Spectroscopic Evidence of Work Function Alterations Due to Photoswitchable Monolayers on Gold Surfaces

Matthew Alan Bartucci
Loyola University Chicago, mbartucci@luc.edu

Jan Florian
Loyola University Chicago, jfloria@luc.edu

Jacob W. Ciszek
Loyola University Chicago, jciszek@luc.edu

Follow this and additional works at: https://ecommons.luc.edu/chemistry_facpubs

Part of the Chemistry Commons

Recommended Citation
Bartucci, Matthew Alan; Florian, Jan; and Ciszek, Jacob W.. Spectroscopic Evidence of Work Function Alterations Due to Photoswitchable Monolayers on Gold Surfaces. The Journal of Physical Chemistry, 117, 38: 19471−19476, 2013. Retrieved from Loyola eCommons, Chemistry: Faculty Publications and Other Works, http://dx.doi.org/10.1021/jp405710u

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department at Loyola eCommons. It has been accepted for inclusion in Chemistry: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu. © 2013 American Chemical Society. Please see license information here: http://pubs.acs.org/page/policy/authorchoice_termsofuse.html.
Spectroscopic Evidence of Work Function Alterations Due to Photoswitchable Monolayers on Gold Surfaces
Matthew A. Bartucci, Jan Florián, and Jacob W. Ciszek*
Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United States

ABSTRACT: Taking advantage of surfaces’ response to interfacial dipoles, a class of photochromophores (dihydroindolizine) is demonstrated to alter the work function of the underlying substrate (≈170 meV). This same molecule also provides spectroscopic signatures for correlating the change in molecular structure to the induced change in the surfaces’ electronic properties. Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) allows analysis of the characteristic dihydroindolizine C=C (1559 cm⁻¹) and pyridinium (1643 cm⁻¹) stretch as a function of photoexcitation. Structural assignments of this photochromophore are corroborated to density function theory calculations. Conformational changes in the monolayers appear in parallel with work function changes and are consistent with both its rate and magnitude.

INTRODUCTION
Work function (i.e., Fermi level) modulation of metal electrodes, due to an adsorbed organic monolayer, allows modern electronic devices such as organic light emitting diodes and organic field effect transistors to operate in a more efficient manner. The majority of devices are inherently hindered by a high contact resistance that is caused by the misalignment of the Fermi energy of the metal and the highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO) of the bulk organic. To minimize misalignment, the metal’s Fermi level can be altered via self-assembled monolayers (SAMs). The molecular and interfacial dipoles of the adsorbed SAMs “tune” the Fermi level of the metal with respect to either the HOMO or LUMO of the organic channel, allowing for improved hole or electron transport. For example, either straight chain hydrocarbons or fluorinated alkanes can respectively decrease or increase the work function of the substrate with a high degree of correlation to the aforementioned dipoles (Figure 1a).

Recently, photoreversible work function alterations based on a trans–cis conformation change of azobenzene monolayers have been observed. Here, incident light induces the isomerization, which alters the dipole of the monolayer and, in turn, generates a measurable shift in the work function of the underlying metal. If such work could be extended to a second class of photochromophores (dihydroindolizines, DHIs), which has both obvious spectroscopic signatures and large persistent dipoles (~3–5 D), a simple correlation between molecular change and substrate perturbation could be reached.

In this paper, surface infrared signatures of DHI molecules are used in conjunction with Kelvin probe measurements of the surface potential to demonstrate light-induced changes to the molecular monolayer and the resulting change in the substrate’s work function (Figure 1b). DFT calculations of vibrational states allow for nuanced discussion of the molecular change, the resulting molecular dipole, and its effect on the surface’s work function.

METHODS
Experimental Methods. Ethanol (200 proof), 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-heptadecfluoro-1-decanethiol (FDT), 1-dodecanethiol, and 1-octadecanethiol (ODT) were purchased from Sigma-Aldrich and used without additional purification. The syntheses of DHI-5 and -6 (Figure 1b) are reported in the Supporting Information (Scheme S1). The DHIs were kept in the dark at all times (excluding photoisomerization studies).

Metal evaporations were performed in a Kurt J. Lesker NANO 38 thermal evaporator. The thicknesses of monolayers on gold were determined with a Gaertner stokes ellipsometer LSE. Solution and solid-state UV–vis spectra were acquired on a Shimadzu UV-2550 spectrometer. IR spectra of solid-state KBr samples were obtained with a Tensor 37 FT-IR from Bruker Optics with MCT detector. Surface IR spectra were acquired on a Tensor 37 FT-IR from Bruker Optics with polarization modulation accessory (PMA 50) and MCT.

Received: June 10, 2013
Revised: August 19, 2013
Published: August 21, 2013

Supporting Information

© 2013 American Chemical Society

dx.doi.org/10.1021/jp405710u | J. Phys. Chem. C 2013, 117, 19471–19476
The molecular dipole orientation of the FDT monolayer increases the work function with respect to bare gold. The spiro DHI adsorbed onto gold. In this state, the molecule has a small, nonzero, dipole perpendicular to the surface and a corresponding initial work function that is similar to a straight chain alkane. (right) Zwitterionic DHI after being excited with 400 nm light, which affords a dipole oriented similarly to the FDT monolayer. This results in an increase in the work function when compared with the spiro species. Dashed boxes in the energy diagram represent the dipole of the monolayer.

RESULTS AND DISCUSSION

Characterization of the Photoswitch via UV–Vis and IR Spectroscopies. DHIs, as a class, exist in two forms: the stable spiro form and the zwitterion form, which can be accessed via photoisomerization (Figure 1b). This transition is characterized by the molecules’ optical absorptions, particularly the π to π* transition (360–410 nm) in the spiro species and a presumed charge transfer transition (500–700 nm) for the photoisomerized, zwitterionic, species.

This DHI subunit (terminal end, Figure 1b) has been incorporated into two molecules, DHI-5 and DHI-6. The second half of the molecule, the aliphatic chain which links the DHI to the surface, is variable, and was chosen for these studies because of simpler vibrational interpretation of switched states, in contrast to conjugated systems. Furthermore, the extended alkyl system limits energy and electron transfer to surfaces that can complicate the photochemistry.

Both DHI-5 (Figure 2a) and DHI-6 (Supporting Information, Figure S1a) undergo the same optical transitions. In the spiro state, the π-to-π* transition for DHI-5 (386 nm) occurs well within the accepted range of established DHIs. When irradiated with 400 nm light, the presumed charge transfer band appears at 583 nm (Figure 2a), confirming the generation of the stable, persistent zwitterion. Transitions differ by only ±3 nm for DHI-6. These measurements, performed in the solid state, mirror solution data (Figure S2, Supporting Information).

As the optical properties change, accompanying vibrational differences are expected. Specifically, the stretches of double bonds in the dihydropyridine ring should diminish, whereas the frequencies corresponding to the pyridinium ion are expected to appear (Figure 2a, inset). It should be noted that the DHI
moiety in the zwitterionic form could potentially exist in different conformers; however, the formation of the aromatic pyridinium ion is consistent with all variations of the zwitterion and is an obvious spectroscopic signature for the IR data. Such signals are apparent in our experimental spectra of the isolated zwitterion at 1651 cm\(^{-1}\). Calculated DFT vibrational spectra displays a new increase for the spiro DHI in this spectral region upon DHI irradiation by the UV light (Figures 2b, c). As such, this spiro C=\(\equiv\)C stretch can be used to provide a semiquantitative measure of the percentage of photochromophores that have switched. Implicit here is the fact that only about one-third of photochromophores are in the zwitterionic form in the solid state (Figure 2b), even if irradiation is extended. This hypothesis is consistent with the presence of the shoulder in the UV−vis data (\(\sim\)390 nm). Both the peaks at 1643 and 1559 cm\(^{-1}\) will provide a spectroscopic handle for subsequent identification of the molecular DHI on the surface for Kelvin probe measurements.

Photochemically Induced Work Function Shifts and Correlation with Spectroscopic Signatures. To test the photochromophores’ ability to dynamically tune a metal’s work function, both DHI-5 and -6 were assembled onto freshly prepared gold and were compared with freshly prepared ODT monolayers via a Kelvin probe, which measures the surface potential difference between substrates. For these measurements, the standard deviation from the mean for the measurement at a single point was quite low: 5 mV. The deviation across multiple samples was higher; the average spiro surface potential for DHI-5 and -6 were found to be at 28 ± 42 and 148 ± 84 mV, relatively to ODT on gold. The higher standard deviation for the spiro DHI-6 is presumably related to less efficient packing and higher disorder often reported for shorter alkyl chains. Surface spectroscopy for both spiro DHIs correlates well with the solid-state data (vide infra), providing evidence for the integrity of the assembled material.

When spiro DHI-5 and -6 were irradiated for 13 min with 400 nm light, the surface potential increased by 178 and 164 mV from their respective initial values (Figure 3, circles and squares). These individual samples, which were correlated with their spectroscopy, are representative of a greater trend: on average, the shift for five DHI-5 samples at 13 min irradiation was 186 mV with a standard deviation of 23 mV. The direction about interpretation of other modes can find them in Supporting Information Table S1.

When this sample is irradiated to promote formation of the zwitterion, the IR spectrum shows new stretches for the pyridinium ion in conjunction with the appearance of the charge transfer transition band in the visible spectrum. The two normal vibrations that are correlated to this appearance are observed near 1643 and 1506 cm\(^{-1}\). IR bands in these regions are commonly assigned to the stretching vibrations of the pyridinium ring. Our calculations show that each of these two bands corresponds to the stretching vibrations of the pyridinium ring that are coupled to the C=\(\equiv\)O stretch of one of the two ester groups (Supporting Information Table S1). The appearance of the two bands at each location of the calculated spectrum (and shoulders in the experimental) is due to presence of two rotational conformers of the zwitterionic DHI. The contribution of the stretch of the polar C=\(\equiv\)O bond to these normal modes explains the large IR intensity increase in this spectral region upon DHI irradiation by the UV light (Figure 2c). Both vibrations can be used diagnostically to discern the state of the DHI but, for reasons discussed later, we focus on the peak at 1643 cm\(^{-1}\).

In addition to the intensity increase at 1643 cm\(^{-1}\), the spiro/zwitterion switch can be monitored via the decrease in the IR intensity of the dihydropyridine C=\(\equiv\)C bonds at 1559 cm\(^{-1}\). This spectral change is consistent with our calculations that show a strong IR band at 1547 cm\(^{-1}\) for the spiro DHI but no band for the zwitterionic DHI in this spectral region (Figure 2c). As such, this spiro C=\(\equiv\)C stretch can be used to provide a semiquantitative measure of the percentage of photochromophores that have switched. Implicit here is the fact that only about one-third of photochromophores are in the zwitterionic form in the solid state (Figure 2b), even if irradiation is extended. This hypothesis is consistent with the presence of the shoulder in the UV−vis data (\(\sim\)390 nm). Both the peaks at 1643 and 1559 cm\(^{-1}\) will provide a spectroscopic handle for subsequent identification of the molecular DHI on the surface for Kelvin probe measurements.
of the work function shift from this data is consistent with the orientation of the molecular dipole of the zwitterion with respect to the surface, suggesting that we are observing the effect of DHI switching from its spiro to zwitterionic form. The molecular origin of this effect can be supported by two additional observations. First, no/minimal absorption, and thus, isomerization, is expected for 501 nm light (Figure 2a). As expected, DHI monolayers irradiated with this wavelength show an insignificant change (Figure 3). Second, a sample of 1-dodecanethiol assembled on gold was irradiated with 400 nm light, and the measured shift from irradiation was negligible (21 mV), allowing us to rule out other effects, such as photo-oxidation of the Au–S bond. This second data set can be found in the Supporting Information (Figure S12). Combined, the results show that it is possible to dynamically shift the work function of a material, based on molecular effects, by ∼170 meV.

The same DHI samples reported in Figure 3 were examined sequentially via polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) so that the electronic switch could be correlated with the vibrational signatures of the zwitterion. For the first two irradiation intervals (0–2 and 2–8 min), the same increase (∼70 mV) was observed for each measurement. The substantial shift appears in conjunction with vibrational evidence for isomerization, with an increase in (1644 cm⁻¹) pyridinium bond character and the decrease in the isolated dihydropyridine C=O bond (1559 cm⁻¹) (Figure 4). For the final 5 min of irradiation (8–13 min), a smaller increase of 35 mV was observed, and as expected, the differences in spectra are less pronounced, suggesting minimal change in configuration. In fact, the DHI-6 sample shows virtually no vibrational changes, whereas DHI-5 shows minor changes at 1559 cm⁻¹. These have been omitted for clarity but can be seen in the Supporting Information (Figure S13). The electronic and spectroscopic changes were consistent for all DHI samples that were subjected to the same experiment. This IR/Kelvin probe analysis was simplified by the fact that the switch has an extraordinarily slow relaxation time on the surface (a minimally relaxed 90 h spectrum can be seen in Supporting Information Figure S14), and thus, the time required for data acquisition has little effect on the system.

In examining this data, a brief comment on the region at 1500 cm⁻¹ is warranted. In the initial characterization of the photoswitch (as a KBr pellet, Figure 2b), three absorptions appear to be highly correlated with the change from the spiro form to zwitterion; only two are observed for the monolayer samples (1644, 1559 cm⁻¹). The stretch at 1506 cm⁻¹, which according to DFT calculations corresponds to the C=C bond formed at the 9-position of the fluorene moiety (Figure 2), does not appear in the surface IR of the irradiated samples (Figure 4; 2, 8 min). A common explanation for these situations is the surface selection rule. The net dipole of the vibrations that are parallel to the surface are nullified by those from an image charge, and no absorption appears.36 Naively, on the basis of the SAM tilt angles as well as molecular geometry (Figure 1b), one might expect this to be a case for the C=C bond at 1506 cm⁻¹. To confirm this hypothesis, DHIs were spin-coated onto the surface rather than assembled, and nonoriented multilayers of varying thicknesses were formed as a result. The randomly oriented multilayers display the missing stretch (Figure S15, Supporting Information). As the layer thickness decreases (and a greater portion of the signal is from molecules bonded to the surface), this peak decreases in intensity relative to the other signals.

Substituent Effects. DHI-5 and -6 serve as effective model systems for this class of photochromophores. However, as we begin to analyze the relationship between DHIs and the work function change, it would be ideal if the dihydropyridine C=C bond stretch were to remain diagnostic for other molecules within this subclass. If true, substituents impacting optical absorption, stability, the dipole, and even molecular orientation could be appended to the molecule.26 Such flexibility would be extremely powerful for reconciling theoretical changes in the work function with experiment.

Preliminary analysis indicates this to be true. The indicative C=C stretch is present in other DHIs we have synthesized, where the alkyl chain has been exchanged for various alkynyl,
aryl, or oxy substituents. Stretches for the four compounds are reported at 1569, 1559, 1551, and 1547 cm$^{-1}$. Of these, an alkylnyl-substituted DHI (Figure 5) was examined both pre- and postirradiation for vibrational changes. The C=C peak at 1547 cm$^{-1}$ is highly correlated with the switching event.

Figure 5. Solid-state (KBr) IR of alkylnyl DHI. Yellow curves represent spiro DHI. Sample was irradiated for 15 min, generating a persistent zwitterion conformer (green curves) in the solid state. Additional irradiation yielded no further change. The black dashed arrow shows a decrease in the isolated olefins signal at 1547 cm$^{-1}$.

The above sequence of substitutions should allow for varying degrees of electron/energy transfer between the photochromophore and the surface, which inhibits switching. Combined work function/spectroscopic analysis can clarify some of these effects. As such, the results reported in this work are fundamental to ongoing studies on work functions in the area.

CONCLUSION

An active shift in the work function of a gold surface was generated by two photochromic DHI monolayers. Surface IR suggests that the electronic alterations are caused by the light-induced change from the spiro to the zwitterionic species. Changes in the surface spectroscopy were confirmed by experimental solid-state spectroscopy and DFT vibrational calculations. Characteristic vibrational features appear general across the class of molecules and can be used for analysis of dihydroindolizines designed with other work function applications in mind.

ASSOCIATED CONTENT

Supporting Information

Synthesis of DHIs, associated characterization data (NMR, IR, MS) DFT normal mode assignments and atom displacement plots, and vibrational correlation study for DHI-6, solution UV–vis and corresponding half-life data, additional controls for the work function data, and thin film irradiation study of DHI-6 are given. This information is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

*Phone: (773) 508-3107. Email: jcszek@luc.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported in part by a grant from the National Science Foundation (NSF), Career Award No. 1056400.

REFERENCES

(15) Zehner, R. W.; Parsons, B. F.; Hsung, R. P.; Sita, L. R. Tuning the Work Function of Gold with Self-Assembled Monolayers Derived from n-C$_{6}H_{2}-[\text{C}=\text{N}-(\text{C} \equiv \text{C})_{2}]_{n}$-$\text{CH}_{3}$-$\text{SH}$ ($n = 0, 1, 2$; $X = \text{H}, \text{F}, \text{CH}_{3}, \text{CF}_{3}, \text{and OCH}_{3}$). *Langmuir* 1999, 15, 1121–1127.

(19) Nagahiro, T.; Akiyama, H.; Hara, M.; Tamada, K. Photo-

isomerization of Azobenzene Containing Self-Assembled Monolayers

Investigated by Kelvin Probe Work Function Measurements. J. Electron

(20) Nuzzo, R. G.; Allara, D. L. Adsorption of Bifunctional Organic

Whitesides, G. M. Self-Assembled Monolayers of Thiolates on Metals

(22) Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D.

Spontaneously Organized Molecular Assemblies. 4. Structural

Characterization of n-Alkyl Thiol Monolayers on Gold by Optical

Ellipsometry, Infrared Spectroscopy, and Electrochemistry. J. Am.

(23) Ge, Y.; Whitten, J. E. Interfacial Electronic Properties of

Thiophene and Sexithiophene Adsorbed on a Fluorinated Alkanethiol

(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;

Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.;

Kudin, K. N.; Burant, J. C., et al. In Gaussian 03, revision C.02;

(25) Florián, J.; Baumruk, V.; Leszczynski, J. IR and Raman Spectra,

Tautomeric Stabilities, and Scaled Quantum Mechanical Force Fields

(26) Durr, H.; Bouas-Laurent, H. Photochromism: Molecules and

(27) Bartucci, M. A.; Wierzbicki, P. M.; Gwengo, C.; Shajan, S.;

Hussain, S. H.; Ciszek, J. W. Synthesis of Dihydroindolizines for

(28) Comstock, M. J.; Levy, N.; Kirakosian, A.; Cho, J.; Lauterwasser,

F.; Harvey, J. H.; Strubbe, D. A.; Fréchet, J. M. J.; Trauner, D.; Louie,

S. G.; et al. Reversible Photomechanical Switching of Individual

Engineered Molecules at a Metallic Surface. Phys. Rev. Lett. 2007, 99,

038301.

(29) Shrestha, T. B.; Melin, J.; Liu, Y.; Dolgounitcheva, O.;

Zakrzewski, V. G.; Pokhrel, M. R.; Goritchi, E.; Ortiz, J. V.;

Twumasi, C.; Bossman, S. H. New Insights in the Photochromic Spiro-

1449–1456.

(30) Bleisinger, H.; Scheidhauer, P.; Durr, H.; Wintgens, V.; Valat, P.;

Kossanyi, J. Photophysical Properties of Biphotochromic Dihydroindol-

1998, 63, 990–1000.

(31) Fry, E. M. 6-Cyano-1,2,5,6-tetrahydropyridines in the

Preparation of 1,2-Dihydropyridines. Tautomerism of the Dienes. J.

(32) Noland, W. E.; Lee, C. K. 2-Addition of Pyrroles to Dimethyl

Acetylenedicarboxylate: Michael-Type Adducts and Diels–Alder

(33) Thiessen, L. M.; Lepoivre, J. A.; Alderweireldt, F. C. Preparation

of 1,2,4-Trialkyl or Aryl Substituted 1,2-Dihydropyridines by Grignard

(34) Bae, I. T.; Huang, H.; Yeager, E. B.; Scherson, D. A. In Situ

Infrared Spectroscopic Studies of Redox Active Self-Assembled

1562.

(35) Hester, R. E.; Suzuki, S. Vibrational Analysis of Methylviologen.

(36) Griffiths, P. R.; de Haseth, J. A. Fourier Transform Infrared