uuuuuuuuuuuuuuuuu

Loyola University Chicago

Kt Loyola eCommons
Computer Science: Faculty Publications and Faculty Publications and Other Works by
Other Works Department
5-1983

An Interval Newton Method

E R. Hansen

R 1. Greenberg
Loyola University Chicago, Rgreen@luc.edu

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

b Part of the Numerical Analysis and Computation Commons, and the Numerical Analysis and Scientific

Computing Commons

Recommended Citation

Hansen, E R. and Greenberg, R I.. An Interval Newton Method. Applied Mathematics and Computation, 12,
2-3: 89-98, 1983. Retrieved from Loyola eCommons, Computer Science: Faculty Publications and Other
Works, http://dx.doi.org/10.1016/0096-3003(83)90001-2

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department
at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other
Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@Iluc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 1983 Published by Elsevier Inc.

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1016/0096-3003(83)90001-2
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

AN INTERVAL NEWTON METHOD
E.R. Hansen
Lockheed Missiles and Space Co., Sunnyvale, California
R.I. Greenberg

Department of Systems Science and Mathematics,
Washington University, St. Louis, Missouri

F(e‘?MLI'\Ca’HDh ManuscvipT.
?‘,\B\B led n A@V"e/zﬂ Mqﬂ\eh\q’ﬁ) and CCMdeTFIOY\
0 189-9% (1483).

Abstract

We introduce an interval Newton method for bounding solutions of systems
of nonlinear equations. It entails three sub-algorithms., The first is a Gauss-
Seidel type step. The second is a real (non-interQal) Newton iteration. The
third solves the linearized equations by elimination. We explain why each sub-
algorithm is desirable and how they fit together to provide solutions in as
little as one third or one quarter the time required by Krawczyk's method [7]

in our implementations.

Introduction

Interﬁal Newton methods of various types have been published for finding
and bounding solutions of systems of nonlinear equations. For example, see
[2], [5], [7]- [10]. We combine ﬁarious features of these methods into a single
algorithm of greater efficiency.

Consider a continuously differentiable function f:Rn—é'ﬁlwith Jacobian J.
Let y be a zero of f. Using Taylor's Theorem and expanding f(y) about x yields

£(x)+3 () (y-x)=£(y)=0.

If X is a box (an interval vector) containing x and ys then the points
indicated by the notétion‘ﬁare contained in X. Thus, if we replace J(£) by
the interval matrix J(X), y is contained in the set Z of points z satisfying

f(x)+J(X) (z=x)=0. (1.1)

Interval Newton methods find an interval vector N(x,X) containing Z. The

(0)

process is iterated. Giﬁen a box X

x(k+1)=x(k) (klekb. In practice, the intersection is best done for a given
(k)
s |

» @ new iterate is obtained as
NN
component of N(x X(k))as soon as it is obtained.

Hansen and Smith [4] showed that to solve (1.1), it is best to first multiply

=i

by an approximate inverse of JC, where J® denotes the center of J(X). That is,

for each i and j, I

13 is the midpoint of Jij(x)' If we let B denote our approxi-

mate inverse, the multiplication yields
M(z-x)=b (1.2)
where M=BJ(X) and b=-Bf(x).

Interval Newton methods differ in how (1.2) is solved. As we point out below,
they also differ in how the arguments of J(X) are chosen. A method due to Krawczyk
[7] does not attempt to obtain Z, but only a bound for Z. Hansen and Sengupta [5]
introduced a superior method which uses a single step of the Gauss-Seidel iteration.
This also provides only a bound on Z. With both (to) these methods, even if xeX is a
zero of f? so that Z is the single point x, the new box obtained is not x (although
it contains x).

A method which does yield x as output in one step (with exact interval arithmetic)

when x is a zero is to solve(l.2)by Gaussian elimination as suggested by Hansen [2].

We shall refer to this as the elimination method. Unfortunately, this method
cannot always be employed since M may contain a singular matrix. More importantly,
intervals tend to grow during the elimination process, and poor results may be obtained.
If this interval growth did not occur, elimination would be preferable to the
Krawczyk and Hansen-Sengupta methods because it seeks Z, and not just a bound for Z.

The algorithm proposed in this paper takes advantage of the strengths of both
the elimination and the Hansen-Sengupta methods. In order to evade the growing
intervals in the elimination method, a real (non-interval) iteration technique is
employed to improve the value of x before elimination is attempted. In this tech-
nique, the approximate inverse B is used to obtain a point x at which || f(x) || is
small. This can also be of some help in the Hansen-Sengupta method.

Wolfe [10] introduced an "inner iteration" into the Krawczyk method to reduce

the number of times J(X) (as well as the corresponding B and the interval matrix

product BJ(X) must be computed. He repeated the Krawczyk step a fixed number
of times using the same inter§a1 matrix J. We ha#e adopted this idea in
performing some repetition of the eliminatidn and Hansen-Sengupta steps before
recalculating J. The real iteration may also be thought of as an inner iteration
since it is performed repetitively without recalculating J (.or B).

We now describe more fully our composite interval Newton algorithm.

2. Initial Hansen-Sengupta Step

For a reason to become apparent later, we perform one Hansen-Sengupta step
immediately after calculating J and B, and multiplying through by B. Since in
obtaining M, we multiplied J by an approximate inﬁerse of its center, M should
ideally approximate the identity matrix. Even so, a diagonal element of M may
contain zero. If so, then we use extended interval arithmetic (see [5])

to solQe the i-th equation of M(z-x)=b for the i-th variable. That is

Yi=xi+Ri/%§j> w2 (2.1a)
I
where

n

Pr - ¥ .
Ri bi : Mij(Xj xj) (2.1b)

j=1

j#i
Here we have replaced zj by Xj for all j#i. The interval Yi contains every
solution zg in Xi. We perform the calculations specified by (2.1) first for

those i such that OﬁMi_i, and in each case, we replace Xi by
X;=Xi(\Yi. (2-2)

If the intersection is empty, we conclude that there is no solution in the
box X. When the intersecﬁioﬁ is q?t empty, we use these improved Xi's to calculate
the Y,'s for those i such that Oe M..

If both OE:Ri and OE—:Mﬁ, then Yi = [:—°° »°], and we gain no useful infor-
mation. If()efR.i and O € &ﬁ_then Yi consists of two semi-infinite
intervals which exclude a gap (an open interﬁal). The intersection Yir\Xi may be

empty or consist of one or two intervals. We can deal with the first two cases

-3

as we did when Oﬁ.Mii. In the third case, where two new intervals arise, we

would have to split the box X. For simplicity, we wish to do this only once.during
a given step of the outer iteration.

Thus, we find the largest gap which would split the box and do not use any gap if
.. the other

'{Yi's which would cause a split. We also do not use the widest gap right away,
but save it for later use after we apply other techniques to narrow the box.
Ironically, the extended interflal arithmetic calculations provide a wider gap
when x is a poor approximation for a zero of f. It is for that reason that we

find a gap first before attempting to improve x, which is our next step.

‘3. Real Iteration

We attempt to find an improved approximation x for a zero of f in X (if

0 _

one exists) by starting at x = m(X), the center of the box X, and computing
D) L () _pe o ()
(k+1) | b
for k=051 ,2,4 0384 If x is not in X, we find the point on the boundary of

X which is on the line connecting x(k) to x(k+1)

for x(k+1). The value of s is determined implicitly in that we continue until

(s+1)

and use this as a replacement

)”>'%//f(x(s))ﬂ . The norm we use is the
(s) and x(s+1)

we find an x(s+1) such that Aﬂf(x

Euclidean norm. We set x to whichever of x yields the smaller
norm of £, This x is then used for elimination or Hansen-Sengupta iteration.
The real iteration is also stopped if ||f(x0§+1)ﬂl< 10-3.

"4. Elimination Iteration

If we have succeeded in finding an x such that ”f(x)ﬂ is sufficiently small,
we attempt to perform an LU decomposition of M. If successful, we calculate
Bf(x), and we perform forward and back substitution to solve (1.2). Then we
intersect our solution with X and calculate a new x at the center of the new X.
Each time the width of X (the width of_its widest component) decreéses signifi-
cantly (to ;9 of the pre@ious width, say), we repeat the elimination step,

starting at the calculation of Bf(x) with the new x.

5. Additional Hansen-Sengupta Iteration

If, for any reason, we are unable to complete an elimination step, we
perform the Hansen-Sengupta iteration instead. Since we have already done our
best to find a wide gap in the box X, we perform the operations specified by
(2.1) and (2.2) for only those i such that OdlMii. Each time X iﬁproves significantly
(as described in .Section 4), we calculate a new x at its center and repeat the
Hansen-Sengupta step.

6. Splitting the Box

If we haﬁe found a gap using the initial Hansen-Sengupta step described earlier,
we make use of that gap to split the box (if it still does so; it may not if the
box haé been narrowed by the other steps performed). If we have found no gap,.
and we have not managed to improve the box width significantly at any stage, we
split the box at the center of the widest component. When the box is split, one
part is placed on a stack for later processing, and the other part becomes the
current box, (We return to process the most recently stacked box whenever the
current box is narrowed to the acceptable tolerance or is found to contain no
solution.) Whether or not we split the box, we now return to the beginning of
the outer step, the calculation of the Jacobian matrix.

7. Summary of Algorithm

1. Calculate J(X).

2, Calculate B, the approximate inverse of JC.

3. Calculate M=BJ(X).

4. Set x equal to the center of X.

5. Perform a Hansen-Sengupta step for those i such that 0¢ Mii'

6. Perform a Hansen-Sengupta step for théée i suéh that Oe M e and save the
largest gap.

7. Perform real iteration to improve x, starting at the center of X.

8. If [f(x)] is not sufficiently small, skip to step 14,

9. Perform the LU decomposition of M if possible; otherwise skip to step 1l4.

10. Calculate Bf(x) and sol§e for Z by forward and back substitution.

11. Replace X by XNZ,

12. If the width of X improﬁed significantly, set x equal to the center of the
new X, and return to step 10.

13 Skip to step 16.

14. Perform a Hansen-Sengupta step for those components such that 0 ¢ Mii'

15, If X impréved significantly, -set x equal to the center of X, and return to step 14.

16. If we haﬁe a gap saved from step 6, use it. If the box splits, put one part
on the stack, and keep the other part as the new X. Return to step 1.

17. If the box did not improve significantly in steps 5 and 6, in step 11, or in
step 14, then split at the center of the widest component. Save one half on

the stack, and use the other half as the new X.

18. Return to step l.

If in steps 5 and 6, in step 11, or in step 14, the box is narrowed to within the
acceptable tolerance, or is found not to contain a solution, the most recently
stacked box becomes the new X, and we return to step 1. A sufficiently small

box can be output and dropped internally. When we encounter an empty stack, we
are done.

Experimental Results

Several problems were solﬁed using various Qersions of the algorithm described
above and, for comparison, various versions of the Krawczyk method. Sometimes,
certain components of the algorithm we haQe introduced were left out; sometimes
we placed fixed limits on the number of times to perform the inner iterations.

We settled on the algorithm as described above with variability of the factor
representing significant improﬁement of the box width. This allows the user to

apply some control of how much inner iteration is performed, according to how

difficult it is to calculate the Jacobian, the inverse of its center, and the
necessary interval arithmetic matrix product. If, for example, we consider
reducing the box width to .9 of its old width to be significant, we shall be
performing more inner iterations than if we use a factor of .6. The higher the
dimensionality, or the more complicated the Jacobian, the higher this factor
should be chosen. Various examples were used.

Shown below are representative nu@gé?cal results for the Broyden banded function[1]

2
g(x)—xi(2+5xi) +1 - z: xj
jEJi
where Ji= {133 4, max (1, i-5)< j<min (n,i + 1)}.

(1+xj) (i=1,...,n)

This function was chosen for easy programmability in arbitrary dimension. In
each run the initial box was [-1,1] in each component. There is one solution

in this box. It was required that the solution box have a width less than 10-8.

We now define the parameters used in the tabular results below:
s = the significant box width improvement factor
n, = the number of outer steps = the number of Jacobian evaluations
= the number of matrix inﬁersions = the number of interval arithmetic matrix-
matrix products.
n,= the number of interval arithmetic function e&aluations

the number of interval arithmetic matrix-vector products

= n3 or n6+n7,

n,= the number of Krawczyk steps,

n,= the number of real iterations = the numb?r of real function evaluations,
=the humber <t ved| mmadix—vector oroducds
n= the number of interval arithmetic LU decomposition attempts,

ne= the number of elimination steps,

n,= the number of Hansen-Sengupta steps for those i with 04:Mi1,

ng= the number of Hansen-Sengupts steps for those i with OCEMii,

The time is minutes:seconds. -

HP 98-45.
Table

Table

|»

.6
.8
.9
.99

Table

|

.9

Table

|a

.9

Table

|n

.9

1.

44
36

2.

194

>

The experiments were run on a slow computer:

n=3, Krawczyk method with inner iteration

80 80
74 74
314114
153153
n=3,
21 21
n=3,
b
27 18
26 17
27 17
27 17
=5’
i 2PN
234 234

Hansen—-Sengupta method without

" time

8:34
730
9:52
11:48

E_; =

16

new method

NN =
w

LWWwWwWw =)
(=)}

‘time

237

..Il7

24
23
24
24

ng

13
12
12
12

inner iteration

time

2:31
2:29
2:28
2:28

Krawczyk method with inner iteration

time

80:14

=5, Hansen-Sengupta method without inner iteration

"time
30:03

o

" time

23:17

the

Other Forms of J

It was shown in [2] and [4] that certain arguments used in evaluating
the Jacobian J could be real rather than interval. The real arguments are
values of x, the point about which f is expanded to get equation (1.1). If
a real inner iteration is used (see Section 3), then this improved form of

J changes because x changes.

Thus if we use a real inner iteration and use the better form of J
(with some real arguments), we must recompute J and B after completing the
real iterative steps. We have the competing options of use of a better

Jacobian vs. use of a real inner iteration.

Obtaining the better Jacobian requires more sophisticated analysis and

extra programming. In the few experiments we have done on problems of low

dimension, it appears that it is somewhat more efficient to use the better

Jacobian.

10. Perturbed Problems

Consider a problem in which parameters occur which are subject to variation
or error. If they are represented by intervals bounding the possible values,
the problem usually becomes one with a set of solutions. Generally, interval
Newton methods do not yield convergence to the best interval bounding the solu-
tion set. We shall illustrate this fact by counter example and describe how we

have tried to overcome this difficulty.

Consider the one-dimensional problem

£t) = % i~ 14,8,

The solution is obviously X = [2,3] or [-3,-2]. Let X(O) = [0.1,4.9] and let
X(O) = 2.5, the midpoint of X(O). Then f'(X(O)) = ZX(O) = [0.2,9.8]. The
one-dimensional Newton iterate N(x(k), X(k)) = x(k) - f(x(k))/f'(X(k)) (k=0.1,2,...)

yields N(x(?),x(?) = [-8.75 16.25]s0 that x) = x(©) Ay 5(©)) _ 5O
(0)

That is, no improvement of X occurs so the iteration stops; and the solution

[2,3] is not obtained sharply.

A multidimensional counterexample is possible even when f is linear.

Consider the set of equations from [3]:

Blxy w A'x ~ bE =0

where I 12,3] - [0,1] I [0,120]
A = b =
[1,2] {2,3] [60,240]) .

As shown in [3], the interval vector with narrowest interval components containing

[-120,90]
[-60,240] .

the solution set is

w10=

(0)

Suppose we choose X so that it contains the solution set. Consider the
case in which the left endpoint of each component of X(O) is less in magnitude
than the corresponding right endpoint. For the Krawczyk method, X(O) can be as

large as

3 [-1545,1845] 2 [-140.45,167.73]
11 [-1800,2940] [-163.64,267.27]

and no further improvement occurs.

For the Hansen-Sengupta method, X(O) can be as large as

[-2865/22, 1845/11] - [=130.23,167.73]
[-8040/77,2940/11] [-104.42,267.27]

without further improvement.

In [5], it was argued that the Hansen-Sengupta method can be expected to
converge faster than the Krawczyk method. This same argument indicates that
the Hansen-Sengupta method can be expected to converge to a sharper result for

perturbed problems. This is born out by the above example.

In the one-dimensional case, it is possible to modify the Newton method so

(k)

as to obtain the true solution set as a limit. We simply let x

(k) k)

be the left

» alternately. Thus if X(
x(2k+1) - X(Zk) n N(XL(Zk), X(Zk)) (k

and right endpoints of X

[XL(k)’ XR(k)]’ then

Dl ke)

o e e dll Rl g LR T T

It is not difficult to prove that this algorithm always converges to the

solution interval.

S

: . n ’ 3
In the n-dimensional case, there are 2 corners of the region defined by

(k)

an interval vector. It is not practical to let x cycle through all of them

(k)

when n is large. We choose to let x alternate between the two extreme corners

formed by the left endpoints and by the right endpoints of all the components of
(k)

X . We do not know whether or not this assures convergence to the solution

interval vector.

=i

[1]

[2]

[3]

[4]
[5]

(6]

[7]

[8]
[91

[10]

References

BROYDEN, C. G., The convergence of an algorithm for solving sparse non-
linear systems, Math. Comp., 25, 285-294, (1971).

HANSEN, E. R., On solving systems of equations using interval arithmetic,
Math. Comp., 22, 374-384, (1968).

HANSEN, E. R., On linear algebraic equations with interval coefficients, in
Topics in interval analysis, Oxford Press, London, 1969 (edited by E. Hansen).

HANSEN, E. R., Interval forms of Newton's method, Computing, 20, 153-163, (1978).

HANSEN, E. R. & SENGUPTA, S., Bounding solutions of systems of equations
using interval analysis, BIT, 21, 203-211, (1981).

HANSEN, E. R. & SMITH, R. R., Interval arithmetic in matrix computations,
part II, SIAM Jour. Numer. Anal., 4, 1-9, (1967).

KRAWCZYK, R., Newton-Algrithmen zur Bestimmung von Nullstellen mit
Fehlerschranken, Computing, 4, 187-201, (1969).

MOORE, R. E., Interval Analysis, Prentice-Hall, Englewood Cliffs, 1966.

MOORE, R. E., Methods and Applications of Interval Analysis, SIAM,
Philadelphia, 1979.

WOLFE, M. A., A modification of Krawczyk's algorithm, SIAM Jour. Numer. Anal.,
17, 376-379, (1980).

	An Interval Newton Method
	Recommended Citation

	tmp.1485286576.pdf.YsVM2

