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The Role of Residuals in Optimal and 

Suboptimal Statistical Modeling 
 

Paul R. Yarnold, Ph.D., and Fred B. Bryant, Ph.D. 
Optimal Data Analysis, LLC                            Loyola University Chicago

This note contrasts the importance of the analysis of model residual 

values in assessing the invalidity of estimated Type I error rates for 

parametric methods, versus in determining ways of improving the 

validity of maximum-accuracy methods. 

 

 

Analysis of residuals—the difference between 

the predicted and actual values of observations 

with respect to the dependent variable—is im-

portant in assessing the validity of parametric 

statistical methods.
1,2

 In particular, a crucial 

assumption is that the residuals are normally 

distributed: failing this assumption threatens the 

validity of Type I error estimates. This is an im-

portant limitation of suboptimal
3
 methods, as 

residuals are always greatest for absolutely 

extreme values of the dependent measure for 

general linear model-based methods (e.g., ordi-

nary least-squares regression), and for the 

smallest class (category) of the dependent 

measure for maximum-likelihood-based meth-

ods (e.g., logistic regression analysis).
4,5

 

Another limitation of suboptimal methods is 

there is no established algorithmic procedure for 

assessing how different independent variables or 

their interactions are specifically related to the 

value of residuals for individual observations. 

Residual values are also an integral part 

of structural equation modeling (SEM), which 

uses a “fitting function” to obtain parameter 

estimates that minimize the size of the residuals 

between the elements of the observed covari-

ance matrix based on the set of measured varia-

bles being analyzed (S) and the elements of the 

predicted covariance matrix implied by the 

parameter estimates in the model (Σ). The most 

commonly used method of estimation in SEM is 

maximum-likelihood, which finds parameter 

estimates that maximize the likelihood that the 

fitted residuals (S – Σ) are due to chance.
6,7

 In 

SEM, the overall size of residuals is used to 

assess a structural model’s goodness-of-fit to the 

data (e.g., via a chi-square value testing the 

statistical significance of the size of fitted resid-

uals, or descriptive fit indices reflecting the 

average size of residuals); individual elements 

in the matrix of fitted residuals can be inspected 

to identify specific relationships between meas-

ured variables that the model explains poorly; 

and the model can be modified to include addi-

tional estimated parameters to improve its fit to 

the data. Note that this statistical method does 

NOT address the residuals associated with indi-

vidual observations. 

 In contrast, in the optimal (maximum-

accuracy) data analysis (ODA) paradigm no 

distributional assumptions underlie theoretical 

distributions of optima, so the validity of the 

Type I error rate is never in doubt.
8-11

 However, 

in the ODA paradigm the analysis of residuals is 
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arguably the most important aspect of an analy-

sis—in terms of assessing ways in which pre-

diction of observations’ actual class categories 

can be improved. Residuals tell one what re-

mains to be explained. The ultimate objective is 

to eliminate all such errors—that is, to correctly 

classify all of the observations in the sample.  

Compared to suboptimal methods, the 

ability of residuals to indicate ways to improve 

statistical models is a major benefit of both the 

UniODA
12-26

 and CTA
27,28

 algorithms. Model 

endpoints that are homogeneous are well ex-

plained, and there is little room for further 

improvement; and model endpoints that are 

heterogeneous are poorly explained, and leave 

much room for improvement.
29,30

 When an end-

point has a large N, and is heterogeneous, it is 

the most appropriate area in which to work to 

improve overall model performance—and thus 

understanding of the phenomenon.
31

 It also is 

clear that none of the measured attributes used 

to find the model will help in this regard—or 

they would be included in the model. Clues to 

the characteristic nature of the observations in 

the targeted strata are garnered by content anal-

ysis of attributes (and their cut-point values) 

defining the endpoint. This not only paves the 

way toward fastest improvement in performance 

(knowledge), but it indicates what the subject 

inclusion criteria for future research should be 

(observations classified into the targeted end-

point), thereby providing “bread crumbs” 

pointing the way to new attributes to study. In a 

word, residuals lie at the heart of the matter. 
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