6-4-2020

Draft Genome Sequence of Lactobacillus crispatus UMB1163, Isolated from the Female Urinary Tract

Fabeiha Khan
Loyola University Chicago

Taylor Miller-Ensminger
Loyola University Chicago

Adelina Voukadinova
Loyola University Chicago

Alan J. Wolfe
Loyola University Chicago, awolfe@luc.edu

Catherine Putoni
Loyola University Chicago, cputonti@luc.edu

Follow this and additional works at: https://ecommons.luc.edu/bioinformatics_facpub

Part of the Bioinformatics Commons, and the Biology Commons

Recommended Citation

Khan, Fabeiha; Miller-Ensminger, Taylor; Voukadinova, Adelina; Wolfe, Alan J.; and Putoni, Catherine. Draft Genome Sequence of Lactobacillus crispatus UMB1163, Isolated from the Female Urinary Tract. Microbiology Resource Announcements, 9, : , 2020. Retrieved from Loyola eCommons, Bioinformatics Faculty Publications, http://dx.doi.org/10.1128/MRA.00404-20

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department at Loyola eCommons. It has been accepted for inclusion in Bioinformatics Faculty Publications by an authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

This work is licensed under a [Creative Commons Attribution 4.0 License](https://creativecommons.org/licenses/by/4.0/).
© Khan et al., 2020.
Draft Genome Sequence of *Lactobacillus crispatus* UMB1163, Isolated from the Female Urinary Tract

Fabeiha Khan, a Taylor Miller-Ensminger, b Adelina Voukadinova, b Alan J. Wolfe, c Catherine Putonti a, b, c, d

a Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
b Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
c Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
d Department of Computer Science, Loyola University Chicago, Chicago, Illinois, USA

ABSTRACT *Lactobacillus crispatus* is a Gram-positive bacterium shown to protect against urinary and vaginal infections. Here, we report the draft genome sequence of *L. crispatus* UMB1163, isolated from the female urinary tract.

Lactobacillus crispatus is a nonpathogenic bacterium native to the healthy female urogenital tract (1, 2). *L. crispatus* is critical in preventing common bacterial infections (3–5), such as bacterial vaginosis and vulvovaginal atrophy (VVA), by preserving low pH and producing hydrogen peroxide (4). *L. crispatus* creates a biofilm in the vaginal epithelium, providing protection against pathogens that cause sexually transmitted diseases and urinary tract infections. Due to its ability to limit pathogens in the urogenital system, *L. crispatus* strains are being explored for use as a probiotic to prevent urinary tract infections (UTI) in women (6). Here, we present the draft genome sequence of *L. crispatus* UMB1163, isolated from the bladder of a female with a UTI.

The urine specimen was collected via a transurethral catheter from a woman seeking clinical care at Loyola University Medical Center's Female Pelvic Medicine and Reconstructive Surgery Center (Maywood, IL, USA) as part of a prior institutional review board (IRB)-approved study (Loyola University Chicago, IRB approval no. 206469) (7). *L. crispatus* was isolated from this urine specimen using the expanded quantitative urinary culture (EQUC) method (8). The genus and species of the bacterium were determined using matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (8) prior to storage at −80°C. *L. crispatus* UMB1163 was streaked onto a Columbia nalidixic acid (CNA) agar plate and incubated for 24 h at 35°C with 5% CO₂.

A single colony was selected and incubated in De Man, Rogosa, and Sharpe (MRS) liquid medium supplemented with newborn calf serum (50 ml/liter) and incubated for 24 h at 35°C with 5% CO₂. DNA was extracted using the Qiagen DNeasy blood and tissue kit with a Gram-positive protocol modified as follows: 230 μl of lysis buffer (180 μl of 20 mM Tris-Cl, 2 mM sodium EDTA, and 1.2% Triton X-100) and 50 μl of lysozyme were used in step 2, and the incubation time in step 5 was reduced to 10 min. The DNA was quantified using a Qubit fluorometer. Sequencing was done at the University of Pittsburgh Microbial Genomic Sequencing Center (MiGS) on the Illumina NextSeq 550 platform. MiGS created the libraries using the Illumina Nextera kit. Sequencing produced 1,781,766 pairs of 150-bp reads. Sickle v1.33 (https://github.com/najoshi/sickle) was used to trim the raw reads, which were then assembled using SPAdes v3.13.0 with the “only-assemble” option for k values of 55, 77, 99, and 127 (9). Genome coverage was calculated using BBMap v38.4 (https://sourceforge.net/projects/bbmap/). We used PATRIC v3.6.3 to annotate the genome (10). The publicly available genome was annotated with the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) v4.11 (11). Unless otherwise stated, default parameters were used for each software tool.

Editor Steven R. Gill, University of Rochester School of Medicine and Dentistry

Copyright © 2020 Khan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Catherine Putonti, cputonti@luc.edu.

Received 13 April 2020

Accepted 18 May 2020

Published 4 June 2020
The *L. crispatus* UMB1163 draft genome sequence is 2,384,113 bp long assembled into 151 contigs with an \(N_{50} \) score of 26,484 bp, genome coverage of 177\(/\)H11003, and GC content of 36.6\%. The *L. crispatus* assembly has 66 tRNAs and 5 complete rRNAs (3 5S, 1 16S, and 1 23S). PGAP identified 2,353 protein-coding genes. PATRIC identified 1 CRISPR array, with 7 spacer sequences. While numerous genomes of *L. crispatus* strains from the vaginal microbiome are available, a greater representation of the genetic diversity of this species within the urinary tract is needed. Sequencing isolates from the urinary tract will provide insight into the role that *L. crispatus* plays in the female urinary tract.

Data availability. This whole-genome shotgun project has been deposited in GenBank under the accession no. JAAUWJ000000000. The raw sequence reads were deposited in the SRA under the accession no. SRR11441017.

ACKNOWLEDGMENTS

This work was conducted as part of Loyola University Chicago’s Department of Biology Bacterial Genomics course. For prior patient recruitment, we acknowledge the Loyola Urinary Education and Research Collaborative (LUEREC) and the patients who provided the samples for this study.

REFERENCES