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Logistic Discriminant Analysis and 

Structural Equation Modeling 

Both Identify Effects in Random Data 
 

Ariel Linden, Dr.P.H., Fred B. Bryant, Ph.D. and Paul R. Yarnold, Ph.D. 
       Linden Consulting Group, LLC              Loyola University Chicago                           Optimal Data Analysis, LLC

Recent research compared the ability of various classification algorithms 

[logistic regression (LR), random forests (RF), support vector machines 

(SVM), boosted regression (BR), multi-layer perceptron neural net 

model (MLP), and classification tree analysis (CTA)] to correctly fail to 

identify a relationship between a binary class (dependent) variable and 

ten randomly generated attributes (covariates): only CTA failed to find a 

model. We use the same ten-variable N=1,000 dataset to assess training 

classification accuracy of models developed by logistic discriminant 

analysis (LDA), generalized structural equation modelling (GSEM), and 

robust diagonally-weighted least-squares (DWLS) SEM for binary out-

comes. Except for CTA, all machine-learning algorithms assessed thus 

far have identified training effects in random data. 

 

 

 

Recent research compared predictive accuracy 

obtained by CTA vs. by LR, RF, SVM, BR and 

MLP algorithms.
1-3

 Prior research used artificial 

data involving 500 “group 1” and 500 “group 2” 

observations. Observations were independently 

assigned a random continuous value for each of 

ten covariates (attributes)—that by design have 

no association with the dichotomous dependent 

(class) variable. Among all of these algorithms 

only CTA correctly failed to discriminate the 

two groups (no CTA model emerged)—all other 

methods found a viable model in random data. 

 Using the same data, this study assesses 

if a consistent finding occurs for models which 

are identified by logistic discriminant analysis 

(LDA), or by generalized structural equation 

modeling (GSEM) for binary outcomes. 

LDA 

Rather than making assumptions regarding the 

distribution of the data and the residual scores 

within each group, LDA assumes the likelihood 

ratios of the groups have an exponential form. 

Multinomial logistic regression is the analytic 

methodology used to obtain the LDA model.
4  

As done previously a receiver operating 

characteristics (ROC) analysis
5
 was conducted 

treating actual class status as the reference vari-

able, and predicted probabilities from the model 

as the classification variable.
1-3

 A model which 

perfectly discriminates the two groups has an 

AUC=1.0 (and effect strength for sensitivity or 

ESS=100); a model providing chance-level 

discrimination between groups has AUC=0.50 
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(and ESS=0); and a model which misclassifies 

every observation in the sample has AUC=0 

(and ESS=-100).
6-8

 

In training analysis the ten-attribute 

LDA model obtained AUC=0.5665 (95% CI= 

0.5310-0.6019). This corresponds to ESS=13.3, 

indicating a relatively weak effect.
6
 Accuracy 

fell in cross-generalizability (hold-out) analysis, 

and the model 95% CI overlapped chance. 

Failure of the LDA model to replicate in 

cross-validation reconfirms the necessity of 

conducting reproducibility analysis and supports 

the cautionary recommendation to only retain 

attributes having stable effects in training and 

LOO analysis within CTA models.
8-10

 

Maximum Likelihood GSEM 

GSEM is a more flexible modeling approach 

than SEM, as generalized linear model (GLM) 

is a more flexible alternative to ordinary least-

squares regression. GSEM employs maximum 

likelihood (ML) estimation and allows the user 

to choose the particular distribution family and 

link to best fit the data at hand. In the current 

data, a GSEM model was fit using the Bernoulli 

distribution with a logit link. The results were 

identical to those obtained using LDA because 

in Stata (Stata Statistical Software: Release 15. 

College Station, TX: StataCorp LLC), GSEM 

derives its estimation using logistic regression, 

and LDA obtains estimates by using multino-

mial regression—which is a generalization of 

the logistic function.
11

 

Robust Diagonally-Weighted 

Least-Squares (DWLS) SEM 

Special-purpose SEM estimation methods are 

used for analysis involving binary and ordinal 

data.
12

 For designs with a mixture of different 

measurement metrics, using DWLS estimation 

the input correlation matrix is a mixture of dif-

ferent correlation coefficients: Pearson if the 

variables are continuous measures; polychoric if 

the variables are ordinal measures; or polyserial 

if the variables are a continuous and an ordinal 

measure (it is assumed the binary measure re-

flects an unobserved, normally-distributed con-

tinuous variable aggregated into a binary meas-

ure). Presently, DWLS estimation in SEM was 

used to estimate a regression model consisting 

of a single, binary dependent variable predicted 

by ten continuous, independent variables which 

are allowed to correlate with one another.  

A matrix of correlations among the ten 

continuous independent variables and the single 

binary outcome variable was created
13 

involving 

45 Pearson correlations among ten continuous 

variables, and ten polyserial correlations of the 

continuous variables and the binary outcome 

measure. The asymptotic covariance matrix for 

the 11 measured variables was employed to 

conduct robust estimation and correct the 

goodness-of-fit chi-square value and SEs of 

parameter estimates for nonnormality distortion. 

SEM
14

 was used to analyze these data 

and obtain robust DWLS estimates of unstand-

ardized regression coefficients for the continu-

ous independent variables, by regressing the di-

chotomous dependent variable on the set of ten 

continuous variables. Given that (a) the number 

of estimated parameters in the SEM is 66 [45 

correlations among the independent variables] 

+[10 variances of the independent variables]+ 

[10 regression coefficients]+[1 residual variance 

term for the dependent variable], that (b) equals 

the number of elements in the covariance matrix 

of 11 measured variables ([11x12]/2=66), this 

regression analysis yields an exactly identified 

model with df=0 that, by definition, produces 

perfect, overall model fit (i.e., χ
2
=0). 

This DWLS SEM model explained 

2.02% of the variance in the TREAT outcome 

variable, which is statistically significant: F(10, 

989)=2.0390, p<0.0269. Robust DWLS parame-

ter estimates for the regression model using the 

continuous variables to predict the binary out-

come variable emerged for X3 (gamma=0.055, 

SE=0.0257, Z=2.1462, p<0.0319), X4 (gamma= 

-0.072, SE=0.0259, Z=2.7880, p<0.0053), and 
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X10 (gamma=-0.084, SE=0.0261, Z=3.2058, 

p<0.0013)—which were statistically significant 

predictors of the binary dependent variable 

when holding constant at their mean the effects 

of all other predictors in the model. Standard-

ized regression coefficients for statistically sig-

nificant predictors were less than 0.10 in abso-

lute value (considered a small effect in multiple 

regression analysis
15

) for X3 (β= 0.0551), X4 

(β=-0.0723), and X10 (β=-0.0837). 

Comments 

The objective of the present paper, and of this 

line of research
1-3

, is to focus awareness of and 

attention on the fact that most models—whether 

of classic theory or machine learning origin—

are likely to find relationships in the data that 

are not real. Investigators should understand 

this crucial point when evaluating and placing 

confidence in their analytic results. 

Findings obtained herein are consistent 

with prior research identifying an important 

limitation of machine-learning algorithms used 

for predicting binary class variables (outcomes) 

and to obtain propensity scores.
1-3

 That is, the 

present study reveals that the LDA, GSEM, and 

DWLS SEM models are likely to find relation-

ships in training analysis which in reality don’t 

exist between variables. 

Examination of model performance 

which is obtained in reproducibility analysis 

helps to inhibit such overfitting, but for some 

widely-used statistical analysis methods there is 

no standard methodology for assessing cross-

generalizability. For example, SEM does not 

routinely use reproducibility analyses to assess 

the cross-sample generalizability of obtained 

model estimates. If the sample is very large 

researchers sometimes randomly split the 

sample in half and then fit the model to both 

halves to assess if identical results emerged.
16-18

 

Some studies with two or more independent 

data sets use one sample to create a training 

model, and use the other sample(s) to cross-

validate the training model.
19,20

 

Based on present results, developers of 

statistical software should in future program 

updates for all statistical modeling approaches 

add procedures which enable users to systemati-

cally assess reproducibility of obtained results, 

and thereby provide crucial safeguards against 

falling prey to chance. This is not an issue for 

ODA
6
 and CTA

21 
methods, for which a host of 

reproducibility analyses (e.g., jackknife, boot-

strap, split-half, K-fold, holdout, and test-retest) 

by axiom are used in evaluating the alternative 

hypothesis.
8
 

These findings should be replicated in 

independent laboratories, and the limits of this 

phenomenon should be identified. For example, 

research should assess the effect of the number 

of random attributes available to the algorithms, 

of significant digits used for measures (index of 

measurement precision), and of class category 

levels in the application, with regard to training 

and validity AUC. Research should also study 

designs with randomized categorical attributes 

having differing numbers of levels. 

Finally, the present findings also bolster 

our recommendation to use the ODA and CTA 

frameworks to draw causal inferences regarding 

treatment effects in observational data, and in 

data from randomized controlled trials.
22-41

 A 

large and rapidly-increasing mass of evidence 

supports the use of ODA and CTA to assess the 

efficacy of health-improvement interventions 

and policy initiatives.
42,43
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