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Abstract. Following the verification of the conjecture made by Comtet, Bandrauk

and Campbell that the supersymmetry-inspired semiclassical method known as SWKB

is exact for the conventional additive shape invariant potentials, it was widely believed

that SWKB yields exact results for all additive shape invariant potentials. In this

paper we present a concrete example of an additive shape invariant potential for which

the SWKB method fails to produce exact results.
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1. Introduction

The well known JWKB method [1–4] is a semiclassical approximation method used to

generate solutions of the Schrödinger equation as a power series in ~ [5]. The lowest order

term in this approximation gives the following quantization condition for the energy
∫ xR

xL

√

En − V (x) dx =

(

n +
1

2

)

π~ , where n = 0, 1, 2, · · · . (1)

The integration limits xL and xR are the classical turning points on the x-axis given by

En − V (x) = 0. In several cases, this quantization condition produces exact spectra [6].

In 1985, Comtet et al. [7], in the context of supersymmetric quantum mechanics

(SUSYQM), proposed a variant of the above condition and showed that it generated

exact spectra for all known solvable systems at that time [8, 9]. This modified

quantization condition, known as the Supersymmetric WKB or SWKB, prescribes
∫ xR

xL

√

En −W 2(x) dx = nπ~ , where n = 0, 1, 2, · · · . (2)

Here, W (x) is the superpotential that generates a given potential by V (x) = −W ′(x) +

W 2(x). For the SWKB method, the integration limits xL and xR are the turning points

on the x-axis given by En −W 2(x) = 0. In a very interesting result [10], Dutt et

al. showed that the SWKB method, at the lowest order, generates correct spectra for

an entire class of potentials known as conventional additive shape invariant potentials.

Additionally, it was shown [11] that the higher order corrections to the eigenvalues vanish

to O(~6) for all conventional additive shape invariant potentials [8, 9]. Subsequently,

Raghunathan et al. [12] argued that all higher order contributions vanish as well. This

prompted the conjecture [10–14] that, for reasons yet to be determined, SWKB yields

exact eigenspectra for all additive shape invariant potentials.

In this paper we present a concrete example of an additive shape invariant

superpotential for which the SWKB method fails to produce exact results. This

superpotential belongs to a class of additive shape invariant superpotentials known

as extended superpotentials [15–18]. Unlike the conventional shape invariant

superpotentials, these have an inherent dependence on ~.

The paper is organized as follows. In the next section we provide a brief introduction

to supersymmetric quantum mechanics (SUSYQM), shape invariance, ~-dependent

superpotentials, and SWKB. In Section 3 we employ a combination of analytic and

numeric methods to present a concrete example of an additive shape invariant potential

for which the SWKB method is not exact.

2. Preliminaries

2.1. SUSYQM

The formalism of supersymmetric quantum mechanics [19–21] can be viewed as a

generalization of the Dirac-Fock oscillator method for solving the eigenvalue problem
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of a harmonic oscillator. In SUSYQM [22,23], one replaces the ladder operators of the

harmonic oscillators b± = ∓ ~ d/dx+ 1/2 ωx by A± = ∓ ~ d/dx+W (x, a), where a is

a parameter. The function W (x, a) is known as the superpotential. For simplicity, we

have set the mass 2m = 1. The product of operators A+ and A− produces a hamiltonian

H− = A+ · A− given by

A+ · A−=

(

−~
d

dx
+W (x, a)

) (

~
d

dx
+W (x, a)

)

= − ~
2 d

2

dx2
+W 2(x, a)− ~

dW

dx
. (3)

The corresponding potential V−(x, a) is related to the superpotential by V−(x, a) =

W 2(x, a) − ~ dW/dx. Given the semi-positive definite nature of H−, its eigenvalues

E−

n are either positive or zero. If the lowest eigenvalue E−

0 6= 0, the system is said

to have broken supersymmetry. Henceforth we will consider systems with unbroken

supersymmetry, i.e., their lowest eigenvalue is zero.

The product A−· A+ generates another hamiltonian H+ = −~
2 d2

dx2 + V+(x, a) with

V+(x, a) =W 2(x, a) + ~ dW/dx. The two hamiltonians are related: A+·H+ = H−· A+

and A− · H− = H+ · A−. This intertwining leads to the following relationships among

the eigenvalues and eigenfunctions of the partner hamiltonians H− and H+:

E−

n+1 = E+
n , n = 0, 1, 2, · · · (4)

A−

√

E+
n

ψ−

n+1 = ψ+
n ;

A+

√

E+
n

ψ+
n = ψ−

n+1 . (5)

Thus, if we knew the eigenvalues and eigenfunctions of either of the two partner

hamiltonians, we could determine the eigenvalues and the eigenfunctions of the other.

This property is known as isospectrality.

2.2. Shape Invariance

Let us consider a set of parameters ai , i = 0, 1, · · ·. We choose a0 = a and ai+1 = f(ai)

where f is an arbitrary function that models the parameter change. A superpotential

W (x, ai) is called “shape invariant” (SI) if it obeys the following condition,

W 2(x, ai)+~
dW (x, ai)

dx
+g(ai) =W 2(x, ai+1)−~

dW (x, ai+1)

dx
+g(ai+1) ,(6)

where g is some function only of the parameters a. The eigenvalues and eigenfunctions

of shape invariant potentials are given by [8, 24–26]

E−

n (a0) = g(an)− g(a0) (7)

ψ−

n (x, a0) =
A+(a0) A+(a1) · · ·A+(an−1)

√

E−
n (a0)E

−

n−1(a1) · · ·E−

1 (an−1)
ψ−

0 (x, an) , (8)

where the ground state ψ−

0 (x, an) = N exp
[

−1
~

∫ x
W (y, an) dy

]

is the solution of

A−ψ−

0 = 0.
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In this paper we will consider the case of additive parameter change: ai+1 = ai+ ~.

A complete list of additive SI superpotentials that do not explicitly depend on ~ was

given in Refs. [8, 9, 27]. We call these “conventional superpotentials.”

In Refs. [15–18, 28–34] a new class of additive shape invariant superpotentials was

found that depends explicitly on ~. Such superpotentials are called “extended.”

In Ref. [35,36] the authors showed that there exists a special set of partial differential

equations that describe both the conventional and extended superpotentials. The

conventional superpotentials are obtained by expanding W (x, ai + ~) in powers of ~,

assuming that W is independent of ~ except through the parameter a and substituting

back into (6). This equation must hold for an arbitrary value of ~. Thus the coefficient

of each power of ~ must independently vanish. Hence, for various powers of ~ we get

W
∂W

∂a
− ∂W

∂x
+

1

2

dg(a)

da
= 0 O(~) (9)

∂

∂a

(

W
∂W

∂a
− ∂W

∂x
+

1

2

dg(a)

da

)

= 0 O(~2) (10)

∂n

∂an−1∂x
W (x, a) = 0 , n ≥ 3 O(~n) . (11)

Although this represents an infinite set, if equations of O(~) and O(~3) are satisfied,

all others automatically follow. Therefore, to find the complete set of solutions, it is

sufficient to solve:

W
∂W

∂a
− ∂W

∂x
+

1

2

dg(a)

da
= 0 (12)

and

∂3

∂a2∂x
W (x, a) = 0 . (13)

The extended superpotentials having an inherent dependence on ~, can be expanded in

terms of powers of ~:

W (x, a, ~) =

∞
∑

j=0

~
jWj(x, a) . (14)

This power series when substituted in (6) yields

for j = 1

2
∂W0

∂x
− ∂

∂a

(

W 2
0 + g

)

= 0 , (15)

for j = 2

∂W1

∂x
− ∂

∂a
(W0W1) = 0 , (16)

and for j ≥ 3

2
∂Wj−1

∂x
−

j−1
∑

s=1

s
∑

k=0

1

(j − s)!

∂j−s

∂aj−s
WkWs−k +

j−1
∑

k=2

1

(k − 1)!

∂kWj−k

∂ak−1 ∂x
+

(

j − 2

j!

)

∂jW0

∂aj−1∂x
= 0 . (17)
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We first observe that (15) is equivalent to (12); i.e., all conventional shape invariant

potentials automatically satisfy (15). Hence, conventional superpotentials can be used

as the base to erect the tower of extended superpotentials. If W0 is a conventional

superpotential, then owing to (13), the last term of (17) disappears.

For example, a superpotential that appears in [15] can be built upon the

conventional superpotential for the 3-D oscillator, W0 = 1/2 ωx − ℓ/x, by setting

W1 = 0. The higher order terms of the superpotential W can be generated from (17)

for all j > 1. We obtain

W (x, ℓ) =
ωx

2
− ℓ

x
+

(

2ωx~

ωx2 + 2ℓ− ~
− 2ωx~

ωx2 + 2ℓ+ ~

)

, (18)

which is an ~-dependent additively shape invariant superpotential.

2.3. SWKB

As we saw in (3), the potential in SUSYQM formalism is given by W 2(x, a) − ~ W ′,

where W ′ ≡ dW/dx. Comtet et al. [7] interpreted the second term, due to the presence

of ~, as a term generated by integration over fermionic degrees of freedom, and hence

inherently quantum mechanical in nature. Consequently, they dropped this ~-dependent

term from the potential for the semiclassical condition given in (1). This reduces the

integral in (1) to
∫ xR

xL

dx [En −W 2(x, a)]
1/2

, where this time, (xL, xR) are the turning

points defined by En −W 2(x, a) = 0. Furthermore, for the RHS of (1), Comtet et al

claimed that (n+ 1/2)π~ should be replaced by nπ~, which was supported in Ref. [10]

by expanding the LHS of (1) in powers of ~. Thus, the semiclassical quantization

condition in SUSYQM reduces to the following SWKB condition:
∫ x2

x1

√

En −W 2(x, a) dx = nπ~ , where n = 0, 1, 2, · · · . (19)

Note that this was supposed to be an approximate condition. The attractiveness of

SWKB comes from the fact that it generates correct spectra for all conventional additive

shape invariant potentials [10]. This unexpected property led to the conjecture that in

fact, SWKB is exact for all additive shape invariant potentials. In the next section we

prove that this is not the case, by providing a concrete counterexample. We show that

for an extended superpotential, shape invariance is, in fact, not a sufficient condition

for SWKB-exactness. This is in agreement with recent speculation [37] that the ~-

dependent terms in extended superpotentials could break the exactness of SWKB, and

indicates that further study of the ~-dependence of extended superpotentials could be

helpful for increasing our understanding of these superpotentials.
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3. Non-Exactness of SWKB for an Extended Shape-Invariant

Superpotential

3.1. Extended Radial Oscillator as an Example Superpotential

We now show that additive shape invariance is not a sufficient condition for the exactness

of the SWKB approximation by using the superpotential of the extended radial oscillator

given in [15] as a specific counter-example. This superpotential, given in (18), can be

written as‡

W = W0 +Wh , (20)

where

W0 =
1

2
ωx− ℓ

x
, (21)

and

Wh =

(

2ωx~

ωx2 + 2ℓ− ~
− 2ωx~

ωx2 + 2ℓ+ ~

)

. (22)

Henceforth we set ~ = 1.

To simplify the problem, we now show that the SWKB approximation does not

depend on ω for this superpotential. We begin with the superpotential given by Eqs.(20-

22)

W (x, ℓ) =
1

2
ωx− ℓ

x
+

(

2ωx

ωx2 + 2ℓ− 1
− 2ωx

ωx2 + 2ℓ+ 1

)

, (23)

for which the SWKB approximation is given by
∫ xR

xL

√

En −W 2(x, ℓ) dx = nπ , where n = 0, 1, 2, · · · . (24)

The two turning points xL and xR are given by positive solutions of

En −W 2(x, ℓ) = 0 , (25)

where En = 2nω.

With the change of variable y ≡ √
ωx, we obtain

W (y, ℓ) =
√
ω

[

1

2
y − ℓ

y
+

(

2y

y2 + 2ℓ− 1
− 2y

y2 + 2ℓ+ 1

)]

. (26)

The SWKB approximation is given by
∫ xR

xL

√

En −W 2(x, ℓ) dx =

∫ yR

yL

√

η (y, ℓ) dy = nπ~ , (27)

where η (y, ℓ) = 2n−
(

1
2
y − ℓ

y
+ 4y

(y2+2ℓ−1)(y2+2ℓ+1)

)2

, and the integration limits are given

by the zeros of η (yL, ℓ) = η (yR, ℓ) = 0. Note since η (y, ℓ) is independent of ω, the

SWKB approximation also does not depend on ω. Therefore, without loss of generality,

‡ This is equivalent to the superpotential of reference [15], with the identification ℓ → ℓ+1 and ~ = 1.
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for the remainder of this paper we return to our original nomenclature by re-naming y

back to x in (26), which is equivalent to setting ω = 1 in (23).

We know that SWKB is exact forW0, so we investigate whether addingWh changes

this exactness. We do this by perturbing the conventional potential via a parameter α,

such that

W (x, ℓ, α) = W0 + αWh . (28)

We also parameterize the integral given by the SWKB approximation:

I(n, ℓ, α) =

∫ xR

xL

√

En −W 2(x, ℓ, α) dx , (29)

where the integration limits xL and xR are solutions of En −W 2(x, ℓ, α) = 0.

For the conventional case (α = 0) the lowest order SWKB yields exact result, i.e.,

I(n, ℓ, 0) = nπ , where n = 0, 1, 2, · · · .

In the following sections, we investigate how the SWKB integral changes as α is increased

from zero to one, beginning with small perturbations from the exact result at α = 0.

Note that the superpotential is shape invariant for the conventional case W (x, ℓ, 0) and

for the extended case W (x, ℓ, 1), but not for a general value of α.

3.2. α–Dependence of the SWKB approximation near α = 0

We first examine the behavior of the SWKB approximation near α = 0. From (29), we

have

∂I

∂α
=

∂xR
∂α

√

En −W 2(x, ℓ, α)

∣

∣

∣

∣

x=xR

− ∂xL
∂α

√

En −W 2(x, ℓ, α)

∣

∣

∣

∣

x=xL

+

∫ xR

xL

∂

∂α

√

En −W 2(x, ℓ, α) dx. (30)

The first two terms on the RHS in (30) drop out as the factors under the radical signs

vanish at the turning points. Hence,

∂I

∂α
=

∫ xR

xL

∂

∂α

√

En − (W0 + αWh)
2 dx

= −
∫ xR

xL

W0Wh + αW 2
h

√

En −W 2
0 − 2αW0Wh − α2W 2

h

dx . (31)

As α goes to zero, this yields

∂I

∂α

∣

∣

∣

∣

α=0

= −
∫ xR

xL

W0Wh
√

En −W 2
0

dx

= −
∫ xR

xL

(

1
2
x− ℓ

x

) (

2x
x2+2ℓ−1

− 2x
x2+2ℓ+1

)

√

2n−
(

1
4
x2 + ℓ2

x2 − ℓ
)

dx

= − 2

∫ uR

uL

u− 2ℓ
(

(u+ 2ℓ)2 − 1
)
√

4 (2n+ ℓ)u− (u2 + 4ℓ2)
du, (32)
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where we have made a change of variable u = x2. The values of u at the turning points

are given by

u(L

R
) = 2(2n+ ℓ)∓ 4

√

n(n + ℓ) . (33)

To compute the integral of (32), we embed the u-axis in a complex plane. It has

two poles: u1 = −2ℓ+ 1 and u2 = −2ℓ− 1 and a branch cut from uL to uR. A contour

integration along C that includes both poles, breaks up into two contour integrals along

C1 and C2, as illustrated in Figure 1. From these, we get

u2 u1

u
L

u
R

u2 u1

u
L

u
R

C C1

C2

Figure 1. Complex plane calculation

∫

C1

+

∫

C2

= 2πi [Sum of residues at poles at u1 and u2] . (34)

We find that as the radius increases, the integral
∫

C1
goes to zero, and the integral

∫

C2

reproduces twice the integral of (32), to produce the final result

∂I

∂α

∣

∣

∣

∣

α=0

= − 2

∫ uR

uL

u− 2ℓ
(

(u+ 2ℓ)2 − 1
)
√

4 (2n+ ℓ)u− (u2 + 4ℓ2)
du

= π

[

4ℓ− 1
√

(uL + 2ℓ− 1) (uR + 2ℓ− 1)
− 4ℓ+ 1

√

(uL + 2ℓ+ 1) (uR + 2ℓ+ 1)

]

(35)

where uL = 2(2n+ℓ)−4
√

n(n + ℓ) and uR = 2(2n+ℓ)+4
√

n(n + ℓ). The content of the

square bracket is positive, and therefore the derivative is necessarily positive at α = 0.

Since ∂I/∂α 6= 0 at α = 0, I(n, ℓ, α) will depart from the exact solution I(n, ℓ, 0) = nπ

as α is increased from zero. Therefore, although the SWKB approximation is exact for

α = 0, it is not exact for all α. In the following sections, we will increase α from zero to

one with the goal of investigating whether the approximation is exact for the particular

value α = 1 corresponding to the extended SI potential.
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3.3. SWKB approximation for general α.

We want to analyze the behavior of the SWKB approximation forW (x, ℓ, α) =W0+αWh

as α increases from zero to the case α = 1 corresponding to the shape-invariant extended

potential.

We begin by finding the turning points xL and xR by factoring En = W (x, ℓ, α)2 =

0; they are given by the solutions to
√
En±W (x, ℓ, α) = 0. For the superpotential under

consideration, [26], this yields a sixth-order polynomial in x which in general cannot be

solved algebraically, except for particular values of α, such as the case α = 0. Hence we

solve it numerically for given n, ℓ, and α and retain the two real, non-negative solutions.

Of these, the smaller of the two will be xL and the larger will be xR. Below, we illustrate

the square of the extended superpotential (using α = 1) for ℓ = 2, together with the

lowest three energy levels, showing the turning points for each.

0 1 2 3 4 5 6 7

2

4

6

8

W

x

Figure 2. (Color online)The square of the extended superpotential W 2 for α = 1

and ℓ = 1 as a function of x (blue curve), along with the first three energy levels E1

(yellow), E2 (green) and E3 (red). The intersection of W 2 with the energy level En

will give the turning points for the integral corresponding to a given n.

Armed with these limits for the integral, we numerically evaluate I(n, ℓ, α) to

compare to the predictions of the SWKB approximation for various α.

3.3.1. Testing the numerical approximation for small α To begin with, we will compare

our numerical method to the analytical result we found for ∂I/∂α in the vicinity of α = 0

as given in (35). To do so,we take n and ℓ as fixed and consider I as a function only of

α, then we expand I(α) in powers of α about the point α = 0.

For small ∆α,

I(∆α) = I(0) +
∂I

∂α

∣

∣

∣

∣

α=0

∆α +
1

2

∂2I

∂α2

∣

∣

∣

∣

α=0

∆α2 +O(∆α3), (36)

which, for simplicity of notation, we write as

I(∆α) = I(0) + I ′(0)∆α +
1

2
I ′′(0)∆α2 +O(∆α3). (37)
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Table 1. Analytical derivative I ′(0), compared to an approximation I ′
num

(0) based

on our numerical approximation and an expansion in small α, for the case α = 10−5.

The ratio I ′
num

(0)/I ′(0) shows strong agreement between our numerical methods and

the exact result.

n ℓ Analytical I ′(0) Numerical I ′
num

(0) Numerical/Analytical

from Eq.(35) I ′num(0)/I ′(0)

1 1 0.0418497 0.0418486 0.999976

2 1 0.0464776 0.0464766 0.999980

2 2 0.00453316 0.00453305 0.999975

3 1 0.0457412 0.0457404 0.999982

3 2 0.00487758 0.00487747 0.999978

3 3 0.00131056 0.00131053 0.999975

4 1 0.0439064 0.0439057 0.999984

4 2 0.00495553 0.00495543 0.999980

4 3 0.00138774 0.00138771 0.999977

4 4 0.00054823 0.00054822 0.999975

4 10 0.0000237426 0.0000237418 0.999969

4 100 3.70267E-9 3.70253E-9 0.999961

4 1000 3.90355E-13 3.90339E-13 0.999960

1000 1000 3.47100E-11 3.47092E-11 0.999975

Therefore, by numerically finding I(∆α) for small ∆α, we can find a numerical

approximation for the slope at zero:

I ′num(0) =
I(∆α)− I(0)

∆α
, (38)

where the difference between the actual and the numerical slopes at zero is given by

I ′(0)− I ′num(0) = −1

2
I ′′(0)∆α +O(∆α2). (39)

Equation (35) gives an exact value for the derivative I ′(0) for a given n and ℓ. For

instance, in the case n = 1, ℓ = 1: I ′(0) =
(

3/
√
17− 5/7

)

π ≈ 0.0418497. Table 1 shows

a decimal approximation of the analytical values in comparison to the numerical values

of the slope at α = 0 for various values of n and ℓ, using ∆α = 10−5.

As predicted, the derivative is positive in all cases at α = 0 for both the numerical

and analytical calculations. Additionally, for ∆α = 10−5, the numerical approximation

agrees with the analytical solution to an accuracy of > 99.99% for all value of n and ℓ

tested. We can check the convergence of our numerical solution by manipulating Eq.(39)

to obtain the fractional difference:

Γ ≡ I ′(0)− I ′num(0)

I ′(0)
=

−I ′′(0)
2I ′(0)

∆α +O(∆α2). (40)

Therefore, the closeness of Γ to zero gives a measurement of the accuracy of our

numerical approximation.
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Since we want to examine small ∆α, we write it as: ∆α = 10−λ, for some positive

value λ. Ignoring terms of second-order and higher in ∆α and taking the logarithm of

both sides yields:

log10 (Γ) = −λ + log10

(

I ′′(0)

2I ′(0)

)

. (41)

Plotting log10 (Γ) vs. λ therefore should give a straight line with slope -1 for all

values of n and ℓ. The y-intercept of the graph should be given by log10

(

I′′(0)
2I′(0)

)

, which

should vary with n and ℓ; however, if the ratio of derivatives I ′′(0)/I ′(0) does not vary

by orders of magnitude, the y-intercept should vary only weakly with n and ℓ due to

the logarithm. We investigate this dependence in Figure 3.

0 2 4 6 8 10

10
- 8

10
- 5

10
- 2

Figure 3. (Color online) Fractional difference Γ as a function of exponent λ for the

following cases: n = 1, ℓ = 1: red squares, n = 1, ℓ = 2: blue triangles, n = 2, ℓ = 1:

black circles, n = 1000, ℓ = 1000, green diamonds. The dashed line is a line of slope -1

on this logarithmic scale to guide the eye.

As expected, these graphs appear to be linear on this semi-log scale in λ, with only

weakly varying intercept for each of the values of n and ℓ tested. The slope of each graph

is consistent with our prediction of a slope of -1. This verifies that our approximation is

converging as predicted with a deviation from the analytical value that is linear in ∆α.

3.3.2. Validity of the SWKB approximation as a function of α Having tested the

robustness of the numerical approach, we will now investigate the validity of the SWKB

approximation I(n, ℓ, α) ≈ nπ to see how its accuracy varies as α varies in the range

0 ≤ α ≤ 1. To do so, we define the residual quantity

R = 1− I(n, ℓ, α)

nπ
. (42)
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Note that R = 0 in the case in which the approximation is exact; in general, smaller R

will correspond to a more precise approximation, while a large value of R will correspond

to a less precise approximation. In Figure 4, we have have plotted R for n = 1 and

various values of ℓ.

0.2 0.4 0.6 0.8 1.0

0.0005

0.0010

0.0015

0.0020

R
l = 1

l = 2

l = 3

l = 20

Figure 4. (Color online) Residual R as a function of α for n = 1 in the following

cases: ℓ = 1: red, ℓ = 2: blue, ℓ = 3: black, and ℓ = 20: green.

For all values of n and ℓ, the function I(α) is equal to nπ at α = 0 as predicted by

SWKB with an initial negative slope in R as predicted in Sec. 3.3.1, since dR
dα

= − 1
nπ

dI
dα
.

For each of the values of n and ℓ examined, the integral crosses nπ at some later value

of α, leading to a positive value of R for α = 1 in each case.

From this graph, it is not clear whether the zero of R for positive α occurs at the

same value of α for different n and ℓ. Therefore, we zoom in on this zero and discover

that it does, in fact, vary with the parameters as seen in Figure 5.

3.3.3. Inexactness of the SWKB approximation for the extended superpotential We

therefore see that the SWKB approximation is not, in fact, exact for the value α = 1

corresponding to the extended shape-invariant superpotential. As a final step, we

examine how this deviation from SWKB varies with n and ℓ. Returning to the extended

superpotential, we see that in the limit of large ℓ, the ~-dependent extension Wh to the

superpotential becomes negligible compared to W0 (cf Eqs. (21,22)). Therefore, in this

limit, we should approach the exact condition for SWKB. Additionally, the validity of

the SWKB approximation increases for large n, so R should also approach zero for large

n.

We plot R as a function of n for α = 1 and various ℓ in Figure 6. We see that, as

expected, R does indeed decrease with increasing n and ℓ.

To examine this convergence towards the exact solution, and to look at larger values
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Figure 5. (Color online) Magnification of the region around α = 0.3 for Figure 4.
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Figure 6. (Color online) R as a function of n for the following cases: ℓ = 1 (red),

ℓ = 2 (orange), and ℓ = 3 (blue).

of ℓ, we view this data on a logarithmic plot, and see that after an initial curvature near

n = 1, the curves appear nearly linear and parallel.

4. Conclusions

Conventional shape-invariant superpotentials have the important property of having

exactly solvable spectra. These superpotentials also share the property of making the

SWKB quantization condition exact.

Extended SI superpotentials are exactly solvable due to the properties of additive
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l = 1
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n

log R

Figure 7. (Color online) The residual log
10

R as a function of n for the following

cases: ℓ = 1 (red), ℓ = 10 (orange), ℓ = 100 (green), and ℓ = 1000 (blue). The guiding

dashed line shows the constant value 10−14 to illustrate the proximity of R to zero for

ℓ = 1000, for any value of n.

shape-invariance that they share with the conventional superpotentials. However, we

have shown that additive shape-invariance does not guarantee SWKB exactness by

presenting a counterexample: the extended radial oscillator. This result suggests

that the exactness of the conventional superpotentials may be connected to their ~-

independence and may suggest that further investigation of the role of ~-dependence of

the SWKB approximation could play a role in better understanding the properties of

these extensions.
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