1 obeying

f ′(ϕ) > 0 f(ϕ+ β) = f(ϕ) + β (5.6)

we find the transformation law M 7→ M̃

M̃(f(ϕ)) =
1

(f ′(ϕ))2

(
M(ϕ)− 1

2
Sch[f ](ϕ)

)
. (5.7)

Here, Sch[f ](ϕ) denotes the Schwarzian derivative

Sch[f ](ϕ) =

(
f ′′

f ′

)′

− 1

2

(
f ′′

f ′

)2

. (5.8)

The quantity M can therefore be regarded as an element of a specific coadjoint orbit

of the Virasoro group [95]; for a thorough pedagogic treatise with applications to three-

dimensional gravity consult [96]. In the following it will be convenient to evaluate the left

hand side of (5.7) at ϕ instead of f(ϕ). Using the inversion formula for the Schwarzian

derivative, Sch[f ](ϕ) = −
(
f ′(ϕ)

)2
Sch[f−1](ϕ), yields

M̃(ϕ) =
(
(f−1)′(ϕ)

)2
M(f−1(ϕ)) +

1

2
Sch[f−1](ϕ) . (5.9)

Since a particular coadjoint orbit is a homogeneous space for the Virasoro group, the re-

sult (5.9) shows that any point on the orbit M̃ can be reached by acting with an appropriate
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diffeormophism f(ϕ) on a chosen representative M . With the help of the quantity M , the

constraints (3.3a)–(3.3b) are equivalent to the equation

C = Y 2M − 1

4
(Y ′)2 +

1

2
Y Y ′′ , (5.10)

relating M , Y , and the Casimir function C. Conservation of the Casimir C′ = 0 establishes

YM ′ + 2Y ′M +
1

2
Y ′′′ = 0 . (5.11)

We stress that only two of the three constraints are needed to derive equation (5.10), which

implies that this equation is valid without assuming the conservation of the Casimir. By

contrast, (5.11) is an immediate consequence of this conservation and is valid only if all

three constraints are imposed. This distinction between “fully on-shell” and “partially

on-shell” will be important for the discussion in section 6.2 and 6.3.

Since the (rescaled) leading order of the dilaton field transforms like a boundary vector

and solves equation (5.11) it can be regarded as the stabilizer of the coadjoint orbit of the

Virasoro group determined by M .3 If the on-shell condition of conservation of the Casimir

function is not enforced, comparison between (5.11) and (5.5) suggests that the quantity

Y generates infinitesimal diffeomorphisms under which M transforms anomalously. In

section 6.2 we will see that, with a caveat, this is indeed the case.

By solving the equation
dϕ

Y
=

dϕ̃

Y
(5.12)

one can always find a diffeomorphism ϕ 7→ ϕ̃ to a new coordinate system ϕ̃ in which Y

takes the constant value Y . In this coordinate system equation (5.10) yields

M = CY −2
, (5.13)

thus determining the constant representative of each orbit since the Casimir is conserved.4

In this coordinate system the solution of equation (5.11) is straightforward. For generic

values of M , Y will be the only periodic solution to this equation, and the stabilizer group

is just U(1). However, at the exceptional values

M =
n2π2

β2
(5.14)

one finds two additional solutions, and the stabilizer group is given by PSL(n)(2,R), i.e.,

the n-fold cover of the Euclidean AdS2 group SO(2, 1) ≃ SL(2,R)/Z2. The smooth clas-

sical solutions compatible with the choice of temperature are determined by calculating a

holonomy around the ϕ-cycle and demanding that it equals minus unity,

P exp

(∮
A

)
= −1 (5.15)

3The classification of coadjoint orbits essentially boils down to determine the stabilizers of each orbit.

More specifically, if G is the stabilizer group for a coadjoint orbit of the Virasoro group, the respective orbit

is given by Diff(S1)/G.
4The full classification of orbits of the Virasoro group includes, in addition to the orbits with constant

representative constructed above, an infinite number of families without constant representative. Our condi-

tions on the dilaton field, in particular the requirement that it is non-zero everywhere, disallow these orbits.
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where P denotes path ordering. This singles out the Euclidean black hole configurations,

i.e., for any choice of inverse temperature β these are the constant representative solu-

tions (5.14) with n = 1. The relation between Casimir and temperature for smooth classical

solutions is therefore given by

C =
Ȳ 2π2

β2
. (5.16)

The fact that the Casimir C scales quadratically with temperature T = 1/β is compatible

with the two-dimensional Stefan-Boltzmann law.

5.2 Schwarzian action

In this section we make contact with the recent developments regarding a proposed duality

between (nearly) AdS2 gravity in the form of the JT model and the SYK model [22–

24]. This quantum mechanical model of Majorana fermions with a four-point interaction

with random coupling develops a conformal symmetry in the strong coupling/low energy

regime, i.e., it allows for arbitrary reparametrizations of (Euclidean) time. This symmetry,

however, is spontaneously broken to an SL(2) symmetry by the groundstate. The low en-

ergy dynamics of the theory is therefore governed by the reparametrizations that become

Nambu-Goldstone bosons due to this spontaneous symmetry breaking and acquire an effec-

tive action given by the Schwarzian action [21]. The Schwarzian action provides the link to

AdS2 gravity as it was shown that the effective dynamics of the JT model can be rewritten

also in the form of a Schwarzian action [29–31]. In the following we will show that our

on-shell action (4.16), deriving from an action with well-defined variational principle both

in the first (3.20) and second order formulation (4.1), can be naturally reformulated as a

Schwarzian action.

Using the notation introduced in section 5, the on-shell action takes the form

Γ
∣∣
EOM

= − k

4π

β∫

0

dϕ

Y

(
4 C − c0

)
= − k

4π

β∫

0

dϕ

Y

(
4Y 2M − (Y ′)2 − c0

)
, (5.17)

where we used equation (5.10) in the second step and discarded a total derivative. The mass

function M must be an element of the Virasoro orbit with constant representative given

by (5.14) with n = 1 since otherwise we would have a solution that is not smooth for given β.

As a first observation note that (5.17) becomes the action of Euclidean conformal

quantum mechanics discussed in [60, 84] coupled to the external source M upon replacing

Y → q2.

Γ = −k

π

β∫

0

dϕ

(
q2M − (q′)2 − c0

4q2

)
(5.18)

As mentioned above, the quantity c0 becomes the coupling strength of the conformal quan-

tum mechanics model. Consistent with Y transforming like a boundary vector under

arbitrary reparametrizations q should transform with conformal weight −1
2 .

We return now to (5.17) and set c0 = 0. This value is special since for string-related

models of dilaton gravity it restores a stringy symmetry, Buscher duality [97, 98], while for
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JT it restores homogeneity of the action in the dilaton field X. Let us define a diffeomor-

phism g : S1 → S1, ϕ 7→ u = g(ϕ) by

g(ϕ) = Ȳ

ϕ∫

0

dη

Y (η)
. (5.19)

This is a finite reparametrization of the boundary coordinate ϕ. We can therefore

rewrite the action (5.17) as

Γ = −kȲ

π

β∫

0

du

(
((g−1)′(u))2M +

1

2
Sch[g−1](u)

)
. (5.20)

The Lagrangian in (5.20) is the coadjoint action of the Virasoro group (5.9) acting on the

element M and provides an effective action for reparametrizations g−1(u). One should not

consider independent variations ofM and g−1(u) when varying (5.20) but rather impose the

constraint (5.11) on the variations. Furthermore, variations of M must not leave the orbit

of the constant representative that is consistent with the choice of temperature T = β−1.

Without loss of generality we assume M is a constant representative (since any element

on the orbit can be reached from it), and setting g−1(u) ≡ τ(u) we find

Γ = −kȲ

2π

β∫

0

du

(
1

2

(
2π

β

)2

(τ ′)2 + Sch[τ ](u)

)
, (5.21)

which is precisely the Schwarzian action at finite temperature β for finite reparametrizations

of the circle τ [21, 30].

6 Menagerie of AdS2 boundary conditions

Having specified our variational principle we now turn to the calculation of the asymptotic

charges.

The canonical boundary current for dilaton gravity in the PSM formulation can be

obtained using covariant [99, 100] or canonical approaches [101]. Both yield the expression

δQ[ε] =
k

2π
εI δX

I =
k

π
tr (ε δX) . (6.1)

The currents (6.1) are to be evaluated at the asymptotic boundary of one Euclidean time-

slice, i.e., they are valid at one particular value of angular coordinate ϕ. However as sug-

gested in [102], we will define time-averaged versions of the canonical boundary currents as

δQ̃[ε] =
k

2πβ

β∫

0

dϕεI δX
I =

k

πβ

β∫

0

dϕ tr (ε δX) . (6.2)

As stated in the introduction, these time-averaged boundary currents depend on the full

tower of Fourier modes of the transformation parameters εI and field variations δXI .

In the next subsections we specify four different sets of boundary conditions (with a

fifth one in appendix B), integrate the time-averaged boundary currents (6.2) in field space

to averaged charges and study their associated algebras.
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6.1 Loop group boundary conditions

We start with the loosest set of boundary conditions where no restrictions are placed on

δX or δLI other than on-shell conditions [and the fixing of the zero mode of 1/Y as defined

in (3.5)]. This means that the metric and dilaton have to obey the boundary conditions

gµν dxµ dxν = dρ2+O(1) dρ dϕ+
(
O(e2ρ)+O(1)+. . .

)
dϕ2 X = O(eρ)+O(e−ρ) (6.3)

where the ellipsis refers to a term of order O(e−2ρ) that is fully determined by on-shell

conditions. The leading order variations of gϕϕ and the dilaton are subject to the condition

that the ratio
√
gϕϕ/X has a zero mode that is not allowed to vary, as explained in sections 3

and 4.

Assuming that the transformation parameters εI in (6.2) are field-independent allows

integration in field space and leads to the averaged charges

Q̃[ε] =
k

πβ

β∫

0

dϕ

[
1

2
ε0X 0 − ε+X− − ε−X+

]
. (6.4)

In the following we will always refer to the quantities defined in (6.4) simply as “charges”

and drop the tilde for notational brevity.

Using the fact that the charges (6.4) generate symmetry transformations according to

δεF = {F,Q (ε)} , (6.5)

we can determine the brackets between elements of the asymptotic phase space spanned by

X±,X ′ and L±,L0. In particular, defining the Fourier coefficients of the rescaled charges

X±
n =

1

β

β∫

0

dϕeinϕX± X 0
n =

1

2β

β∫

0

dϕeinϕX 0, (6.6)

we find that their algebra is given by a centerless ŝl(2) current algebra

{
X I
n ,X J

m

}
= (I − J)X I+J

n+m . (6.7)

This agrees with the algebra of asymptotic Killing vectors equipped with the modified Lie

bracket of [94] in the second order formalism, as explained in more detail in appendix A,

and also with the asymptotic symmetries in the PSM formulation (3.9b).

6.2 Conformal boundary conditions

We will now turn to the set of stricter boundary conditions that was analyzed previously

in [69, 72] and that is more “typical” for asymptotically AdS2 behavior since the leading

order metric is not allowed to fluctuate. Setting L0 = 0 and fixing L+ to the convenient

constant value L+ = 1/2, metric and dilaton read

gµν dxµ dxν = dρ2 +

(
1

4
e2ρ +O(1) + . . .

)
dϕ2 X = O(eρ) +O(e−ρ) (6.8)
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where the ellipsis refers to a term of order O(e−2ρ) that is fully determined by on-shell

conditions. The leading order variation of the inverse of the dilaton is subject to the

condition that its zero mode is not allowed to vary (for the same reasons as above).

The auxiliary connection a for these boundary conditions is given by

a =
1

2
L+ + L−(ϕ)L− . (6.9)

Let us define σ ≡ −ε+/L+ = −2ε+, as in (4.23), and L ≡ L−. Then the conditions

δL0 = δL+ = 0 imply the following relations between the gauge parameters:

ε0 = ∂ϕσ = σ′ (6.10)

ε− = −σ′′ − σL . (6.11)

The function L transforms with an infinitesimal Schwarzian derivative

δσL = σL′ + 2σ′L+ σ′′′ (6.12)

and is related to the mass function by a factor 1
2

M =
1

2
L− =

1

2
L . (6.13)

Therefore, also the mass function M again transforms with an infinitesimal Schwarzian

derivative [as in (5.5)] under infinitesimal diffeomorphisms parametrized by σ.

The asymptotic symmetries for these boundary conditions were previously analyzed

in [69, 72]. It was shown therein that the charges associated with these asymptotic symme-

tries are, in general, non-integrable. In the present context one might be tempted to insert

the parameters (6.10) and (6.11) into (6.4) and declare the result to be the asymptotic

symmetry generators that canonically realize the Virasoro symmetry apparent in (6.12).

However, the asymptotic charges equipped with the Poisson bracket (6.5) do not form

an algebra; rather one would have to construct the Dirac brackets implementing the con-

straints we imposed to arrive at (6.9). We shall not construct these brackets in the present

paper but will follow a different way to deal with the non-integrability of the charges.5

The variation of the time-averaged charges (6.2) takes the form

δQ[σ] =
k

πβ

β∫

0

dϕ

(
1

2
σ′δX 0 +

1

2
σδX− +

1

2
σ′′ δY +

1

2
σLδY

)
, (6.14)

where we used relations (6.10) and (6.11) for the gauge parameters and defined again

Y = X+/L+ = 2X+. It is obvious that the last term of this expression spoils integrability.

Using the linearized equations of motion, the variations of (3.3a) and (3.3b), to eliminate

δX− and δX 0 the charge (6.14) can be rewritten as

δQ[σ] =
k

2πβ

β∫

0

dϕ
(
−σ′δY ′ + σδY ′′ + σδ(LY ) + σ′′ δY + σLδY

)
, (6.15)

5A prescription to calculate the Poisson brackets of non-integrable charges was presented in [103]. The

price one has to pay in that approach is a non-standard central extension, in the sense that it becomes

field-dependent.
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The expression (6.15) is still non-integrable. However, in section 5 we saw that the

quantity Y is a boundary vector that is related to infinitesimal reparametrizations of the

boundary coordinate as suggested by equation (5.11). We therefore redefine the gauge

parameter σ as

σ = εY with ∂ϕε = 0 = δε (6.16)

The redefinition (6.16) effectively amounts to a change of our boundary conditions. As

we show now it leads to integrable charges with interesting properties. Inserting the re-

definition (6.16) into the variation of the charges (6.15) we find that the charges become

integrable.

Q[σ] =
k

πβ

β∫

0

dϕ
σ

Y

(
Y 2M − 1

4
Y ′2 +

1

2
Y Y ′′

)
(6.17)

The quantity in parentheses is just the Casimir (5.10). However, let us not enforce

the on-shell conservation of the Casimir for the moment. Then, following the same line of

reasoning that led us to the Schwarzian action in section 5.2, we find that the charge (6.17)

is given by

Q[σ] =
kȲ

2πβ

β∫

0

duσ(u)

(
1

2

(
2π

β

)2

(τ ′)2 + Sch[τ |(u)
)

. (6.18)

By equation (5.9) the quantity in parentheses denotes a generic point M(u) on the orbit

of the constant representative Diff(S1)/SL(2,R), which leads to

Q[σ] =
kȲ

πβ

β∫

0

duσ(u)M(u) . (6.19)

These are just the usual charges on would expect on the phase space of a coadjoint orbit

of the Virasoro group [95]. Indeed, using equation (6.5) one can check that

{Q[σ1], Q[σ2]} =
kȲ

πβ

β∫

0

duσ1(u)

(
σ2M

′ + 2σ′
2M +

1

2
σ′′′
2

)
(6.20)

since δσ2σ1 = 0 due to the relations (5.1) and (6.16). We therefore find a Virasoro algebra

at central charge

c =
6kȲ

π
(6.21)

where Ȳ is defined in (5.2). Thus, our requirement of a well-defined variational principle

that led to the fixing of Ȳ implies that the central charge (6.21) is state-independent.

However, the above derivation was based on the assumption that the strict on-shell

conservation of the Casimir is not enforced. This is also clear from equation (6.20) since

recalling the parametrization σ2 = ε2Y we obtain

{Q[σ1], Q[σ2]} =
kȲ

πβ

β∫

0

duσ1(u)ε2

(
2Y ′M + YM ′ +

1

2
Y ′′′

)
= 0, (6.22)

due to equation (5.11) which was a consequence of the on-shell conservation of the Casimir.
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In summary, the above discussion suggests the following general picture: using the

conformal boundary conditions (6.9) we find that off-shell the averaged charges equipped

with the Poisson brackets (6.5) form a Virasoro algebra. However, the on-shell conservation

law of the Casimir breaks this conformal symmetry to a simple U(1) with the generator

given by the SL(2,R)-invariant Casimir.

This pattern of on-shell breaking of conformal symmetry is a distinctive feature of the

SYK model [21–23, 29–31].

6.3 Warped conformal boundary conditions

A looser set of boundary conditions than conformal ones may be obtained if one sets to

zero the L0 part of the connection but does not fix the leading order term in the metric,

L0 = 0 . (6.23)

The corresponding boundary conditions on metric and dilaton read

gµν dxµ dxν = dρ2 +
(
O(e2ρ) +O(1) + . . .

)
dϕ2 X = O(eρ) +O(e−ρ) (6.24)

where the ellipsis refers to a term of order O(e−2ρ) that is fully determined by on-shell

conditions. The leading order variations of gϕϕ and the dilaton are subject to the condition

that the ratio
√
gϕϕ/X has a zero mode that is not allowed to vary (for the same reasons

as above).

The condition δεL0 = 0 gives a restriction on the parameters of large gauge transfor-

mations

∂ϕε
0 = 2ε+L− − 2ε−L+ , (6.25)

while L± transform as follows

δεL+ = −∂ϕε
+ − ε0L+ (6.26)

δεL− = −∂ϕε
− + ε0L−. (6.27)

Rescaling the gauge parameter ε+ by defining σ ≡ −ε+/L+, which corresponds to an

infinitesimal reparametrization ϕ 7→ ϕ + σ, and setting ε0 = −λ according to (4.23) we

find that the quantities P and T defined in (5.4) transform as

δεP = −1

2
σ′′ + σ′P + σP ′ − 1

2
λ′ (6.28a)

δεT = σT ′ + 2σ′T − λ′P − 1

2
λ′′ . (6.28b)

Notice that P reduces to P = −1
2∂ϕ logL+ due to (6.23). This transformation behaviour

is characteristic of a warped conformal algebra [104] with twist term [105]. Our bound-

ary conditions can thus be regarded as a two-dimensional analog of the AdS3 boundary

conditions introduced in [106]. In the present case, the quantity M defined in (5.3) still

transforms anomalously

δεM = σM ′ + 2σ′M +
1

2
σ′′′ . (6.29)
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To get rid of the twist term in the transformations (6.28) one can redefine the generators

M̂ := M + αP̂ 2 α ∈ R
+ P̂ := P − 1

2
∂ϕ lnY (6.30)

which transform as

δεP̂ = σ′P̂ + σP̂ ′ − 1

2
λ′ (6.31a)

δεM̂ = σM̂ ′ + 2σ′M̂ +
1

2
σ′′′ − αλ′P̂ . (6.31b)

We construct the time-averaged charges using the same approach as the previous sec-

tion. Starting from the expression (6.2) for δQ, we use the condition (6.25) to replace ε−

and the linearized equation of motion (3.3b) to rewrite L−. Then, with X+ = L+ Y as

before, δQ is

δQ =
k

π β

β∫

0

dϕ

[
1

2
ε0 δX 0 − ε+ δX− − X−

X+
ε+ δX+ +

Y

2(X+)2
(
X+(ε0)′ − (X 0)′ε+

)
δX+

]
.

(6.32)

This is rendered integrable by the following redefinition of the gauge parameters

ε+ = εX+ ε0 = εX 0 + η (6.33)

with ε′ = η′ = 0. The time-averaged charge is then

Q =
k

π β

β∫

0

dϕ

[
ε

(
1

4
(X 0)2 −X+X−

)
+ η

1

2
X 0

]
. (6.34)

The quantity in parentheses is −C [cf. the definition of the Casimir (3.4)]. The term

proportional to η can be expressed in terms of P, so that (6.34) can be rewritten as

Q =
k

π β

β∫

0

dϕ

[
− ε

(
Y 2M − 1

4
(Y ′)2 +

1

2
Y Y ′′

)
+ η

(
Y P − 1

2
Y ′

)]
. (6.35)

Going fully on-shell the result (6.35) reduces to the sum of two zero-mode charges.

Q
∣∣
EOM

= −ε
k

π
C + η

k

πβ

β∫

0

dϕP0 (6.36)

where

P0 := −1

2
Y ∂ϕ lnX+ = Y P̂ =

1

2
X0 . (6.37)

The fact that there are two zero mode charges is in agreement with the warped conformal

interpretation of our boundary conditions.
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Expressing the charges off-shell (by analogy to section 6.2) in terms of σ = −ε+/L+

and λ = −ε0 using (6.33) yields

Q =
k

π β

β∫

0

dϕ

[
σ

Y

(
Y 2

(
M + 2P̂ 2

)
− 1

4
(Y ′)2 +

1

2
Y Y ′′

)
− λY P̂

]
. (6.38)

It is gratifying that the result (6.38) contains the redefined quantities (6.30) [with α = 2]

that transform like a Virasoro and a u(1) current algebra with no twist term (6.31).6

6.4 u(1) boundary conditions

Another case of interest is to keep the L0 component in a arbitrary and to fix L± = 0.

a = L0L0(ϕ) dϕ (6.39)

We still have a well-defined variational principle in this case since (4.18) vanishes identically

for L+ = 0. The variations (3.9) are compatible with these choices if we fix two of the

variation parameters to zero, ε± = 0.

δεL± = 0 (6.40)

δεL0 = −ε0 ′ (6.41)

δεX± = ∓ε0X± (6.42)

δεX 0 = 0 (6.43)

Notably, the metric function L0 transforms like a u(1)k current algebra and the only non-

trivial charges,

Q̃ =
k

2πβ

β∫

0

dϕε0X 0 , (6.44)

generate a centerless u(1) current algebra off-shell. On-shell, (3.3b) implies constancy of

X 0 so that only one generator remains. From (6.5) we have

{Q (ε1) , Q (ε2)} =
k

2πβ

β∫

0

dϕ δε1(ε2X 0) = 0 , (6.45)

once that δε1ε2 = 0 and δX 0 = 0.

In order to get a non-trivial metric we no longer can use the group element (3.13).

Instead, we choose the group element in (3.11), (3.12) as (inspired by the same choice in

three dimensions [107])

b = e
ρ

2
(L+−L

−
) . (6.46)

The ensuing line-element is given by

ds2 = dρ2 + L2
0 cosh

2ρ dϕ2 (6.47)

6However, unlike in section 6.2 we were not able to reproduce (6.31) directly from varying (6.38).
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and the dilaton field reads

X = −X 0 sinh ρ+ (X+ + X−) cosh ρ . (6.48)

The choices above, however, lead to a line-element (6.47) that is more naturally defined on

the global AdS2 strip rather than on the Poincaré disk. Thus, we do not discuss this case

any further in the present work.

7 Thermodynamics and entropy

In this section we consider aspects of thermodynamics, with particular focus on the entropy.

In section 7.1 we derive entropy macroscopically, first by Wald’s method, then from our

on-shell action and finally from an asymptotically AdS2 perspective. In section 7.2 we show

that naive applications of Cardy-like formulas gives results for entropy that agree with the

macroscopic results of section 7.1.

7.1 Wald’s method

To analyze static black holes let us perform a Wick rotation in the Euclidean line ele-

ment (3.18) to Lorentzian signature. With the definition N ≡ h2 + (L0)2, the line element

is given by

ds2 = dρ2 + 2L0 dρ dϕ+N dϕ2. (7.1)

After the replacements ϕ → i ϕ̄ and L0 → −iL̄0, the ρ-coordinate of the horizon, i.e., the

point where the Killing vector ∂ϕ̄ becomes null, is determined by N(ρh) = 0. This gives

eρh =
1

2L+

[
±L̄0 ±

√
4L+L− +

(
L̄0

)2
]
, (7.2)

which leads to the Hawking temperature

T =
1

π

√
−1

4
(L0)2 + L+L− =

√
M

π
. (7.3)

The latter equality follows from the definition (5.3) in the static case. Using the rela-

tion (5.10) between the Casimir function and M , we obtain the relation

T =

√
C

πȲ
, (7.4)

which coincides with the regularity condition (5.16).

One way to compute the entropy is to use Wald’s method [99]. In two-dimensional

dilaton gravities this leads to the general result [108]

SWald = kXh , (7.5)

where Xh = X+eρh + X−e−ρh is the value of the dilaton at the horizon. Using (7.2), we

obtain Xh = 2
√
C. This leads to the relation

SWald = 2k
√
C = 2kȲ

√
M = 2kπȲ T (7.6)

between the entropy and the temperature compatible with the 3rd law.
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As a non-trivial check for the above, one may determine the entropy through the

Euclidean path integral. In the saddle-point approximation the path integral is dominated

by any smooth classical geometries that obey the boundary conditions. In our case, this

will generically be global AdS space, since this is a smooth geometry for any temperature,

and a Euclidean black hole with the appropriate mass. The relation between temperature

and Casimir in the latter case was obtained in (5.16). The on-shell action for the Euclidean

black hole is

Γ|EOM = − kβ

πȲ

(
C +

1

4
c0

)
, (7.7)

where we have included the contribution from the constant c0 appearing in the second

order action.7 The free energy is obtained by multiplying the on-shell action with the

temperature

F = − k

πȲ
C + F0 F0 =

k

4πȲ
c0 . (7.8)

The result that free energy scales linearly with the Casimir is quite universal for two-di-

mensional dilaton gravity and not a specific property of the JT model. The particular

relation (7.4) between the Casimir and temperature however is specific to JT and yields

free energy as function of temperature.

F = −kπȲ T 2 + F0 (7.9)

Hence the entropy, defined as S = −∂F/∂T , is given by

S = 2kπȲ T . (7.10)

This coincides with the computation of the entropy using Wald’s method (7.6).

A second check follows from the AdS2 asymptotics, which allows us to construct the

boundary stress tensor and compute the conserved charge associated with the static con-

figuration Killing vector ∂ϕ. Taking the boundary to be a surface of constant ρ = ρc, the

leading term in the boundary metric as ρc → ∞ is γϕϕ = e2ρc(L+)2. Then the single

component of the boundary stress tensor is

Tϕϕ =
2√
γ

δΓ

δγϕϕ

∣∣∣
EOM

= e−3ρc k

π

(
C +

1

4
c0

)
1

(L+)2X+
. (7.11)

Lowering the indices on Tϕϕ and contracting its indices with the Killing vector ξϕ = 1 and

the unit-normal uϕ = e−ρc(L+)−1 gives the internal energy

E =
k

π

(
C +

1

4
c0

) L+

X+
. (7.12)

Replacing L+/X+ = 1/Ȳ and using (7.4), the first law dE = T dS gives

S = 2k
√
C = 2πkȲ T , (7.13)

in agreement with the other methods of calculating the entropy.

7This constant produces a temperature-independent shift in the free energy. Therefore the first order

action, which does not include this contribution, yields the same entropy.
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7.2 Cardyology

Even though we do not have a Virasoro algebra on-shell as asymptotic symmetry algebra,

we saw in sections 6.2 and 6.3 that a Virasoro algebra emerges when we are slightly off-shell,

i.e., if we drop the on-shell condition of constancy of the Casimir. We can then cautiously

use the Cardy formula to check whether it yields the correct black hole entropy derived

macroscopically in section 7.1. The main input in the Cardy formula (7.14) is the eigenvalue

of the zero mode of the Virasoro algebra, which does have a canonical realization as genera-

tor of our asymptotic symmetry algebra even on-shell. So there is a chance that the Cardy

formula works since we found a way to determine the value of the central charge c in (6.21).

The Cardy formula for a single Virasoro algebra is given by

SCardy = 2π

√
cL̄0

6
, (7.14)

where c is the central charge and L̄0 is the zero-mode of L, rescaled suitably, L̄ := c
12 L,

L̄0 := 1
β

∫ β

0 dϕ L̄. These definitions give a canonically rescaled version of the infinitesimal

Schwarzian derivative (6.12)

δσL̄ = σL̄′ + 2σ′L̄+
c

12
σ′′′ . (7.15)

Once we have the correct scaling for the zero-mode, we need the value of the central charge

to determine the Cardy entropy (7.14). In (6.21) we derived an off-shell result for the

central charge, c = 6kȲ /π. Plugging this result into the Cardy formula (7.14) and using

the relations between L̄, L, M and T [see eqs. (6.13), (7.3)] yields

SCardy = 2kȲ
√
M = 2πkȲ T , (7.16)

in agreement with the macroscopic result (7.6). The result (7.16) shows that the Cardy for-

mula works, which suggests that the off-shell central charge (6.21) is a meaningful quantity.8

The warped conformal case discussed in section 6.3 allows to relate its entropy to

the warped conformal analog of the Cardy formula. Using on-shell conditions the Wald

entropy (7.5) can be expressed entirely in terms of the Casimir C and the function P0 defined

in (6.37). If we set P0 = 0 the analysis of section 7.1 applies and we recover Swcbc = 2k
√
C,

in agreement with the first equality in (7.6) and also in agreement with the Cardyology

above. If P0 is non-zero, but has only a zero-mode, i.e., ∂ϕP0 = 0, then we obtain

Swcbc = kXh = 2k
√
C + P 2

0 = 2π

√
kȲ

π

(
k

πȲ
(C + 2P 2

0 )−
P 2
0 k

πȲ

)
. (7.17)

The result (7.17) looks like the warped conformal entropy [104] (assuming P vac
0 = 0)

SwCFT = 2π

√
c

6

(
L̂0 − P̂ 2

0 /kKM

)
(7.18)

8The result (6.21) for the central charge and the related Cardyology (7.16) was already presented in [69,

72]. However, in the second paper, among other issues, the charges were non-integrable and in the first paper

integrability was only achieved perturbatively. Moreover, rather than keeping fixed the zero mode of 1/Y ,

the zero mode of the leading order function in the dilaton was fixed, which is equivalent only for zero mode

solutions. Thus, the Cardyology in those papers was on shakier grounds than the one in the present work.
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where L̂0 and P̂0 are eigenvalues of the zero mode Virasoro and u(1) generators, respec-

tively, c is the Virasoro central charge and kKM determines the u(1) level. Comparing the

two expressions (7.17), (7.18) then leads to the matching conditions

c =
6kȲ

π
L̂0 =

k

πȲ
(C + 2P 2

0 ) =
kȲ

π
(M + 2P̂ 2)

P̂ 2
0

kKM

=

(
kȲ
π

P̂
)2

kȲ
π

(7.19)

consistently with the result (6.38). Note that for positive kȲ both the central charge c

and the u(1) level kKM are positive, compatible with unitarity.

8 Conclusions

For a summary of our main results we refer to the introductory section 1. We conclude

now with an outlook to possible further developments.

The similarity of warped conformal boundary conditions in section 6.3 to conformal

ones in section 6.2, together with the relation of the latter to SYK, suggests the possibility

of SYK-like models that exhibit an off-shell warped conformal symmetry that is largely

broken on-shell. This may provide a new and interesting angle on SYK-like model building

on the field theory side and lead to a generalized Schwarzian action along the lines of [109].

Our focus in this paper was on the JT model, but the discussion in appendix B makes

it plausible that our analysis can be extended to fairly generic models of dilaton gravity in

two dimensions. On general grounds, we expect a result for the free energy obtained from

the Euclidean on-shell action analogous to (7.8), i.e.,

F − F0 ∝ C (8.1)

where F0 is some state-independent constant and C is the Casimir function. While the

result (8.1) is essentially model-independent, the relation between Casimir and temperature

will depend on the model. Besides doing such a general analysis (generalizing the one in [70]

to situations where the dilaton fluctuates to leading order near the boundary) it will be of

interest to discuss in detail specific selected models, such as spherically reduced Einstein

gravity or other asymptotically flat dilaton gravity models. This may allow to find novel

types of asymptotically flat boundary conditions in four or higher dimensions.

In generic models of Maxwell-dilaton gravity the zoology of holography branches out

into more species than discussed in the present work, depending on the asymptotic behavior

of the fields, which in turn are determined by the coupling functions depending on the

dilaton. It could be of interest to generalize the analysis of [110], which classified the

models into asymptotically dilaton dominated, asymptotically confinement dominated and

asymptotically mass-dominated, to looser fall-off conditions, similar to the ones considered

in the present work but for more generic models.
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A Modified bracket for diffeomorphisms

The functions appearing in the diffeomorphisms that generate asymptotic symmetries of

the JT model are related to the parameters of the PSM large gauge transformation (3.8) by

λ = −ε0 σ = − ε+

L+
α =

1

L+
ε− − L−

(L+)2
ε+ . (A.1)

In the PSM, the components of ε transform as δε1ε2 = [ε1, ε2], which corresponds to

δε1(σ2L+) = λ1 σ2 L+ − λ2 σ1 L+ (A.2)

δε1(λ2) = 2 (L+)2
(
σ1 α2 − σ2 α1

)
(A.3)

δε1(σ2L− − α2L+) = L− (λ2 σ1 − λ1 σ2)− L+(λ2 α1 − λ1 α2) . (A.4)

But under the action of a diffeomorphism ξ1, the components of ξ2 transform according

to the Lie derivative δξ1ξ
µ
2 = £ξ1ξ

µ
2 = [ξ1, ξ2]

µ. Writing the generators ξ of asymptotic

symmetries in the form ξµ = ξ(0)µ + e−2ρ ξ(2)µ + . . ., this bracket is

[ξ1, ξ2]
µ = δξ1ξ

(0)µ
2 + e−2ρδξ1ξ

(2)µ
2 + . . . (A.5)

This gives the following for the action of ξ1 on the functions appearing in ξ2

δξ1σ2 = σ1 σ
′
2 − σ2 σ

′
1 (A.6)

δξ1λ2 = σ1 λ
′
2 − σ2 λ

′
1 + σ2

(
λ′
1 − 2 (L+)2α1

)
(A.7)

δξ1α2 = σ1 α
′
2 − σ2 α

′
1 + α1 σ

′
2 − α2 σ

′
1 + 2α1

(
λ2 − L0 σ2

)
− 2α2

(
λ1 − L0 σ1

)
. (A.8)

These do not agree with the transformations from the PSM, even after accounting for

the factors of L± in (A.2)–(A.4). The reason for this apparent discrepancy is the explicit

dependence of the functions σ, λ, and α on the functions appearing in the metric. So we

need a modified bracket that isolates the parts of the functions appearing in ξµ that do

not depend on L± and L0, see for instance [79, 94, 111].

To see how this works, consider a specific component of ξµ and write it as

ξµ = εA Fµ
A(g) + e−2ρ εAHµ

A(g) , (A.9)

where the index A runs over ±, 0, and the functions Fµ
A and Hµ

A encode the dependence of

the functions σ, λ, and α on the metric functions L± and L0. Then

[ξ1, ξ2]
µ = ξν1 ∂ν(ε

A
2 Fµ

A(g) + e−2ρ εA2 Hµ
A(g))− ξν2 ∂ν(ε

A
1 Fµ

A(g) + e−2ρ εA1 Hµ
A(g))

= Fµ
A

(
ξν1 ∂νε

A
2 − ξν2 ∂νε

A
1

)
+Hµ

A

(
ξν1 ∂ν(e

−2ρεA2 )− ξν2 ∂ν(e
−2ρεA1 )

)

+ εA2 ξν1∂νF
µ
A + e−2ρ εA2 ξ

ν
1∂νH

µ
A − εA1 ξν2∂νF

µ
A − e−2ρ εA1 ξ

ν
2∂νH

µ
A . (A.10)
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The terms in the last line capture the part of the action of ξ1 on ξ2 that is due to the

explicit metric-dependence of both vectors appearing in the bracket. We denote them by

δgξ1ξ
µ
2 = εA2 ξν1∂νF

µ
A + e−2ρ εA2 ξ

ν
1∂νH

µ
A . (A.11)

Then for this component of ξµ we have

[ξ1, ξ2]
µ = Fµ

A

(
ξν1 ∂νε

A
2 − ξν2 ∂νε

A
1

)
+Hµ

A

(
ξν1 ∂ν(e

−2ρεA2 )− ξν2 ∂ν(e
−2ρεA1 )

)
+ δgξ1ξ

µ
2 − δgξ2ξ

µ
1 .

(A.12)

Following [94], we define the modified bracket [·, ·]M as the regular bracket with the contri-

butions due to the metric dependence of ξ1 and ξ2 removed

[ξ1, ξ2]
µ
M = [ξ1, ξ2]

µ − δgξ1ξ
µ
2 + δgξ2ξ

µ
1 . (A.13)

Then, as in (A.5), the modified bracket defines the transformations for the parts of ξµ that

are independent of L± and L0 as

[ξ1, ξ2]
µ
M = Fµ

A(g) δε1ε
A
2 + e−2ρHµ

A(g) δε1ε
A
2 , (A.14)

which should agree with the expected results from the PSM. We check this below.

Using the identification (A.1) and the transformations (4.22) we have

−δgξ1σ2 + δgξ2σ1 = σ2 λ1 − σ1 λ2 + σ2 σ
′
1 − σ1 σ

′
2 (A.15)

−δgξ1λ2 + δgξ2λ1 = 0 (A.16)

−δgξ1α2 + δgξ2α1 = α2 λ1 − α1 λ2 + 2L0 (α1 σ2 − α2 σ1) + α2 σ
′
1 − α1 σ

′
2

+ σ2 α
′
1 − σ1 α

′
2 − 2

L−

L+
(σ1 λ2 − σ2 λ1) . (A.17)

Now, using these results and the regular bracket for the components of ξ, we obtain

[ξ1, ξ2]
ϕ
M = σ2 λ1 − σ1 λ2 + e−2ρ

[
α1 λ2 − α2 λ1 − 2

L−

L+

(
σ1 λ2 − σ2 λ1

)]
(A.18)

[ξ1, ξ2]
ρ
M = 2 (L+)2

(
σ1 α2 − σ2 α1

)
− L0 [ξ1, ξ2]

ϕ
M . (A.19)

For the leading term in the component ξϕ we have F+ = −1/L+. Then (A.14) and (A.18)

give

δε1(σ2 L+) = λ1 σ2 L+ − λ2 σ1 L+ (A.20)

in agreement with (A.2). For the O(e−2ρ) term in ξϕ the functions HA are H− = 1/L+

and H+ = −L−/(L+)2, and we have

1

L+
δε1ε

−

2 − L−

(L+)2
δε1ε

+
2 = α1 λ2 − α2 λ1 − 2

L−

L+

(
σ1 λ2 − σ2 λ1

)
, (A.21)

which yields

δε1
(
σ2 L− − α2 L+

)
= L−

(
λ2 σ1 − λ1 σ2

)
− L+

(
λ2 α1 − λ1 α2

)
(A.22)
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in agreement with (A.4). Finally, for ξρ, we have F0 = −1 and F+ = L0/L+. Then (A.14)

and (A.19) give

δε1(λ2) = 2 (L+)2
(
σ1 α2 − σ2 α1

)
(A.23)

in agreement with (A.3).

In conclusion, the transformations obtained from the modified bracket (A.13) give ex-

actly the results expected from the PSM. Thus, equipped with the modified bracket (A.13),

all the results in the second order formalism agree with those of the PSM.

B Toy models (batteries included)

In this appendix we address some aspects of boundary conditions, variational principle,

averaged boundary charges, asymptotic symmetries etc. for simple toy models that never-

theless share all key features of generic PSMs. This may help to elucidate some potentially

confusing points encountered in the main text and allows to disentangle features that are

specific to the JT model from more generic features of PSMs.

The first toy model studied in section B.1 is abelian BF -theory in two dimensions and

the second one the simplest symplectic special case of a PSM. In both models we address

particularly the issue of varying “chemical potentials”. In the concluding section B.3 we

address implications for generic dilaton gravity.

B.1 Abelian BF -theory as Casimir sector of generic Poisson sigma models

Consider the bulk action of abelian BF theory on a disk,

ΓBF = − k

2π

∫

M

BF (B.1)

with F = dA. The equations of motion are

B = B0 = const. F = 0 . (B.2)

The variational principle is well-defined provided the zero mode of A is not allowed to vary,

δΓBF

∣∣
EOM

= − k

2π
B0

∮

∂M

δA = 0 (B.3)

where the boundary integral is along the S1 of the disk. Since the non-zero modes of δA

integrate to zero and the zero mode of A is not allowed to vary the last equality holds,

which establishes a well-defined variational principle.

Like in the main text we interpret the coordinate along the S1, denoted by ϕ, as

Euclidean time; the radial coordinate of the disk is denoted by ρ. From a canonical

perspective the quantities B, Aρ and Aϕ are canonical coordinates, momenta and Lagrange

multipliers, respectively. The latter are often interpreted as chemical potentials. However,

the condition δAϕ 6= 0 (only for non-zero modes) implies that the standard interpretation

of Aϕ as “chemical potential” has to be taken with a few grains of salt — after all, by

“chemical potential” one usually means quantities µ that are arbitrary but fixed, and
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not quantities that are allowed to vary. However, the reason for doing so is usually that

otherwise the variational principle would be ill-defined; for instance, in holographic contexts

the first variation of the action schematically reads on-shell δΓ ∼ (vev) δ(source) ∼ Qδµ so

that a well-defined variational principle requires that the sources (or chemical potentials)

are fixed, δµ = 0. By contrast, in abelian BF -theory no such condition is necessary, so we

refrain from demanding δAϕ = 0 except for its zero mode.

The canonical boundary currents are given by

δQ[λ] =
k

2π
λ δB . (B.4)

Their integrated (both in field space and along the S1) version reads

Q̂ =

∮

∂M

Q[λ] =
k

2π
B0

∮

∂M

λ . (B.5)

This result implies that only the zero mode of the transformation parameter λ generates an

asymptotic symmetry, while all other Fourier modes of λ generate pure gauge symmetries.

The analysis above implies that in a PSM each Casimir function generates a single

canonical boundary charge, namely the Casimir itself, which on-shell is constant.

B.2 Darboux sector of generic Poisson sigma model

Through target space diffeomorphisms it is always possible to bring a PSM into Casimir-

Darboux coordinates, see for instance [112]. We have dealt with the Casimir sector in

section B.1 above. Now we consider the Darboux sector (or symplectic sector).

To this end consider the simplest invertible Poisson tensor,

P IJ = ǫIJ I, J ∈ {1, 2} ǫ12 = +1 . (B.6)

The action is given by

ΓD = − k

2π

∫

M

[
XI dAI +

1

2
ǫIJAI ∧AJ

]
+ Γ∂M (B.7)

with the boundary action

Γ∂M =
k

2π

∮

∂M

X1A1 . (B.8)

Choices different from (B.8) are possible, but we focus here on this particular example.

Regarding the coordinates and interpretation of the fields the same remarks apply as in

section B.1 above.

The equations of motion

FI = dAI = 0 dXI + ǫIJAJ = 0 (B.9)

can be solved for AI in terms of XI ,

A1,2 = ± dX2,1 . (B.10)
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The action of gauge transformations on the fields

δλX
1,2 = ±λ2,1 δλA1,2 = − dλ1,2 (B.11)

is of course compatible with the solutions (B.10).

The first variation of the action reads on-shell

δΓD

∣∣
EOM

=
k

2π

∮

∂M

[
A1 δX

1 −X2 δA2

]
. (B.12)

Now we need to restrict the variations or fields in the integrand of (B.12) such that the

integral vanishes identically. There are various ways of doing this; for instance, one could

impose the rather strong conditions δA2 = A1 = 0. Instead, we impose only one condition

on the variation of the “chemical potentials” AIϕ, namely that one of these variations

satisfies the on-shell condition

δA2ϕ = −∂ϕ δX1 . (B.13)

This choice implies that X1,2 and A1ϕ are allowed to fluctuate arbitrarily. Again, we have

the situation that the “chemical potentials” AIϕ are not fixed; rather, one of them has

to fluctuate to maintain the on-shell condition (B.13) while the other one can fluctuate

freely. Moreover, as a consequence of the choices (B.8) and (B.13) the variational principle

is well-defined,

δΓD

∣∣
EOM

=
k

2π

∮

∂M

d
(
X2 δX1

)
= 0 (B.14)

since the term in the integrand of (B.14) is a total derivative.

The integrated (again, in field space and along the S1) boundary charges are given by

Q̂[λI ] =
k

2π

∮

∂M

[
λ1X

1 + λ2X
2
]

(B.15)

so that now we have two infinite towers of such charges, namely all Fourier modes of X1

and X2. The asymptotic symmetry algebra is given by

{Q̂[λI ], Q̂[λJ ]} = δλJ
Q̂[λI ] = ǫIJ

k

2π

∮

∂M

λIλJ . (B.16)

The algebra (B.16) is the loop algebra of the Heisenberg algebra (or, equivalently, infinite

copies of the Heisenberg algebra).

It is instructive to check what happens if we drop the boundary term (B.8). Then the

variational principle is well-defined if δAIϕ = 0, since δΓ|EOM ∝
∮
∂M

XIδAI . This means

that AIϕ are geniuine chemical potentials. Boundary condition preserving transformations

are then restricted by the condition

δλAIϕ = −∂ϕλI = 0 (B.17)

which implies that the transformation parameters λI have vanishing non-zero modes. As a

consequence, there are only two boundary charges rather than two infinite towers of them,

namely the zero modes of XI .
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The toy model above clearly shows how crucial it can be to relax the condition that

Lagrange multipliers like AIϕ are fixed: if they are fixed the asymptotic symmetry algebra

consists of a single copy of the Heisenberg algebra, while the relaxed condition (B.13)

[together with the required boundary term (B.8)] lead to an enhancement to the loop

group of the Heisenberg algebra. This is precisely what we found also for the loop group

boundary conditions in section 6.1.

B.3 Implications for dilaton gravity

The toy models in the previous sections are physically not too rich. However, adding

both actions (B.1) and (B.7) leads to an interesting PSM with 3-dimensional target space

in Casimir-Darboux coordinates. The reason such PSMs are of physical interest is their

relation to generic models of two-dimensional dilaton gravity. In terms of the target space

coordinates used in section 6, X, X̂± = X 0̂ ± X 1̂, the Casimir-Darboux target space

coordinates XI
CD are given by (see e.g. [112])

XI
CD = {C, X, ln |X+|} . (B.18)

Here we have assumed Lorentzian signature and imposed the condition X+ 6= 0 (geomet-

rically this restricts to an Eddington-Finkelstein patch, which is more than sufficient for

our purposes). For sake of specificity we further restrict to X+ > 0. The physical inter-

pretation of the target space coordinates is mass function, dilaton field and Lorentz angle,

respectively. The target space coordinates defined in (B.18) obey

{C, XI
CD} = 0 {X, ln |X+|} = 1 (B.19)

which are nothing but the Poisson brackets for Casimir-Darboux coordinates, with the

Casimir C and the Darboux coordinates X and ln |X+|.
If the Casimir function C is considered as the Hamilton operator of the theory then all

excitations generated by the canonical boundary charges are “soft” in the sense that they

commute with this Hamiltonian. Thus, PSMs in Casimir-Darboux coordinates with the

boundary conditions discussed in section B.2 behave similar to three-dimensional gravity

with soft Heisenberg hair [82, 107]. A key difference is that in the three-dimensional case

there are two Casimirs instead of one.

In conclusion, besides illuminating certain technical aspects of the discussion in the

main text, the analysis of this appendix suggests that even for generic two-dimensional

dilaton gravity models it could be possible to obtain infinite dimensional asymptotic sym-

metry algebras, in particular infinite copies of the Heisenberg algebra supplemented by one

Casimir.
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