
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Computer Science: Faculty Publications and 
Other Works Faculty Publications 

1995 

Feasible Offset and Optimal Offset for General Single-Layer Feasible Offset and Optimal Offset for General Single-Layer 

Channel Routing Channel Routing 

Ronald I. Greenberg 
Loyola University Chicago, Rgreen@luc.edu 

Jau-Der Shih 

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Greenberg, RI and J Shih. "Feasible Offset and Optimal Offset for General Single-Layer Channel Routing." 
SIAM Journal on Discrete Mathematics 8(4), 1995. 

This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has 
been accepted for inclusion in Computer Science: Faculty Publications and Other Works by an authorized 
administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. 
© Society for Industrial and Applied Mathematics, 1995. 



SIAM J. DISC. MATH.
Vol. 8, No. 4, pp. 543-554, November 1995

1995 Society for Industrial and Applied Mathematics
OO7

FEASIBLE OFFSETANDOPTIMAL OFFSETFORGENERAL
SINGLE-LAYER CHANNELROUTING*

RONALDI. GREENBERG?AND JAU-DER SHIH$

Abstract. This paper provides an efficient method to find all feasible offsets for a given sep-
ration in a very large-scale integration (VLSI) channel-routing problem in one layer. The previous
literature considers this task only for problems with no single-sided nets. When single-sided nets
are included, the worst-case solution time increases from O(n) to (n2), where n is the number of
nets. But if the number of columns c is O(n), the problem can be solved in time O(n 1"5 lg n), which
improves upon a "naive" O(cn) approach. As a corollary of this result, the same time bound suffices
to find the optimal offset (the one that minimizes separation). Better running times result when
there are no two-sided nets or all single-sided nets are on one side of the channel. This paper also
gives improvements upon the naive approach for c O(n), including an algorithm with running
time independent of c. An interesting algorithmic aspect of the paper is a connection to discrete
convolution.

Key words. VLSI layout, channel routing, single-layer wire routing, discrete convolution,
combinatorial algorithms

AMSsubject classifications. 68Q35, 68Q25

1. Introduction. Much attention has been given to planar or single-layer wire
routing for very large-scale integration (VLSI) chips. Most popular has been river
routing in the restricted sense of the term, the connection of two parallel rows of cor-
responding points, e.g., [11] and the references therein. Other works have considered
routing within a rectangle [2], placement and routing within a ring of pads [1], or
routing between very general arrangements of modules [10], [4].

Ironically, single-layer routing may become more relevant as technology evolves
toward chips with increasing numbers of layers. With many layers, it becomes more
likely that an individual layer can be dedicated to a coplanar subset of the original
collection of nets. For example, the heuristic multilayer channel router MulCh [7]
improved upon previous multilayer channel routers by dividing the problem into es-
sentially independent subproblems of one, two, or three layers.

In this paper, we consider the single-layer channel-routing problem, which is more
general than the more heavily studied river-routing problem. Channel routing is
similar to river routing in that both deal with the interconnection of terminals lying
in two parallel rows (sides of the channel); also, for simplicity, we restrict attention to
two-point nets as in river routing. 2 But we allow nets that have both their terminals
on the same side of the channel, contrary to river routing. The existence of these
single-sided nets is both realistic (as in the example problems of [7]) and a significant
algorithmic complication. As shown in Fig. 1, the usual convention is to draw the rows
of terminals horizontally; only the region between these rows is available for routing.

Received by the editors July 12, 1993; accepted for publication (in revised form) June 9, 1994.
This research was supported in part by National Science Foundation grant CCR-9109550.

Electrical Engineering Department, University of Maryland, College Park, Maryland 20742
(rig@eng. umd. edu).

Department of Information Engineering, Kaohsiung Polytechnic Institute, Ta-Hsu, Kaohsiung
84008, Taiwan, Republic of China (jdshih(C)nas04.kp+/-.edu.tw).

This is the only use of the term "river routing" in this paper; we refer to more complicated
variations of the problem as "single-layer" or "planar" routing.

2 Multiterminal nets can be handled by a transformation that might be considered "folklore." It
is described in [8] in the context of showing that minimum separation problems can be solved even
more easily than by actually applying the transformation.

543



544 R.I. GREENBERG AND J.-D. SHIH

1 1 2 3

,i i
2 4 4 3

separation

FIG. 1. An example of a routed single-layer channel.

We refer to single-sided nets that have their two terminals on the top (bottom) as
upper (lower) nets. Nets with terminals on opposite sides are referred to as two-sided
nets. We restrict attention to a rectilinear, grid-based model in which terminals lie
on gridpoints and wires are disjoint paths through grid edges. We use c to denote the
total number of grid columns from the leftmost terminal to the rightmost terminal
and n to denote the number of nets.

The greatest attention has been given to the minimum separation version of the
problem. In this case, we assume that the horizontal positions of the terminals are
completely fixed, but we seek the minimum vertical distance between the two rows of
terminals that allows the routing to be completed. An O(n) time solution in the river-
routing case was given in [6]. Though some erroneous solutions have been published
for the general channel-routing case, a simple and correct O(n) algorithm is provided
in [8].

In this paper, other important versions of the river-routing problem are solved in
the context of channel routing; in these problems, we allow the rows of terminals to
be offset relative to one another. That is, we allow the upper row of terminals to be
slid as a block to the left or right, though individual terminals do not shift position
relative to one another. (This models the situation in which we are trying to wire
together two modules, each having terminals on one side, and we have substantial
freedom on how to place the modules.) The optimal offset problem involves finding
the offset that minimizes the amount of separation necessary to route the problem.
A related problem, which we refer to as the feasible offset problem, is to determine all
offsets that are feasible (i.e., give enough room to route) at a given separation. In the
river-routing context, the second problem is usually called the offset range problem,
since the feasible offsets always constitute a single continuous range, but this property
does not hold for channels with single-sided nets.

Mirzaian [11] showed that feasible offset and optimal offset can be computed in
O(n) time in the river-routing case, but we are not aware of any published solutions
for channels with single-sided nets. One complication that arises when single-sided
nets are included is that the solution time is no longer insensitive to the number of
columns in the problem (at least for feasible offset). As illustrated in Fig. 2, if the
number of columns is large, the number of disjoint intervals of feasible offsets may
be t(n2). But if c- O(n), we show that feasible offset can be solved in O(nL5 lgn)
time. This improves on the naive O(cn) time obtained by running the O(n) algorithm
for the minimum separation problem at each of the 2c offsets that may need to be
checked. In the remainder of this paper, we express our running times in terms of c
as well as n where necessary but concentrate on obtaining a good running time when
c O(n). Later, we give an algorithm that is less efficient for c O(n) but has a
running time independent of c.



OFFSET PROBLEMS FOR SINGLE-LAYER CHANNEL ROUTING 545

nets

n/2 nets

FIG. 2. For small separation, the number of disjoint intervals of feasible offsets of the channel
above is (n2).

The remainder of this paper is organized as follows. In 2, we introduce some
additional terminology and notation and show how to solve the feasible offset problem
for a channel in which all nets are single sided. In this case, the running time with
c O(n) is O(n1"5 l/i), which leads to an O(n1"5lx/) algorithm for optimal offset.
(The optimal offset problem as defined above is trivial when all nets are single sided;
large offset minimizes separation. But we can handle a nontrivial generalization of the
problem in which certain offsets are disallowed.) In 3, we show how to combine ideas
from 2 with some new ideas to obtain solutions for channels with both single-sided
and two-sided nets. For the general channel, the running time to solve either feasible
offset or optimal offset is O(n1"5 lgn). Section 4 provides concluding remarks and
some additional results. In particular, feasible offset and optimal offset can be solved
in time O(n2 lg n) independent of c. Also, the optimal placement problem, involving
multiple modules on each side of the channel, can be handled in O(n3) time.

2. Channels with single-sided nets only. In this section, we deal with the
special case of channels with only single-sided nets. Much of the work we do here will
help us in the next section where we consider channels that have both single-sided
and two-sided nets.

We begin by explaining some notation and terminology that we use throughout
this paper. First, we use L, U, and T for the sets of lower, upper, and two-sided
nets, respectively, and N for the complete set of nets in the channel. In addition, we
often use the same notation interchangeably for a set of nets or for a lower or upper
contour. The contour of a set of lower nets is the upper boundary of the routing
region consumed in the routing of those nets that minimizes total wire length. That
is, when the nets are routed as tightly as possible against the bottom of the channel,
the contour is formed by the uppermost nets and portions of the channel boundary.
The contour of a set of upper nets is defined similarly. We also refer often to subsets of
contours, which simply means restricting the contour to certain columns (even though
there may be no set of nets that would generate the resulting contour). We use the
notation FOP and OOP to refer to the feasible offset problem and optimal offset
problem, respectively. We also use the more precise notation FOP(s, A) to represent
the set of solutions to the feasible offset problem with separation s and the set A of
nets (or contours or contour fragments). We also use analogous notation SSFOP and
SSOOP for the corresponding problems when all nets are single sided. (For optimal
offset, we permit the problem specification to disallow some set of offsets, e.g., all
offsets _> c/2; otherwise SSOOP is trivial.)

Our first step in solving SSFOP is to find the contours of the upper and lower nets.
We use Pinter’s result that O(n) time suffices to find a contour (i.e., the coordinates
of all the bends in the contour) [12].

LEMMA 2.1 (Pinter). The contour of a set of n single-sided nets can be found in
O(n) time.



546 R.I. GREENBERG AND J.-D. SHIH

Once we find the contours of the upper and lower nets, SSFOP can be expressed
simply in terms of these contours. At each column, we define the extension of a contour
to be the distance that the contour extends into the channel at that column. Then we
are simply seeking all offsets for which no vertical cut corresponds to extensions of the
upper and lower contours that sum to more than the separation under consideration.
One way to solve this problem would be to compute the discrete convolution of the
two sequences of extensions with the max and / operators substituted for the usual
+ and . It is unknown whether max, / convolution for vectors of length n can be
computed in better than (n2) time; still it will be seen that there is some relationship
between convolution and our solution technique for SSFOP.

We begin with a general lemma that allows us to decompose SSFOP into smaller
instances of the problem. In each of the smaller problems, we use only a portion of the
lower contour, while retaining the entire upper contour. In fact, the lemma applies
even when there are also two-sided nets. (Naturally, we also could switch the roles of
the lower and upper contours.)

LEMMA 2.2. Let L1,L2,...,Lk be any subsets of the contour L of the lower
nets such that LI U L2 (2... (.J Lk L, and let A be an additional set of nets. Then
FOP(s, L t2 A) k[i= FOP(s, Li U A).

Proof. This follows from the fact that routing is possible if and only if each line
segment from the top of the channel to the bottom of the channel is long enough (in
the L metric) to accommodate the number of nets that must cross it (i.e., each cut
is safe). More details on the theory of single-layer routability can be found in [10];
see especially 2.1. D

We now proceed to decompose the lower contour into pieces that are easier to
handle and not too numerous. The next three lemmas are directed toward handling
pieces of the contour that have large extension, and the following two lemmas handle
portions of the contour in which there are not too many distinct extensions. Then we
show how to put these two ideas together to solve the entire problem.

For the next lemma, we define a special type of contour fragment such that if it
comprises the entire lower contour, then SSFOP is particularly easy to solve. A mono-
tonic subset of the lower contour L is a subset of L, such that the extensions within
the selected columns are monotonically nondecreasing or monotonically nonincreasing
as we move across the columns.

LEMMA 2.3. If Lm is a monotonic subset of the lower contour and U is the upper
contour, then we can solve SSFOP(s, Lm U U) in O(n) time.

Proof. Without loss of generality, assume the (nonzero portion of the) lower con-
tour has nondecreasing extensions from left to right. We need only march across
the columns of the upper contour once from left to right. Initially, we consider a
far left position for the lower contour (highly negative offset). The check for each
column of the upper contour involves adding the upper extension to the lower exten-
sion for the corresponding column of the lower contour, based on the current offset,
and comparing to the upper bound on separation. After any unsuccessful check, the
current offset is incremented and we do not yet advance to the next column of the
upper contour. After each successful check, we move to the next column of the upper
contour; prior columns never need to be rechecked at larger offsets since the lower
contour is nondecreasing. When the rightmost column of the lower contour is in-
volved in a successful check, a feasible offset has been found and, again, the current
offset is incremented. The O(c) approach just described can actually be improved to
O(n) time because of the following two facts. First, we really only need to look at



OFFSET PROBLEMS FOR SINGLE-LAYER CHANNEL ROUTING 547

columns of the upper contour where the upper contour bends. Second, there are at
most n places where the extension of the lower contour changes, and preprocessing of
the lower contour will allow us to increment offset sufficiently after each unsuccess-
ful check so that we can proceed immediately to the next bend point of the upper
contour.

In the next lemma, we show that not only are monotonic pieces of contour easy
to handle but that we don’t have to check too many of them as long as we restrict
attention to sections of contour with large extension. Here we define a monotonic
subset to be maximal if no other monotonic subset contains it. Now we bound the
number of maximal monotonic subsets in the portion of the contour with extension
of at least h.

LEMMA 2.4. Let Lg be the subset of the lower contour containing only extensions
greater than or equal to h. Then Lg contains at most c/2h maximal monotonic pieces.

Proof. To have a maximal monotonic piece of the lower contour with extensions
of at least h, there must be h lower nets nested one inside the next. Therefore, a
maximal monotonic piece with extensions greater than or equal to h must span at
least 2h columns, so Lg contains at most c/2h maximal monotonic pieces.

We can now put together Lemmas 2.2, 2.3, and 2.4 to solve SSFOP efficiently for
any piece of lower contour in which all extensions are large enough.

LEMMA 2.5. If Lg is a subset of the lower contour containing only exten-
sions greater than or equal to h and if U is the upper contour, then we can solve
SSFOP(s, Lg U U) in O(cn/h) time.

Proof. By Lemma 2.2, we know that it suffices to solve the problem independently
for each of the maximal monotonic pieces of La. By Lemma 2.4 there are O(c/h) such
pieces, and by Lemma 2.30(n) time suffices for each piece.

What remains is to solve the SSFOP for the portion of the lower contour with
small extensions. (Later we’ll show how to choose h, the dividing point between
large and small extensions.) The next lemma handles the simplified case in which all
extensions on the lower contour are 0 or 1. The following lemma goes on to handle h
distinct extensions.

LEMMA 2.6. If all extensions are 0 or 1, we can solve SSFOP in O(clg c) time.

Proof. The only interesting case is separation 1, and the feasible offsets corre-
spond to the zero entries in the convolution of the upper and lower extensions. The
convolution can be computed in O(c lg c) time by using the Fast Fourier Transform
method. (See [5], for example.)

LEMMA 2.7. If all extensions of the lower contour are at most h, we can solve
SSFOP in O(hclgc) time.

Proof. From Lemma 2.2, SSFOP(s, L t U) h[i=1 SSFOP(s, Li U U), where Li is
the subset of the lower contour with extension i. We can now solve SSFOP(s, Li U U)
using Lemma 2.6 after assigning 1 to the lower extensions in Li and those upper
extensions exceeding s- and 0 to the other extensions. Since we have a total of h
problems, each solvable in O(c lg c) time, the total time is O(hc lg c).

Now we can provide an overall solution to SSFOP by combining our results for
contours with large extensions and contours with small extensions.

THEOREM 2.8. SSFOP can be solved in O(cv/n lg c) time.

Proof. SSFOP(s, L U U) SSFOP(s, L U U) N SSFOP(s, Lg U), where L is
the subset of L with extensions less than h and Lg is the subset of L with extensions

greater than or equal to h. Using Lemmas 2.7 and 2.5 with h v/n/lg c, the solution
time is O(cv/n lg c).



548 R.I. GREENBERG AND J.-D. SHIH

T

Lo’
]’

(T U U)/Lo

j

o

(a) (b)

FIG. 3. The effect of two-sided nets in (a) is incorporated into the top contour in (b). In this
figure, Lo is a monotonic portion of the lower contour.

We can adapt the halving technique of [11] to solve SSOOP in the same time as
SSFOP. The details will be shown in 3. The following theorem is just a simplified
version of Theorem 3.8:

THEOREM 2.9. SSOOP can be solved in O(cv/n lg c) time.
COROLLARY 2.10. SSFOP and SSOOP can be solved in O(n1"5lx/) time for

c O(n).

3. General single-layer channel. In this section, we use the ideas of 2 to
solve FOP and OOP when there are two-sided as well as single-sided nets. As before,
we begin by computing the contours of the upper and lower nets. Also as before we
consider separately the portions of the lower contour with large extensions and the
portions with small extensions and then show how to put these ideas together. But
first we consider an intermediate case, that is, when there are both single-sided and
two-sided nets but all the single-sided nets are on one side.

LEMMA 3.1. When all single-sided nets are on one side, FOP and OOP can be
solved in O(n) time.

Proof. When the single-sided nets are on one side, we can extend the method
of Mirzaian [11]. The basic idea is that as in river routing, the feasible offsets at a
given separation form a continuous range whose bounds are determined by O(n) cut
conditions. More details can be found in [9]. [-I

To deal with the extra complications of two-sided nets, we also must introduce
two new definitions.

First, let L0 be a subset of the contour of the lower nets and T a set of two-sided
nets whose lower terminals are to the left of L0. Define T/Lo as the upper contour
obtained by pulling up the lower terminals of the nets in T and reconnecting them to
the upper side to the left of preexisting terminals. That is, we convert the nets in T
to single-sided nets without violating planarity and without moving what were their
lower terminals to the wrong side of L0. This notation is also used analogously for any
set A of upper and two-sided nets as long as the lower terminal of each two-sided net
is to the left or right of all nonzero extensions in L0. In all cases, A/Lo is the upper
contour formed by moving lower terminals in T away from L0 and to the upper side.
Finally, the notation can also be used with a portion of the upper contour, in which
case "upper" and "lower" are reversed throughout the definition. Figure 3 illustrates
the definition of (T U)/Lo.

For the second definition, let M be a subset of the contour of the upper or lower
nets. We define M] to be a new contour in which we replace all extensions exceeding
s- 1 with extension s- 1.

We now proceed in the next two lemmas to handle a portion of lower contour with



OFFSET PROBLEMS FOR SINGLE-LAYER CHANNEL ROUTING 549

only large extensions. As before, the first lemma shows how to handle a monotonic
piece of lower contour, and the second lemma handles a contour portion with large
extensions by dividing it into maximal monotonic pieces.

LEMMA 3.2. Let A be a set of upper and two-sided nets. Then we can solve
FOP(s, L, U A) in O(n) time, where Lm is a monotonic portion of the lower contour.

Proof. The solution is the intersection of the feasible offsets from two subproblems.
In the first subproblem, we solve FOP without Lm (using Lemma 3.1). In the second
subproblem, we retain Lm and reroute the two-sided nets in the fashion shown in
Fig. 3, i.e., we determine (UUT)/Lm. Since we have already determined the infeasible
offsets in the absence of Lm (in the first subproblem), we now ignore those portions
of (U T)/L, with extension exceeding s- 1; we need only determine those offsets
for which a vertical cut through (U T)/Lm and L, has too large a sum of upper
and lower extensions. So the second subproblem is SSFOP(s, Lm ((U
which can be constructed and solved in O(n) time by Lemmas 2.1 and 2.3. [:l

Now we combine Lemmas 2.2, 3.2, and 2.4 to solve FOP for a subset of L with
large extensions. As before, we define large as exceeding h and specify the value of h
later.

LEMMA 3.3. If Lg is a subset of L containing only extensions greater than or
equal to h, then we can solve FOP(s, L9 U T) in O(cn/h) time.

.Now that we have taken care of FOP with large extensions, we use the next two
lemmas to deal with small extensions. The next lemma tells us how to transform
certain instances of FOP into SSFOP and will be used in handling general instances
of FOP with small extensions.

LEMMA 3.4. Let Tl and Tr be two sets of two-sided nets such that all the nets in

TI are to the left of those in Tr. (That is, the upper terminals in T are to the left of
those in Tr and similarly for the lower terminals.) Also let Ut be a set of upper nets
in which all terminals are to the left of (the upper terminals of) Tr, and let Lr be a
set of lower nets in which all terminals are to the right of Tt. (See Fig. 4.) Then

FOP(s, Ut [2Tl t2T t2 Lr) FOP(s, Ut t2Tt UT) N FOP(s, L Tt UT)
N FOP(s, ((Ut t2 TI)/L)I8 ((Lr T)/Ut)I8

Proof. The argument is similar to the one for Lemma 3.2. At any given offset
that is infeasible, either there is a vertical cut demonstrating infeasibility that goes
through both Ut and L or there is not. In the former case, we know that we can
incorporate the effect of the two-sided nets into the upper and lower contours; i.e.,
solving FOP(s, ((U t T)/L)I ((L J Tr)/UI)I), as illustrated in Fig. 4, will rule
out the infeasible offsets of the first type. On the other hand, if the infeasibility does
not result from interaction between Ut and Lr, it suffices to solve FOP(s, Ut UTt t2Tr)
and FOP(s, L T J T). Thus, intersection of the feasible offsets from these three
problems provides the feasible offsets for the original problem.

We can now solve FOP with small extensions.
LEMMA 3.5. If the extensions of the upper and lower contours are all less than

h, then we can solve FOP in O(hc lg2 c) time.

Proof. Let t be the number of two-sided nets. We first consider the case when
s < 4h. Divide the channel into t/4h blocks B1, B2,..., Bt/4h, each spanning 4h two-
sided nets as shown in Fig. 5. Let Li, Ui, and Ti denote the lower nets, upper nets,
and two-sided nets in block i. (Single-sided nets at a boundary between blocks of
two-sided nets are assigned to exactly one of those blocks.) Since the upper side and



550 R.i. GREENBERG AND J.-D. SHIH

FIG. 4. The eect of two-sided nets in (a) is incorporated into the upper and lower contours in
(b).

4h two-sided nets 4h two-sided nets 4h two-sided nets
II

L ..IL .J L

FiG. 5. The partition for s < 4h.

lower side of a block may not be of the same length, we define ci to be the sum of the
number of columns spanned by the upper side and the number of columns spanned
by the lower side.

From Lemma 2.2, FOP(s N) (=t/4h FOP(s, Li U T U U) Since s < 4h, thereIi=1
must be fewer than 4h two-sided nets through any vertical cut at any feasible offset.
Therefore, any offset with vertical cuts through L and Uj for j > i + 1 or j < i- 1
would be an infeasible offset, because such a cut would be crossed by all the nets in

T+I or T_1. Thus we can write

t/4h

FOP(s,N) N [fOP(s, niuTuUi)rfOP(s, niuTuUi+l)RfOP(s, niuTuUi_l)]
i--1

Note also that no vertical cuts through both Li and Uj can cut any two-sided nets
outside blocks i through j, so we can rewrite FOP(s, N) as

t/4h

R [FOP(s, niuTiuUi)rFOP(s, niuTiuTi+l uUi+l)rFOP(s, niUTi_l uTiUUi_I)].
i----1

Now we can solve each of FOP(s,L U T U T+I U Ui+) and FOP(s,L U T_ U
T U U-I) in time O(h(ci_ + c + c+)lg(c_ + c + Ci+l)) as follows. We use
Lemma 3.4 to decompose the problem further, Lemma 2.1 for the computation of
new contours (which will still have O(h) extensions), and Lemmas 3.1 and 2.7 to
solve the subproblems.

To solve FOP(s, LUTUU), we use a recursive method, for which we consider the
general problem of solving FOP(s, L* UT* U U*) with IT*I t* _< 4h. We decompose


