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Abstract Regenerative therapy for degenerative spine disorders requires the identification of

cells that can slow down and possibly reverse degenerative processes. Here, we identify an

unanticipated wound-specific notochord sheath cell subpopulation that expresses Wilms Tumor

(WT) 1b following injury in zebrafish. We show that localized damage leads to Wt1b expression in

sheath cells, and that wt1b+cells migrate into the wound to form a stopper-like structure, likely to

maintain structural integrity. Wt1b+sheath cells are distinct in expressing cartilage and vacuolar

genes, and in repressing a Wt1b-p53 transcriptional programme. At the wound, wt1b+and entpd5+

cells constitute separate, tightly-associated subpopulations. Surprisingly, wt1b expression at the

site of injury is maintained even into adult stages in developing vertebrae, which form in an

untypical manner via a cartilage intermediate. Given that notochord cells are retained in adult

intervertebral discs, the identification of novel subpopulations may have important implications for

regenerative spine disorder treatments.

DOI: https://doi.org/10.7554/eLife.30657.001

Introduction
Wilms tumour 1 (WT1) is a zinc finger transcription factor that regulates key developmental stages of

several mesodermal tissues including the kidneys, gonads and coronary vasculature (Hastie, 2017).

In the developing kidney, WT1 is required for the maintenance of mesenchymal nephron progenitors

(Kreidberg et al., 1993; Motamedi et al., 2014) as well as differentiation of these progenitors into

the epithelial components of the nephron (Essafi et al., 2011). In contrast, in the developing heart,

WT1 is expressed in the epicardium (mesothelial lining) and required for the production, via an epi-

thelial to mesenchymal transition (EMT), of coronary vascular progenitors (EPDCs) that migrate into
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the myocardium (Martı́nez-Estrada et al., 2010). Similarly, WT1-expressing mesothelium is the

source of mesenchymal progenitors for specialised cell types within several other developing organs.

These include stellate cells within the liver (Asahina et al., 2011), interstitial cells of Cajal in the intes-

tine (Carmona et al., 2013) and adipocytes within visceral fat depots (Chau et al., 2014). WT1

expression is down-regulated in the epicardium postnatally but reactivated in response to tissue

damage in both mice (Smart et al., 2011) and zebrafish (Schnabel et al., 2011). In both organisms,

this activation of WT1 in response to damage is associated with new rounds of epicardial EMT, lead-

ing to the production of coronary vascular progenitors (Schnabel et al., 2011; Smart et al., 2011).

Given the reactivation of Wt1/wt1b in the damaged epicardium we set out to investigate whether

Wt1 programmes are initiated in response to other sources of tissue damage in zebrafish, and

uncovered a novel Wt1 response to wounding of the notochord. The notochord is a transient embry-

onic structure that provides axial support and signalling information (Stemple, 2005). The notochord

comprises two cell populations, the inner vacuolated cells that provide rigid support to the embryo,

and the outer sheath cells, a single cell epithelial layer that surrounds the vacuolated cells and

secretes components of the extracellular matrix to provide turgor pressure to the vacuolated cells

(Apschner et al., 2011; Ellis et al., 2013). This rigid axial structure becomes functionally replaced

by vertebra of the axial skeleton over time. In zebrafish, a row of metameric mineralized rings, known

as chordacentra, forms around the notochord in an anterior to posterior fashion and constitutes the

first signs of the definitive vertebral column. The chordacentra delineate the future sites where

mature vertebra will form and ossify as the larva grows, while the notochord cells develop into the

nucleus pulposus of the adult intervertebral disc, a soft gel-like tissue that provides cushioning and

flexibility for the spine (Parsons, 1977).

Degeneration of the intervertebral disc leads to extensive back pain, one of the top global causes

of years lived with disability (Lawson and Harfe, 2015). Treatment primarily consists of managing

the pain symptoms, or in more progressed disease includes extensive surgery. One of the major

goals of the tissue-engineering field is to identify cells and tissues that will enable novel regenerative

therapies to slow down and possibly reverse the degenerative process. Here, we uncover a novel

cellular subpopulation in the notochord sheath that emerges at the site of damage and is maintained

until formation of a repaired adult vertebra structure. Surprisingly, this subpopulation expresses

wt1b despite no evidence of wt1b expression in physiological notochord development or ossifica-

tion. Our findings suggest that the zebrafish notochord is protected by a novel wound-specific pro-

gramme that seals the notochord wound in the embryo and contributes to the subsequent adult

vertebra at the injury site.

Results

Wound-specific expression of wt1b in the notochord
Given the expression of wt1b in the regenerating heart, we wanted to explore the expression of wt1

in other regenerating tissues, and began with the tail fin regenerative processes. There are two wt1

paralogues in zebrafish, wt1a and wt1b, and so we performed tail fin amputations on zebrafish lar-

vae 3 days post fertilization (dpf) using Tg(wt1a:gfp) and Tg(wt1b:gfp) transgenic lines (Bollig et al.,

2009; Perner et al., 2007) (Figure 1—figure supplement 1a). Surprisingly, we discovered that tail

fin amputations including partial removal of the notochord triggered a change of cellularity in the

notochord, coupled with the specific, de novo upregulation of GFP in a Tg(wt1b:gfp) transgenic line.

This response was specific to wt1b because we did not observe expression of GFP in the notochord

of Tg(wt1a:gfp) tail fin amputated larvae (Figure 1—figure supplement 1b–f).

Next, we developed a needle-based assay to induce localized damage in the developing zebra-

fish notochord independent of tail fin amputation. Needle injury was induced in 3 dpf Tg(wt1b:gfp)

that had been crossed with casper fish to remove pigmentation and imaged at 72 hr post injury (hpi)

(Figure 1a). Needle induced wounds triggered a similar, albeit stronger wt1b:gfp response com-

pared to the tail fin amputations, that was specifically localised to the site of the wound (Figure 1b).

Time course imaging showed a progressive expansion of the damaged area over 72 hr, with an

increasing expression of GFP signal, concomitant with a change of cellularity in the notochord

(Figure 1c). Importantly, this was not observed in uninjured zebrafish controls (Figure 1c) or in noto-

chord injured Tg(wt1a:gfp) transgenic larvae (data not shown). Histological staining of the damaged
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area revealed the presence of a subpopulation of cells at the site of injury, which contrasted mor-

phologically with the uniform, vacuolated inner cells of the notochord (Figure 1d). These cells

stained positively for GFP and for endogenous Wt1 protein by immunohistochemistry, validating the

faithful expression of the transgene with endogenous wt1b expression in this response (Figure 1e;

Figure 1—figure supplement 2). Tg(wt1b:gfp) expression was not detected in the notochord out-

side the wound response by immunohistochemistry for GFP or for Wt1 protein (Figure 1—figure

supplement 2). Thus, following notochord injury, an unanticipated expression of wt1b marks a sub-

population of cells that emerges in the notochord and is associated with the wound.

wt1b expressing cells emerge from the notochord sheath
To determine the origin of the wound-specific wt1b+ cells, we examined wt1b expression in the vac-

uolated cells of the notochord, and in notochord sheath cells using two different transgenic lines.

The Tg(SAGFF214A:gfp) transgenic line labels the cytoplasm of the inner vacuolated cells, and the

Tg(R2col2a1a:mCherry) transgenic line labels notochord sheath cells. While col2a1a is expressed in

all notochord cells (Apschner et al., 2011), a Tg(R2col2a1a:mCherry) line had been generated with

a 310 bp conserved regulatory element of the col2a1a promoter that is specifically expressed in the

Figure 1. Notochord injury triggers local and sustained wt1b expression. (a) Schematic of notochord needle-injury protocol. 3 dpf Tg(wt1b:gfp); casper

larvae are injured above the yolk sac (YS; at somite 14 or 15) and followed for 72 hr. (b, c) Images of Tg(wt1b:gfp); casper zebrafish trunk over time

following notochord needle injury, and uninjured matched controls. GFP signal is associated with a change of cellularity in the injured notochord (inset).

n > 10; experimental replicates >10. Scale bar: 100 mm. (d) H and E staining of the injured area at 6 hpi and 24 hpi highlighted the progressive change

in cellularity at the site of the injury (arrow). n = 5; experimental replicates = 1. Scale bar: 20 mm. (e) Immunohistochemistry of the injured area with a-

GFP and a-Wt1 antibodies. n > 10; experimental replicates = 5. Scale bar: 20 mm. dpf = days post fertilization; hpi = hours post injury; H and

E = haematoxylin and eosin.

DOI: https://doi.org/10.7554/eLife.30657.002

The following figure supplements are available for figure 1:

Figure supplement 1. wt1b expression in tail amputated larvae.

DOI: https://doi.org/10.7554/eLife.30657.003

Figure supplement 2. Wt1 and GFP protein expression in the notochord.

DOI: https://doi.org/10.7554/eLife.30657.004
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surrounding notochord sheath cells (Figure 2a) (Dale and Topczewski, 2011; Yamamoto et al.,

2010).

A needle-induced notochord wound in the Tg(SAGFF214A:gfp) transgenic line showed that GFP-

expressing cells were lost rapidly upon injury, creating a gap in the row of vacuolated cells. Eventu-

ally, this gap was filled with new cells by 144 hpi (Figure 2—figure supplement 1a,b). The

SAGFF214A:gfp response was distinct from the wt1b+ response in time (emerging at 72 hpi com-

pared with 24 hpi), size and number (few and large compared with numerous and small), and in cov-

erage of the wound (visible gaps remaining at the site compared with filling the damage site). These

data suggest that wt1b expressing cells are distinct from the vacuolated cells at the site of injury.

Next, we explored the role of the notochord sheath cells in this process. We crossed the Tg

(wt1b:gfp) transgenic line to the Tg(R2col2a1a:mCherry) transgenic line. Live confocal and multipho-

ton imaging revealed wt1b:gfp expression in the R2col2a1a:mCherry notochord sheath cells follow-

ing needle induced notochord damage (Figure 2b–d; Video 1; Figure 2—figure supplement 1c),

and this was supported by imaging of histological sections (Figure 2—figure supplement 1d).

wt1b:gfp co-expression with R2col2a1a:mCherry was visible by 24 hpi in a ring surrounding the noto-

chord vacuolated cells, and by 72 hpi the wt1b:gfp subpopulation of sheath cells had migrated into

central aspects of the notochord to fill the wound and produce a visible stopper-like seal that was

contiguous with the notochord sheath cells, and filled the gap in the notochord caused by the

wound (Figures 1e and 2d).

To validate the co-expression of wt1b:gfp and col2a1a:mCherry in the wounded fish, we FACS

sorted cell populations in the injured versus uninjured larvae isolated from the trunk region

(Figure 2e; 35 larvae pooled per set). Both injured and non-injured larvae contained cells that

expressed either GFP+ only (presumably wt1b:gfp cells of the pronephric duct that were included in

the dissected tissue) or mCherry+ alone, but the wounded fish had significantly increased numbers

of cells that co-expressed wt1b:gfp and col2a1a:mCherry (GFP+mCherry+) (Figure 2—figure supple-

ment 1e).

Our evidence indicates that the notochord wound triggers a unique wt1b+ subpopulation to

emerge in the notochord sheath cells. This wt1b+ sheath cell subpopulation migrates into the wound

and generates a stopper-like structure, possibly to prevent further loss of notochord turgor pressure

and maintain notochord integrity.

Nystatin mediated disruption of vacuolated cells leads to an increase in
wt1b:gfp expression
We tested if the wt1b-response was specific to wounds that involved rupture of the sheath, or if

wt1b expressing cells could be induced upon loss of vacuolated cell integrity alone. Mutations in

caveolin genes lead to collapse of the vacuolated cells, with invasion and replacement from the

notochord sheath (Garcia et al., 2017). We

treated two-day old Tg(wt1b:gfp; R2col2a1a:

mCherry) zebrafish with nystatin, a small mole-

cule that binds sterols. Nystatin treatment lead

to an increase in cellularity of the vacuolated

notochord, similar to the phenotype seen in the

notochord of caveolin mutants (Figure 2—figure

supplement 2). GFP was expressed in a subpop-

ulation of the mCherry-positive sheath cells at

the site of cellularity. Thus, expression of wt1b in

the sheath does not require a physical breach of

the sheath, and wt1b expression may be applica-

ble to a wider range of tissue stress and damage

situations.

Notochord wound cells express
cartilage and mesenchyme genes
To address the molecular process at the site of

the wound, we compared the transcriptome of

Video 1. Time-lapse imaging of two-photon

microscopy of Tg (wt1b:gfp; R2col2a1a:mCherry)

zebrafish larvae following needle injury over 48 hr.

wt1b:gfp expression is upregulated in R2col2a1a:

mCherry expressing notochord sheath cells upon

needle injury, leading to the formation of a stopper like

structure across the wound

DOI: https://doi.org/10.7554/eLife.30657.009
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Figure 2. wt1b:gfp expressing notochord sheath cells populate the site of injury in the damaged notochords. (a) Schematic diagram of the notochord

and transgenic lines used in this study. The notochord is composed of an inner population of highly vacuolated cells (green arrow; SAGFF214A:gfp),

surrounded by a layer of epithelial-like sheath cells (red arrow; R2col2a1a:mCherry), encapsulated by a thick layer of extracellular basement membrane

(grey arrow). (b) Schematic of experimental design: 3dpf Tg(wt1b:gfp; R2-col2a1a:mCherry); casper larvae were needle-injured and imaged at 0, 24 and

72 hpi. (c) Needle damage led to the formation of a cell-free gap in the layer of notochord sheath cells (0 hpi – injured; dashed line). GFP expression

can be observed in the notochord sheath cells surrounding the area of damage by 24 hpi (inset: cross-sectional view) and these appear to engulf the

injured area by 72 hpi (inset). n > 10; experimental replicates >10. Scale bar: 100 mm. (d) Multiphoton time-lapse imaging of wound site. Initial

upregulation of GFP occurs at eight hpi in the R2-col2a1a:mCherry positive cells (arrow) and propagates across the injured area over the next 40 hr to

form a seal in the notochord. n = 8; experimental replicates = 1. Scale bar: 100 mm. (e) Representative example of FACS analysis of cell populations in

injured and non-injured zebrafish trunk tissue. GFP+mCherry+ double positive cells are present in injured Tg(wt1b:gfp; col2a1a:mCherry) at 72 hpi.

Percentage of fluorescent cells are reported. Note that the dissected tissue can also encompass wt1b:gfp expressing cells in the posterior end of the

pronephric duct (see also Figure 1c). n = 35 larvae per group; experimental replicates = 4. dpf = days post fertilization; hpi = hours post injury.

DOI: https://doi.org/10.7554/eLife.30657.005

The following source data and figure supplements are available for figure 2:

Figure supplement 1. Imaging cell populations at the wound.

DOI: https://doi.org/10.7554/eLife.30657.006

Figure supplement 1—source data 1. Raw data and statistical analyses for Figure 2—figure supplement 1e.

DOI: https://doi.org/10.7554/eLife.30657.008

Figure supplement 2. Nystatin treatment leads to upregulation of wt1b:gfp expression in notochord sheath cells.

DOI: https://doi.org/10.7554/eLife.30657.007

Lopez-Baez et al. eLife 2018;7:e30657. DOI: https://doi.org/10.7554/eLife.30657 5 of 26

Research article Developmental Biology and Stem Cells

https://doi.org/10.7554/eLife.30657.005
https://doi.org/10.7554/eLife.30657.006
https://doi.org/10.7554/eLife.30657.008
https://doi.org/10.7554/eLife.30657.007
https://doi.org/10.7554/eLife.30657


the trunk region in the injured and uninjured 72 hpi larvae (Figure 3a,b; n = 50 larvae per subset).

Microarray analysis revealed a highly significant 131-fold increase in expression of matrix gla protein

(mgp), a gene that is known to express in chondrocytic zebrafish tissues (Gavaia et al., 2006) and to

be involved in the inhibition of hydroxyapatite production during ectopic bone formation

(Schurgers et al., 2013; Sweatt et al., 2003; Zebboudj et al., 2002) (Figure 3c,d). Other genes

included mesenchymal and cell adhesion markers, such as fn1b, coagulation factors, such as f13a1b,

and immune response genes, such as zgc:92041 and complement c6 (Figure 3d).

The increased expression of mgp and f13a1b genes implicated the de novo acquisition of chon-

drogenic features in the injured tissues. Chondrogenic cells in the endochondral tissues of the cra-

niofacial, fin bud and axial skeletons express mgp (Gavaia et al., 2006) and FXIIIA expression is

localized to the developing chondrogenic mesenchyme of the pectoral fin bud (Deasey et al.,

2012). The expression of cartilage genes was unexpected because ossification around the zebrafish

notochord occurs via the formation the chordacentra, and does not require the establishment of car-

tilage anlagen (Bensimon-Brito et al., 2012; Fleming et al., 2004). To examine the expression of

other chondrogenic genes, we analyzed the top 100 significant genes and found an increase in

expression of sox9b, the master regulator of chondrogenesis, five collagen genes associated with

chondrogenic tissues (col2a1a, col2a1b, col11a2, col9a1 and col9a2), the cartilage-specific extracel-

lular structural protein Aggrecan, a microRNA regulator of chondrogenesis microRNA140 and the

matrix-cell anchor protein chondroadherin (chad) (Figure 3e). To validate these findings at the

molecular level, we isolated sections of damaged and undamaged tissue, and performed qRT-PCR

for matrix gla protein (mgp) and sox9b. We chose these two genes because mgp was highly

expressed in the microarray analysis and important for bone organization, and because Sox9 is a

master cartilage transcription factor. We found mgp and sox9b to be highly upregulated in the

injured tissue compared with the uninjured tissue (Figure 3f,g). Our results reveal that notochord

wounding leads to the formation of a wt1b-positive sheath subpopulation that is characterised by an

unexpected increase in genes associated with cartilage.

Single-cell and 10 cell sequencing of wt1b-expressing sheath cells
To address the molecular nature of the GFP+mCherry+ expressing cells, we performed RNA sequencing

of single-cells and 10 cell pools of FACS sorted GFP+ cells, mCherry+ cells and GFP+mCherry+ cells

from injured zebrafish (3dpi) using the SMARTseq2 protocol (Supplementary file 1; Figure 4—figure

supplement 1) (Kirschner et al., 2017; Picelli et al., 2013). To avoid batch effects, all experimental

conditions were sorted onto the same 96 well plate and processed simultaneously (Baran-Gale et al.,

2017). Sequencing reads were processed using the Scater pipeline (McCarthy et al., 2017). Unbiased

Single cell consensus clustering (SC3) of the whole transcriptomes revealed that the GFP+ cells,

mCherry+ cells and GFP+mCherry+ cells clustered into three distinct subpopulations (SC3 cluster 1:

GFP+, 2: GFP+mCherry+ and 3: mCherry+) (Figure 4a–c) (Kiselev et al., 2017). Single and 10 cell popu-

lations clustering together suggested that sorting conditions led to homogenous 10 cell populations.

Expression of wt1b was detected in SC3 clusters 1 and 2, and col2a1a was expressed in SC3 clusters 2

and 3 (Figure 4b). wt1a transcripts were not detected in any of the SC3 clusters. Together with the

Wt1b antibody immunohistochemistry (Figure 1e, Figure 1—figure supplement 2), detection of wt1b

transcripts in GFP+mCherry+ cells prove endogenous wt1b expression in the notochord damage

response.

To avoid confounding factors, for example different ratios of single to 10 cell trancriptomes,

when calculating differential expression, we used SC3 on the 10 cell populations only. We found con-

sistent clustering of the different cell populations (GFP+, GFP+mCherry+ and mCherry+). Notably,

differential marker gene expression in GFP+mCherry+ cells included the mgp, fn1b and f13a1b

genes (Figure 4c) that were highly upregulated in the wounded tissue (Figure 3d). To validate our

findings, we isolated injured notochord tissue from 3dpi and FACS sorted GFP+, mCherry+ and

GFP+mCherry+ double positive cells, and performed qRT-PCR on sorted cell populations for mgp, a

SC3 cluster 2 cell marker gene. Expression of mgp was selectively enriched in GFP+mCherry+ double

positive cells (Figure 4d).

We next calculated differentially expressed genes between GFP+mCherry+ cells compared with

the mCherry+ cells using SCDE (Kharchenko et al., 2014). Based on the SCDE output genes were

ranked and the ranked list was used with the WEB-based gene set analysis toolkit (WebGestalt) to

explore the functional nature of the GFP+mCherry+ cells compared with the mCherry+ cells
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Figure 3. Cartilage genes are expressed in the notochord-injured zebrafish. (a) Experimental plan: 3 dpf Tg(wt1b:gfp) larvae were needle injured and

grown for 72 hr with uninjured age-matched controls (n = 50 larvae per group). (b) The area around the wt1b:gfp expression was excised at 72 hpi

(dotted area) and RNA was extracted and amplified. A similar area was taken from age-matched uninjured controls. (c) Volcano plot displaying the

differentially expressed genes between injured and non-injured larvae. The y-axis measures the mean expression value of log 10 (p-value) and separates

upregulated from downregulated genes. The x-axis represents the log2 fold change of expression. Significantly upregulated genes are shown as green

circles or dots and downregulated genes are shown as red circles or dots. Green dotted line represents the p-value threshold (p<0.05) and blue dotted

line represents the false discovery rate (FDR) or q-value threshold (q < 0.05). Genes with highest expression change are shown in magnified view. (d)

Table showing the most significantly differentially expressed genes in injured larvae (q < 0.05). Upregulated genes are shown in green and

downregulated genes are shown in red. (e) Table showing cartilage-associated genes that were significantly upregulated in the injured larvae (p<0.05).

(f, g) Results of quantitative real-time PCR (qRT-PCR) of mgp and sox9b. The y-axis indicates the difference between the cycle threshold (Ct) value of

Figure 3 continued on next page
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(Figure 4e). Expression of genes in signaling pathways, such as the TGF-ß pathway were reduced,

while vacuolar and lysosomal pathway components were highly enriched in the GFP+mCherry+ cells

comparing gene sets from multiple databases. To explore the possibility of lysosome activity in

more detail, we performed confocal imaging analysis of the wound site at 7 dpi and observed some

GFP+mCherry+ cells with large inclusions (presumably vacuoles), in the cytoplasm (Figure 4f). This

suggests that some GFP+mCherry+ cells may become vacuolated to replace those lost upon injury.

Next, given the expression of cartilage genes by microarray analysis, we performed gene set enrich-

ment analysis (GSEA) with a list of zebrafish cartilage genes curated in AmiGO (Supplementary file 1b,

1c). Cartilage genes were significantly enriched in the cell cluster 2 (GFP+mCherry+ cells) compared

with cell cluster 3 (mCherry+ cells), suggesting that it is specifically the wt1b-expressing sheath cells that

express genes involved in cartilage formation (Figure 4g).

To explore the role of WT1 in the wound response, we compiled a list of WT1 target genes, and

compared it with the rank order list of RNA transcripts expressed in the GFP+mCherry+ cells by gene

set enrichment analysis (GSEA) (Supplementary file 1b, 1d) (Subramanian et al., 2005). Unexpectedly,

we discovered a set of WT1 regulated genes that were specifically repressed in the GFP+mCherry+ cells

(Figure 4h). WT1 can function with co-factors to repress or activate gene expression, and this new signa-

ture suggests that Wt1b may function as a repressor in the notochord damage response. Next, we per-

formed gene expression analysis for all WT1 co-transcription factors described in (Toska and Roberts,

2014), and found p53 to be most differentially expressed in GFP+mCherry+ cells compared with

mCherry+ cells (Figure 4i,j). GSEA analysis showed that p53 target genes are enriched overall in the

GFP+mCherry+ cell populations (Figure 4k; Supplementary file 1b, 1e), however, when we specifically

analysed the gene expression for those genes that were present in both the WT1 and p53 target gene

list (Supplementary file 1f), we found a strong repression of genes that are regulated by both WT1 and

p53 (Figure 4l). These data uncover an unexpected co-operation between Wt1b and p53 to negatively

regulate a select subset of genes in the wt1b-expressing sheath cell subpopulation during the wound

response.

Vertebra form at the repair site via an unusual cartilage intermediate
The expression of cartilage genes in the wound tissue and in the wt1b-expressing sheath cell sub-

population suggests that the notochord wound may induce a previously unknown and alternative

bone development process. We stained injured and control animals with alcian blue and alizarin red,

which highlight cartilage and bone respectively. Cartilage was clearly visible at the site of injury as

soon as three dpi (Figure 5a). This staining was significantly stronger and distinct from the highly

coordinated segmental cartilage staining that normally occurs during larval development in the

region of the future intervertebral discs, which is clearly visible in both injured and non-injured con-

trols by 14 dpi (Figure 5a). Similarly, the alizarin red dye identified the anterior to posterior forming

chordacentra rings during larval development. However, in injured zebrafish larvae, the normally uni-

form mineralization pattern was interrupted around the site of damage, leading to delayed forma-

tion of the chordacentra at later stages (Figure 5a). By 18 dpi, the injured site began to express

bone matrix, and was visibly flanked by cartilage expressing segments (Figure 5b). This is unusual

because during norm-physiological development of the vertebral elements, cartilage and bone stains

mark distinct regions of the notochord.

Figure 3 continued

the gene of interest and the Ct value of b-actin for mgp and gapdh for sox9b. Note that the y-axis is inverted to ease interpretation. Bars represent

standard deviation from the mean. mgp **p=0.025; sox9b ***p=0.007; paired t-test; Experimental replicates: mgp = 2; sox9b = 1 at 48 hpi, and 1 at 72

hpi (40 embryos pooled per replicate). See Source Data files (Figure 3—source data 1; Figure 3—source data 2).

DOI: https://doi.org/10.7554/eLife.30657.010

The following source data is available for figure 3:

Source data 1. Raw data and statistical analyses for Figure 3f.

DOI: https://doi.org/10.7554/eLife.30657.011

Source data 2. Raw data and statistical analyses for Figure 3g.

DOI: https://doi.org/10.7554/eLife.30657.012
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Figure 4. Single-cell and 10 cell sequencing of wt1b-shealth cell populations. (a) Single-cell and 10 cell SC3 unbiased clustering analysis reveals three

distinct cell populations marked by GFP (cluster 1), mCherry (cluster 3), or GFP and mCherry (cluster 2). (b) GFP, mCherry, wt1b and col2a1a expression

Figure 4 continued on next page
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To evaluate the outcome of the injury in the ossification process, wild-type larvae were injured

and stained using live calcein dye at 21 and 38 dpi (Du et al., 2001). The vertebrae that eventually

formed were often smaller in a given space interval and appeared supernumerary compared with

uninjured age-matched controls (Figure 5c–e).

The notochord patterns spine formation via the activation of various signals, and has been pro-

posed to be an essential component of chordacentra formation (Bensimon-Brito et al., 2012;

Fleming et al., 2004). Entpd5a (ectonucleoside triphosphate diphosphohydrolase 5) is an E-type

NTPase that is expressed in osteoblasts and is essential for skeletal morphogenesis (Huitema et al.,

2012). Recent evidence shows that metameric expression of entpd5a in notochord sheath cells is an

essential requirement for the patterned formation of chordacentra rings (LL-F and SS-M, personal

communication), with entpd5a expression serving as a readout for mineralizing activity

(Huitema et al., 2012). We crossed the Tg(wt1b:gfp) transgenic line to a Tg(entdp5a:pkRed) line

and followed the wound response. wt1b and entpd5a expressing cell populations were closely asso-

ciated at the wound site indicating that mineralizing entpd5a cells may directly contribute to wt1b+-

associated chordacentra response (Figure 6a,b).

Next, we wanted to explore the relationship between entpd5a expression domains and the verte-

brae formation at the wound site. By 5 dpf, metameric entpd5a expression domains are clearly visi-

ble in the anterior notochord. We wounded the notochord in 5 dpf and 7dpf fish either in between

two adjacent entpd5a-expression domains or aimed at the center of an entpd5a-expression domain.

Fish that had been wounded between the entpd5a-expression domains appeared to have normal

vertebrae structures at 25 dpi (n = 6/6). In contrast, damaging the entpd5a-expression domain led

to a supernumerary vertebra at the wound site (n = 4/4; Figure 6—figure supplement 1).

Taken together, these results indicate that wounding alone is not sufficient to alter the vertebrae

number, and that entpd5a expression domains likely play a role in vertebrae formation following

injury. These experiments raise the possibility that the notochord wound assay at 3 dpf disrupts an

as of yet unknown precursor cell population. Up-regulation of entpd5a at the damage site may be

part of a patho-physiological wound repair response that disrupts and/or engages with a precursor

cell population (such as the metameric entpd5a expression) leading to altered vertebra(e) in the

adult.

wt1b+ expression perdures into the adult vertebrae
We noticed that the Tg(wt1b:gfp) transgene expression was always associated with the site of verte-

brae formation in the injured zebrafish that were raised to adulthood. To determine if wt1b

Figure 4 continued

in 10 cell clusters. (c) Top 10 differential gene expression marker genes for 10 cell clusters. (d) Expression of mgp in different cell populations of injured

zebrafish notochords. RNA was isolated from FACS sorted GFP, RFP and GFP/RFP expressing cells of the notochord of Tg(wt1b:gfp; R2-cola2a1a:

mCherry) embryos, and gene expression was determined by qPCR. The y-axis indicates the difference between the cycle threshold (Ct) value of the

gene of interest and the Ct value of beta-actin in injured and uninjured notochord. The y-axis is inverted for ease of interpretation. p-values are

determined by paired t-test. Bars represent standard deviation. mgp: **p=0.035. Experimental replicates = 2. See Source Data file (Figure 4—source

data 1). (e) Bar chart depicting functional analysis of differentially expressed genes between 10 cell SC3 cluster 2 and cluster three against five

databases. Normalised enrichment score (NES, x-axis) calculated using online functional enrichment tool WebGestalt resource. Coloured bars match

specific databases. (f) Images of the wound site seven days post injury in Tg(wt1b:gfp;col2a1a:mCherry); nacre-/- embryos. Arrows indicate vacuole-like

structures. n = 7; experimental replicates: 1. Scale bar: 50 mm. (g) Gene set enrichment analysis (GSEA) of cartilage genes in wt1-expressing sheath cell

(cluster 2) 10 cell group clusters (21 out of 82 genes were positively enriched; NES = 0.90). (h) GSEA of WT1 gene targets in wt1b-expressing sheath cell

(cluster 2) 10 cell group clusters (19 out of 56 target genes were negatively enriched; NES = �1.44). (i) Heatmap of expression of WT1-interacting

partners in 10 cell cluster 2 and cluster 3. (j) p53 RNA expression in 10 cell clusters. (k) GSEA of p53 targets genes in wt1b-expressing sheath cell (cluster

2) 10 cell group clusters (358 out of 1442 genes were positively enriched; NES = 1.17). (l) GSEA of common p53 and WT1 gene targets in wt1b-

expressing sheath cell (cluster 2) 10 cell group clusters (10 out of 19 genes were negatively enriched, NES = �1.11).

DOI: https://doi.org/10.7554/eLife.30657.013

The following source data and figure supplement are available for figure 4:

Source data 1. Raw data and statistical analyses for Figure 4d.

DOI: https://doi.org/10.7554/eLife.30657.015

Figure supplement 1. Quality control for the single-cell and 10 cell RNA sequencing.

DOI: https://doi.org/10.7554/eLife.30657.014
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Figure 5. De novo bone formation occurs via a cartilage intermediate at the site of injury. (a) Alcian blue and Alizarin red staining at the site of injury in

3 and 14 dpi larvae. Ectopic cartilage deposit is indicated by arrow. n > 10; experimental replicates = 8. Scale bar left panels: 400 mm; scale bar right

panels (zoomed images): 200 mm. (b) Alcian blue and Alizarin red staining at the site of injury at 18 dpi indicates the presence of bone and cartilage at

the repair site (blue arrow = cartilage; red arrow = bone). n = 2; experimental replicates = 8. Scale bar: 200 mm. (c) Alcian blue and alizarin red staining

of 30 dpi larvae reveals the formation of a smaller vertebra in the damaged area. n > 10; experimental replicates = 3. Scale bar left panels: 400 mm;

scale bar right panels (zoomed images): 200 mm. (d) Live imaging of calcein stained zebrafish at 21 and 38 dpi in injured and uninjured fish. Vertebrae at

damage site are indicated by yellow asterisks. Black asterisk denotes intestinal fluorescence. n = 5; experimental replicates = 1. Scale bar 21 hpf: 200

mm; scale bar 21 hpf zoomed: 100 mm; scale bar 38 hpf: 200 mm; scale bar 38 hpf zoomed: 100 mm. (e) The relative vertebra size difference (D size)

between vertebrae at the site of injury (injured) and vertebrae in non-injured areas (uninjured). Vertebrae at the site of injury were significantly smaller

than uninjured vertebrae (Unpaired t-test; ***p<0.0001 two-tailed; mean ±SEM uninjured larvae = 0.9506 + /- 0.02102 n = 7; mean ±SEM injured

larvae = 0.7432 + /- 0.0284 n = 7; measurements taken at 30 and 38 dpi).

DOI: https://doi.org/10.7554/eLife.30657.016
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expression was transient at the wound, or sustained throughout the repair process, we raised needle

injured Tg(wt1b:gfp); casper zebrafish larvae for up to 38 days.

GFP expression was sustained at the wound site, remaining in a small, cellular population at the

site of damage, even as chordacentra developed and mineralized around the notochord over time

(Figure 7). Small GFP expressing cells were further confirmed by a-GFP staining at the site of dam-

age (Figure 7b). Strikingly, the Tg(wt1b:gfp) transgene maintained expression at this site up to 38

dpi (Figure 7c,d,g).

To gain a better understanding of how wt1b:gfp expressing cells engage with the newly forming

vertebrae, we carried out live, confocal imaging of the area of damage (Figure 7e–g). The analysis

revealed the presence of both fused and unfused vertebrae at the damaged site, and the sustained

and strong expression of wt1b:gfp expressing cells associated with the developing vertebra at the

repair site area (Figure 7f), even in fully formed spine structures (Figure 7g).

Taken together these results indicate that wt1b:gfp expressing cells both mark a subpopulation

of cells that are rapidly activated at the site of the wound and also that these cells persist until adult-

hood, possibly orchestrating local vertebrae formation with wound repair.

Discussion
We have uncovered wound-specific cellular heterogeneity in the zebrafish notochord that perdures

throughout the wound healing process and during adult vertebra formation at the injury site (Fig-

ure 8). We discover that wounding leads to localized wt1b expression in the notochord sheath cells

which then invade the site of the injury to form a stopper-like structure, likely to maintain notochord

integrity. We show the specific de novo expression of wt1b in notochord sheath cells following

Figure 6. Distinct and closely associated wt1b and entpd5a subpopulations emerge at the damage site. (a) Live-imaging at the site of notochord injury

in Tg(wt1b:gfp; entpd5a:dkRed) larvae. Expression of wt1b:gfp and entpd5a:pkRed at site of damage (green arrows and red arrows respectively) in

injured and uninjured fish. n > 10; experimental replicates = 5. Scale bar: 50 mm. (b) Cryo-section of the injured area confirms distinct wt1b:gfp and

entpd5a:dkRed subpopulations at site of damage. n > 10; experimental replicates = 2. Scale bar: 20 mm.

DOI: https://doi.org/10.7554/eLife.30657.017

The following figure supplement is available for figure 6:

Figure supplement 1. Needle damage of the entpd5a cell domain leads to supernumerary vertebrae.

DOI: https://doi.org/10.7554/eLife.30657.018
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Figure 7. wt1b expressing cells are closely associated with vertebral development after injury. (a) Images of Tg(wt1b:gfp) zebrafish following needle

injury at 3 dpf and raised to 28 dpi. n > 10; experimental replicates = 4. Scale bar left panels: 100 mm; scale bar right panels: 200 mm. (b) a-GFP staining

of 28 dpi larvae at the site of the healing notochord wound and in the kidney. n = 5; experimental replicates = 1. Scale bar left panels: 50 mm. (c) Image

of fish from Figure 5a,c, stained with alizarin red and imaged for wt1b:gfp expressing cells. GFP positive cells are found within the ectopic vertebra

(white arrow and inset). n = 4; experimental replicates = 1. Scale bar left panels: 100 mm. (d) Long-term follow up of alizarin red stained Tg(wt1b:gfp);

casper larvae shows that chordacentra formation is delayed around the site of injury. GFP cells mark the site of the future vertebra. n = 6; experimental

Figure 7 continued on next page
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wounding, despite an absence of wt1b expression during notochord development (Figure 1e,

Figure 7 continued

replicates = 2. Scale bar: 100 mm; scale bar zoomed images: 50 mm. (e) Confocal imaging of 15, 21 and 28 dpi larvae reveals an overlapping expression

between the wt1b:gfp expressing cells and the forming chordacentra (alizarin red stained) in the injured Tg(wt1b:gfp); casper larvae. n > 10;

experimental replicates = 3. Scale bar: 100 mm. Imaging views are lateral, angled and cross-section view. (f) Confocal imaging highlights the

overlapping presence of bone (alizarin red stained) and wt1b:gfp cells at the wound in 18 dpi larvae (arrow). n > 10; experimental replicates = 3. Scale

bar: 100 mm. (g) Confocal scans of 24 dpi Tg(wt1b:gfp) larvae stained with alizarin red and expressing GFP at the injury site following notochord injury

compared with uninjured control fish. GFP positive cells are present within the vertebrae at the injury site (arrow). Scale bar left fish: 1000 mm; scale bar

on vertebrae images: 100 mm.

DOI: https://doi.org/10.7554/eLife.30657.019

Figure 8. Schematic of the notochord wound response.

DOI: https://doi.org/10.7554/eLife.30657.020

The following source data and figure supplements are available for figure 8:

Figure supplement 1. Generation of wt1b mutant zebrafish.

DOI: https://doi.org/10.7554/eLife.30657.021

Figure supplement 1—source data 1. Raw data and statistical analyses for Figure 8—figure supplement 1h.

DOI: https://doi.org/10.7554/eLife.30657.022

Lopez-Baez et al. eLife 2018;7:e30657. DOI: https://doi.org/10.7554/eLife.30657 14 of 26

Research article Developmental Biology and Stem Cells

https://doi.org/10.7554/eLife.30657.019
https://doi.org/10.7554/eLife.30657.020
https://doi.org/10.7554/eLife.30657.021
https://doi.org/10.7554/eLife.30657.022
https://doi.org/10.7554/eLife.30657


Figure 1—figure supplement 2).

Very recently, Bagnat and colleagues reported the identification of notochord sheath cells

involved in the replacement of vacuolated cells lost due to motion-dependent mechanical damage

to the notochord in caveolin mutants (Garcia et al., 2017). In this context, sheath cells invade the

vacuolated cell layer and differentiate into vacuolated cells to maintain turgor pressure. While we

observe that most wt1b-expressing cells are tightly associated with a stopper-like (scar-like) structure

from embryo to adult (Figure 7), we find some wt1b expressing cells appear vacuolated at the injury

site at later stages (7 days post injury; Figure 4f), and that wt1b-expressing cells express vacuolar

genes (Figure 4e). We also detected entpd5a expressing cell subpopulations at the wound that are

distinct from wt1b expressing cells (Figure 6). These studies highlight a previously unknown complex

and heterogeneous nature of the sheath cell populations, and suggest that the notochord sheath

can sense and respond to different types of damage. Motion-dependent shear stress in caveolin

mutants causes loss of vacuolated cells that are replaced by new vacuolated cells that arise from the

sheath (Garcia et al., 2017), while acute damage (i.e. needle injury) that encompasses sheath and

vacuolated cell damage, leads to sheath cells forming a seal that marks the site of new cartilage and

vertebra (Figure 8). We show that wt1b expression marks a subpopulation of sheath cells in both

damage responses (Figure 1, Figure 2—figure supplement 2), and suggest that additional factors

are involved in the ultimate fate of wt1b-expressing cells (i.e. vacuolated cells versus scar like

structure).

To address the function of Wt1b in the wound response, we generated a CRISPR-Cas9 genetic

mutant that removes part of the C-terminal zinc-finger domains that are essential for WT1 function

in mammalian systems. We find homozygous wt1b mutant zebrafish show no overt difference from

wild type fish in the wound response (Figure 8; Figure 8—figure supplement 1). However, given

the dramatic up-regulation of wt1b upon wounding, and given the continued expression up to adult

stages, we consider it unlikely that Wt1b has no role in the process. Compensatory mechanisms

have to be considered, and indeed, we find a small, but significant increase in wt1a in wt1bD5/D5

wounded tissue. Furthermore, compensatory mechanisms downstream the Wt1b-p53 axis could

mask a role, and further analysis beyond the scope of this study will be required to fully understand

the functional significance of Wt1b in this subpopulation of cells.

By leveraging gene expression profiling, and single-cell and 10 cell sequencing of the wounded

tissue, we discovered a mechanism for vertebra formation via a cartilage intermediate at the injury

site. This is completely unexpected as in zebrafish, ossification of the chordacentra does not require

the establishment of a cartige anlagen, but form via the direct mineralization of the

fibrous notochord sheath (Bensimon-Brito et al., 2012; Fleming et al., 2015). The activation of

wt1b in sheath cells that migrate towards the center of the notochord is reminiscent of the situation

where wt1b expression is reactivated in epicardial cells that undergo EMT to produce vascular pro-

genitors and migrate into the heart (Martı́nez-Estrada et al., 2010). This raises the question whether

notochord sheath cells may also be mesothelial in nature and if the invading wt1b expressing cells

are produced via an EMT or, perhaps more accurately, a mesothelial to mesenchyme transition.

While wt1b-positive cells express some mesenchymal genes (Figure 3d), we did not find evidence

that these cells express classical gene signatures related to known EMT processes in the damaged

tissue. This may be evidence of an as of yet unknown process in the wound response, or possibly

because the EMT process was primarily completed by the time of our analysis at 3 days post injury.

Surprisingly, we have uncovered a new Wt1b-p53 gene expression signature that is specifically

repressed in wt1b+ sheath cells (Figure 4k). p53 is a transcription factor that in addition to its well-

established role as a tumor suppressor, functions to inhibit premature osteoblast differentiation and

bone remodeling (Liu and Li, 2010). Several lines of evidence support a direct WT1-p53 interaction,

and that p53 can modify activity of WT1 transcriptional activity from an activator to a repressor on

select promoters in vitro (Maheswaran et al., 1995; Maheswaran et al., 1993). However, the in

vivo function for the WT1-p53 interaction is not yet understood, and loss of p53 in wt1-null mutant

mice does not alter the wt1-null phenotype (Menke et al., 2002). Here, we identify a Wt1b-p53 axis

specifically in the repair of a notochord wound. The Wt1b-p53 gene signature includes repression of

genes that regulate osteogenesis in mammals, including myc (a and b), egr1 and igfrb (Piek et al.,

2010; Reumann et al., 2011; Wang et al., 2015). We propose that repair-specific transcription fac-

tors participate in notochord healing by co-ordinating expression of cartilage genes such as sox9

and mgp (Schurgers et al., 2013; Sweatt et al., 2003; Zebboudj et al., 2002), with a Wt1b-p53
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transcriptional axis repressing premature expression of osteogenesis genes in the first few days fol-

lowing wounding. We see entpd5+ notochord sheath cells in the wound area (Figure 6), and since

entpd5 is essential for mineralization, it seems likely that these cells, in conjunction with cartilage for-

mation at the site of injury, play a role in centrum formation (Figure 8). Eventually, smaller vertebra

form at the wound site, and wt1b:gfp cells remain tightly associated with this/these vertebra(e) into

adulthood. This mode of notochord wound healing and vertebra formation may be a salvage struc-

ture to effectively maintain structural integrity of the developing axial skeleton.

Materials and methods

Key resources table

Reagent type
or resource Designation Source or reference Identifiers Additional information

Gene (Danio Rerio) sagff214a NA ZFIN ID: ZDB-ALT-
110315–2

Gene (Danio Rerio) wt1a NA ZFIN ID: ZDB-GENE-
980526–558

Gene (Danio Rerio) col2a1a NA ZFIN ID: ZDB-GENE-
980526–192

Gene (Danio Rerio) entpd5a NA ZFIN ID: ZDB-GENE-
100419–1

Gene (Danio Rerio) sox9b NA ZFIN ID: ZDB-GENE-
001103–2

Gene (Danio Rerio) wt1b NA ZFIN ID: ZDB-GENE-
050420–319

Genetic reagent
(Danio Rerio)

Tg(entpd5:kaede) Geurtzen et al., 2014
doi: 10.1242/dev.105817

ZFIN ID: ZDB-ALT-
150223–1: hu6867

Same BAC used as
Huitema et al. (2012)
(DOI: 10.1073/pnas.1214231110)
with kaede insertion at first
translated ATG

Genetic reagent
(Danio Rerio)

Tg(entpd5:pkRed) This paper ZFIN ID: hu7478 Same BAC used as
Huitema et al. (2012)
(DOI: 10.1073/pnas.1214231110)
with pkRed insertion at first
translated ATG

Genetic reagent
(Danio Rerio)

Tg(SAGFF214a;UAS:gfp) Yamamoto et al. (2010)
DOI: 10.1242/dev.051011

ZFIN ID: ZDB-FISH-
150901–18089

Genetic reagent
(Danio Rerio)

Tg(wt1b:GFP,R2col
2a1a:mCherry)

This paper ZFIN ID: ZDB-ALT-
180105–1; zfin.org:ue401Tg

Genetic reagent
(Danio Rerio)

Tg(wt1a:GFP) Bollig et al. (2009)
DOI: 10.1242/dev.031773

ZFIN ID: ZDB-FISH
-150901–2540

Genetic reagent
(Danio Rerio)

Tg(wt1b:GFP) Perner et al. (2007)
DOI: 10.1016/j.ydbio.2007.06.022

ZFIN ID: ZDB-FISH-
150901–1774

Genetic reagent
(Danio Rerio)

casper White et al. (2008)
DOI: 10.1016/j.stem.2007.11.002

ZFIN ID: ZDB-ALT-990423–22

Genetic reagent
(Danio Rerio)

zebrafish codon
optimised cas9 mRNA

Jao et al. (2013)
DOI: 10.1073/pnas.1308335110

Genetic reagent
(Danio Rerio)

Wt1b p.F319fsX321 this paper ZFIN ID: ZDB-ALT-180
105–2; zfin.org:ue402

zebrafish wt1b mutant line,
mutation is in the exon coding
the zinc finger 2

Genetic reagent Tol2 transposase Kawakami, 2007
DOI: 10.1186/gb-2007–8 s1-s7

Continued on next page
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Continued

Reagent type
or resource Designation Source or reference Identifiers Additional information

Antibody anti-WT1 (rabbit
polyclonal)

This paper, Cambridge Research
Biochemicals antibody production
services

(1:25000); anti-WT1 was
designed using the TARGET
antibody production protocol
from Cambridge Research
Biochemicals using a conserved
protein sequence from the
C-terminal of the zebrafish
Wt1a and Wt1b proteins.

Antibody AlexaFluor 488 antibody
(rabbit polyclonal)

Invitrogen Donkey anti-Rabbit IgG
(H + L) Secondary Antibody,
Alexa
Fluor 488: R37602;
RRID:AB_221544

(1:800)

Antibody anti-GFP (rabbit
polyclonal)

Cell Signaling Technology Cell Signaling Technology:
GFP Antibody (Rabbit): 2555S;
RRID:AB_10692764

(1:1500)

Recombinant DNA
reagent (plasmid)

R2-col2a1a:mCherry Dale and Topczewski (2011)
DOI: 10.1016/j.ydbio.2011.06.020

Sequence-based
reagent

wt1b mutant sgRNA this paper GGTCAGACCTGGAGAAGCGG

Commercial assay
or kit

Dako REAL EnVision
Detection System kit

Dako Dako REAL EnVision
Detection System, Peroxidase
/DAB+,
Rabbit/Mouse: Code
K5007

Commercial assay
or kit

Low Input Quick
Amp Labelling Kit

Agilent Technologies Low Input Quick Amp
Labeling Kit, one-color:
5190–2305

Commercial assay
or kit

Nextera XT DNA Library
Preparation Kit
(96 samples),

Illumina Nextera XT DNA Library
Preparation Kit (96 samples),:
Cat: FC-131–1096

Commercial assay
or kit

4 � 44K Whole Zebrafish
(V3) Genome Oligo
Microarray

Agilent Technologies

Chemical compound,
drug

DPX Mountant for
histology

Sigma-Aldrich DPX Mountant for histology:
06522–100 ML

Chemical compound,
drug

ProLong Gold Antifade
Mountant with DAPI

Invitrogen ProLong Gold Antifade
Mountant with DAPI: P36931

Chemical compound,
drug

Trizol Invitrogen TRIzol Reagent:
15596026

Chemical compound,
drug

FACSmax cell
disassociation solution

Genlantis FACSmax Cell Dissociation
Solution: AMS.T200110

Chemical compound,
drug

OCT compound
Tissue-Tek

Sifam Instruments LTD OCT COMPOUND TISSUE-
TEK: SIFAAGR1180

Chemical compound,
drug

Nystatin Sigma-Aldrich Nystatin powder, BioReagent,
suitable for cell culture:
N6261-500KU

Software, algorithm Color Inspector 3D ImageJ 1.51 n plugin RRID:SCR_002285

Software, algorithm Fiji ImageJ 1.51 n RRID:SCR_002285

Software, algorithm Feature Extraction
Software

Agilent Technologies RRID:SCR_014963

Software, algorithm Rsubread package R-3.3.3; Liao et al. (2013).
DOI: 10.1093/nar/gkt214

RRID:SCR_009803

Software, algorithm SCDE Kharchenko et al. (2014)
DOI: 10.1038/nmeth.2967

RRID:SCR_015952

Continued on next page
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Continued

Reagent type
or resource Designation Source or reference Identifiers Additional information

Software, algorithm SC3 package Kiselev et al. (2017)
DOI: 0.1038/nmeth.4236

RRID:SCR_015953

Software, algorithm Scater package McCarthy et al., 2017
DOI: 10.1093/bioinformatics/btw777

RRID:SCR_015954

Software, algorithm STAR RNA-seq aligner Dobin et al. (2013)
DOI: 10.1093/bioinformatics/bts635

RRID:SCR_015899

Software, algorithm FACSDiva software Version 6.1.3; BD Biosciences RRID:SCR_001456

Software, algorithm Webgestalt Wang et al. (2013)
DOI: 10.1093/nar/gkt439

RRID:SCR_006786

Software, algorithm Rosetta Resolver gene
expression data
analysis system

Rosetta Biosoftware RRID:SCR_008587

Other Alizarin Red Fisher Scientific Alizarin Red S
Sodium Salt25G:11329707

Other Alcian Blue Sigma Alcian Blue 8Gx:
A5268-10G

Zebrafish lines
All experimental procedures were approved by the University of Edinburgh Ethics Committee and

were in accordance with the UK Animals (Scientific Procedures) Act 1986. Transgenic lines for this

study include: Tg(entpd5a:pkRed) (Huitema et al., 2012), Tg(SAGFF214A:GalFF;UAS:gfp)

(Yamamoto et al., 2010), Tg(wt1a:gfp) (Bollig et al., 2009), Tg(wt1b:gfp) (Bollig et al., 2009;

Perner et al., 2007). Many of the studies were performed in a transparent background created by

crossing homozygous Tg(wt1b:gfp) fish to homozygous pigment-free transparent casper fish

(White et al., 2008). The Tg(wt1b:gfp;R2col2a1a:mCherry) line was created by injecting the

R2col2a1a:mCherry construct (Dale and Topczewski, 2011) with a Tol2 transposase (Kawa-

kami, 2007) into Tg(wt1b:gfp;casper) zebrafish embryos, generating Tg(R2col2a1a:mCherry)ue401Tg.

Notochord needle injury and tail amputation assays
For notochord wounds on day 3, larvae were anaesthetised in tricaine, placed sagittally on a petri

dish and either inserted gently with an electrolysis-sharpened tungsten wire or tail amputated at dif-

ferent levels. Injured larvae were transferred to fresh water to recover and observe. Non-injured

age-matched larvae were grown as non-injured controls. For injuries on day 5 and 7 pf larvae, the

notochord wounds were generated using stainless steel insect pins (0.10 mm), under fluorescence

light in a Leica (Germany) M165FC with a 1.0X plan Apo objective. All pictures (brightfield, Kaede

and alizarin red stains) where taken using an Olympus (Japan) szx16 with a 1.5X Plan Apo objective

with a Leica DFC 450C camera.

Whole-mount microscopy
Live and fixed whole-mount time-course and time-lapse experiments were performed using an

AZ100 upright macroscope (Nikon; Japan) using a x2 and x5 lens with a Retiga Exi camera (Qimag-

ing) or Coolsnap HQ2 camera (Photometrics; Tucson, Arizona) or a Leica MZFLIII fluorescence stereo

microscope fitted with a Qimaging Retiga Exi camera. Images were analyzed and processed using

the IPLab Spectrum and Micro-Manager software. Live and fixed whole-mount confocal imaging was

performed using an A1R confocal system (Nikon) using x10 and a x20 lens over a Z-plane range of

80–100 mm (approximate width of the notochord) using a 480 nm laser (GFP), a 520 nm (RFP) and/or

a 561 nm laser (alizarin red). Images were captured and analysed using Nis-Elements C software

(Nikon). Images of the nystatin-treated larvae were acquired by using a 20x lens on the Imaging Plat-

form Dragonfly (Andor Technologies, Belfast UK) with 488 nm (GFP) and 561 nm (RFP) lasers built on

a Nikon TiE microscope body with a Perfect focus system (Nikon Instruments). Z stacks through the

notochord were collected in Spinning Disk 25 mm pinhole mode on the Zyla 4.2 camera using a Bin

of 1 and frame averaging of 1 using Fusion v1.4 software. Data were visualised using Fiji, and
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histograms generated using its Color Inspector 3D plugin. Multiphoton confocal time-lapse imaging

was performed using an SP5 confocal microscope (Leica) equipped with a Ti:Sapphire multiphoton

laser (Spectra Physics; Santa Clara, California) and a three axis motorised stage. For confocal imag-

ing and time-lapse experiments, anaesthetised injured and non-injured larvae were embedded sagit-

tally in a drop of 1% low-melting point agarose prior to imaging, in a specially designed glass insert,

which was covered in a mixture of E3 medium and anaesthetic. All time-lapse imaging was done at

30 or 60- min intervals over 48 hr using an incubation chamber (Solent Scientific; UK) under a con-

stant temperature of 28˚C and larvae were terminated in an overdose of tricaine at the end of each

experiment.

Histology
Zebrafish larvae younger than 20 dpf were culled and fixed overnight in 4% PFA/PBS at 4˚C. The
fixed larvae were washed in PBS, dehydrated in rising methanol/PBS concentrations and cleared in

xylene before being paraffin embedded for sectioning. Older zebrafish were culled and fixed in 4%

PFA/PBS at 4˚C for 3 days with an abdominal incision to ensure tissue penetrance of the fixative

(Walker and Kimmel, 2007; Wojciechowska et al., 2016). Fish were decalcified using 0.5M EDTA

(pH 7.5) for 5 days in a rocker at 4˚C and dehydrated in 70% ethanol at 4˚C. Fish were embedded in

paraffin using a Miles Scientific Tissue TEK VIP automated processor. Embedded larvae and older

zebrafish were sectioned using a Leica RM2235 rotary microtome to a width of 5 mm. Sections were

haematoxylin and eosin (H and E) stained and mounted using DPX mountant for histology (Sigma-

Aldrich; St. Louis, Missouri). For cryosections, zebrafish larvae were embedded in OCT compound

Tissue Tek (Sifam Instruments LTD; UK) and cut to 8 mm following protocols available at www.zfin.

org.

Wt1 zebrafish antibody
The Wt1 antibody was synthesised by Cambridge Research Biochemicals (CRB; UK) antibody pro-

duction services (http://www.crbdiscovery.com/home). The antibody was created using the CRB

TARGET antibody production protocol (https://www.crbdiscovery.com/antibodies/target-antibod-

ies/), which used a HPLC-purified peptide made from the third zinc finger domain of zebrafish Wt1

(CQRKFSRSDHLKTHTRT) to immunise two rabbits. This epitope is found in both Wt1a and Wt1b,

and the antibody is expected to detect both zebrafish Wt1a and Wt1b. The serum from each rabbit

was collected at multiple time points and tested for the presence of Wt1 antibodies using an electro-

phoretic mobility shift assay (EMSA). The purified polyclonal antibody was extracted from the rabbit

serum on the final collection day. Western blot analysis of lysates from zebrafish (24 hpf) revealed a

strong band at approximately 45 kDa, consistent with the size of zebrafish Wt1a/b protein. Immuno-

fluorescence on paraffin-embedded sections with Wt1 antibody (diluted 1:33,000) revealed cell-spe-

cific staining in the kidney and notochord wound site that was depleted by co-incubation of the Wt1

antibody with the Wt1 epitope peptide.

Immunohistochemistry
Slides were de-waxed in xylene and rehydrated through decreasing ethanol washes, before being

incubated in a bleach solution to remove pigment. Antigen-unmasking was performed as previously

described (Patton et al., 2005). with the Dako REAL EnVision Detection System kit (Dako; UK) fol-

lowing manufacturer’s instructions. Slides were incubated overnight at 4˚C with the following anti-

bodies: anti-rabbit a-GFP (1:1,500; Cell Signaling Technology) and anti-rabbit a-WT1 (1:25,000;

Cambridge Research Biochemicals; UK). An Axioplan II fluorescence microscope (Zeiss; Germany)

with a Plan Apochromat objective was used for brightfield imaging of tissue sections. Images were

captured using a Qimaging Micropublisher 3.3mp cooled CCD camera and analysed using the IPLab

Spectrum software.

Immunofluorescence
Slides were processed as described above and blocked in 10% heat inactivated donkey serum for 2

hr. Slides were incubated overnight at 4˚C with a-WT1 (1:33,000) antibody diluted in 1% heat inacti-

vated donkey serum in TBSTw. Slides were incubated for 1 hr in a secondary anti-rabbit AlexaFluor

488 antibody (1:800) (Invitrogen; Carlsbad, California) in 1% heat inactivated donkey serum and
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mounted in ProLong Gold Antifade Mountant with DAPI (Invitrogen) overnight before being imaged

in a fluorescent stereomicroscope.

Tissue staining
Live bone staining was performed using 0.2% (w/v) calcein or using 50 mg/ml alizarin red (Fisher

Scientific; UK) as previously described (Kimmel et al., 2010). For cartilage and bone staining, we

used alcian blue and alizarin red following the protocol outlined in (Walker and Kimmel, 2007) with

modifications from protocols on www.zfin.org. Bone and cartilage staining in fixed larvae was per-

formed on PFA fixed and then methanol dehydrated specimens, treated overnight at 4˚C with

0.02% (weight to volume) alizarin red in 70% ethanol. Specimens were bleached (H2O2) and cleared

before storing in glycerol for imaging.

RNA extraction and microarray analysis
Tg(wt1b:gfp) zebrafish larvae were needle injured and grown to 72 hpi with age-matched non-

injured controls. The area around the site of injury was dissected and transferred into 1 ml of chilled

RNA-later. The samples were centrifuged into a pellet at 4˚C and macerated in 500 ml of Trizol (Invi-

trogen) using a 25G 5/81 ml syringe. RNA was extracted following Trizol manufacturer’s instructions

and eluted into 15 ml of distilled H2O. Extracted RNA was sent to Myltenyi Biotec (Germany) who

conducted the microarray analysis. Injured and non-injured samples were sent in triplicates and the

RNA was amplified and Cy3-labelled using a Low Input Quick Amp Labelling Kit (Agilent

Technologies; UK) following manufacturer’s instructions. The labelled cRNA was hybridised against a

4 � 44K Whole Zebrafish (V3) Genome Oligo Microarray (Agilent Technologies). The microarray

images were processed using the Feature Extraction Software (FES – Agilent Technologies) and dif-

ferential gene expression was determined using the Rosetta Resolver gene expression data analysis

system (Rosetta Biosoftware).

Fluorescence-Activated cell sorting
The trunk region of fifty Tg(wt1b:gfp; R2col2a1a:mCherry) injured larvae and non-injured 72 hpi lar-

vae were dissected and collected separately in cold PBS + 2% fetal calf serum (FCS). Tissue disasso-

ciation was adapted from a previously described protocol (Manoli and Driever, 2012) and

centrifuged cells were collected in FACSmax cell disassociation solution (Genlantis; San Diego, Cali-

fornia). The samples were passed twice through a 40 mm cell strainer, collected in an agar-coated

petri dish on ice and transferred into an eppendorf tube to be sorted by a FACSAria2 SORP instru-

ment (BD Biosciences; UK) equipped with a 405 nm, a 488 nm and a 561 nm laser. Green fluores-

cence was detected using GFP filters 525/50 BP and 488 nm laser, red fluorescence was detected

using 585/15 BP filter and 561 nm laser. Data were analysed using FACSDiva software (BD Bioscien-

ces) Version 6.1.3. For single cell sequencing, single cell or 10 cells were sorted into 96-well plates;

for quantitive realtime PCR (qPCR) analysis, cells were collected by centrifuging at 6000 rpm for 5

min.

wt1b mutant line
The wt1b genetic mutant line was generated by CRISPR/Cas9 with a guide RNA target GGTCA-

GACCTGGAGAAGCGG (on the reverse strand) in the exon of wt1b that encodes zinc finger 2.

Crispr/Cas9 genome editing was carried out following the Joung lab protocol (Hwang et al., 2013),

with injection of a zebrafish codon optimized Cas9 mRNA (Jao et al., 2013). Two founders carrying

germline mutations at the target site were identified: one mutation is a deletion of 12 bp (leading to

an in-frame deletion) and the other is a deletion of 5 bp (wt1bD5)ue402, and was used in this study.

qRT-PCR analysis
RNA extraction, in vitro synthesis and PCR amplification of cDNA were performed using the Smart

Seq2 protocol (Picelli et al., 2014). Amplified cDNA was quantified using a bioanalyzer, and directly

used for qRT-PCR without further dilution of the cDNA template. qPCR was performed in a Roche

LightCycler480 using a SYBR green protocol. DCt (the difference between the cycle threshold (Ct)

value of the gene of interest and the Ct value of ß-actin or gapdh) was used to compare the
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expression level of genes. Statistics (St Dev and paired T-test) were performed using Matlab (Natick,

Massachussets). Primers are listed in Supplementary file 2.

Single-cell and 10 cell sequencing
RNA extraction, in vitro synthesis and PCR amplification of cDNA, and construction of a sequencing

library using the Nextera XT DNA Library Preparation Kit (Illumina; San Diego California) according

to the Smart Seq2 protocol with minor modifications as described before (Picelli et al., 2014).

Libraries were sequenced on a NextSeq Illumina sequencer. Reads were mapped against the

Ensembl Danio rerio reference genome version GRCz10.90 (Ensembl, 2017) with the inclusion of

the reference for the spike in controls from the ERCC consortium, as well as the coding sequence for

EGFP and mCherry, using STAR RNA-seq aligner (Dobin et al., 2013). For quality control and pre-

processing, quantification of mapped reads per gene was calculated using the Rsubread package in

R-3.3.3 (Liao et al., 2013). Genes that were not expressed in any cells were excluded. The gene

counts were loaded as a scater object in R-3.3.3 (using the scater package) and standard quality con-

trol metrics were calculated (McCarthy et al., 2017). Quality control exclusion criteria were cells

with more than 25% of reads mapping to ERCCs or fewer than 100,000 reads or fewer than 1000

genes detected (at least one read per gene) were rejected (see Figure 4—figure supplement 1 and

Supplementary file 1a).

Consensus clustering set to three clusters was conducted on the single and 10 cells using the SC3

package (Kiselev et al., 2017). The 10 cell group was isolated and SC3 consensus clustering set to

three clusters was conducted on these cells alone. Differential expression between cluster 2 and clus-

ter 3 of the SC3 10 cell analysis was conducted using SCDE (Kharchenko et al., 2014). A differential

expression list, ranked from cluster 2 to cluster three according to z-score was used for the GSEA

analysis (Mootha et al., 2003; Subramanian et al., 2005). The differential expression list was tested

against gene lists compiled from online resources (Supplementary file 1b). Functional analysis

between the ranked 10 cell list and online gene lists for gene ontology (biological processes, non-

redundant) and pathways (KEGG, Panther, Reactome and WikiPathway databases were used) using

the online tool WebGestalt and gene set enrichment function (Wang et al., 2013).

Vertebrae size measurements and statistical analysis
The vertebrae size difference in injured zebrafish larvae (age range 30 dpi to 38 dpi) were compared

between vertebrae at the site of injury (injured) and vertebrae outside of the site of injury (uninjured).

Injured vertebrae and uninjured vertebrae were measured and the average length was recorded for

each group. The average lengths were then compared and the relative size difference was calcu-

lated. The relative size difference between each group (injured:uninjured vs. uninjured:uninjured)

was compared using an unpaired t-test.
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