New Genera and Species of Fossil Marine Amioid Fishes (Actinopterygii, Holostei) from the Late Cretaceous Agoult locality in Southeastern Morocco

Mark V. Wilson
University of Alberta

Alison M. Murray
University of Alberta

Terry C. Grande
Loyola University Chicago, tgrande@luc.edu

Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs

Part of the Biology Commons, Marine Biology Commons, and the Other Ecology and Evolutionary Biology Commons

Recommended Citation
Wilson, Mark V.; Murray, Alison M.; and Grande, Terry C.. New Genera and Species of Fossil Marine Amioid Fishes (Actinopterygii, Holostei) from the Late Cretaceous Agoult locality in Southeastern Morocco. Society of Vertebrate Paleontology 77th Annual Meeting Program and Abstracts, , : 214, 2017. Retrieved from Loyola eCommons, Biology: Faculty Publications and Other Works,

This Conference Proceeding is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Society of Vertebrate Paleontology 2017
increased developmental age in two of the specimens. Additionally, developmental and growth patterns including the rapid fusion and obliteration of the mandibular symphysis and the widening of the mandible at the symphysis were identified. The concentration of Haversian canals along the occlusal margin and lingual ridges suggests remodelling as a histological response to high levels of repeated stress. These descriptions add to our knowledge of the growth and development of Caenagnathidae and the identification of an ontogenetic series may aid in the taxonomic classification of partial or incomplete caenagnathid skeletons.

Poster Session I (Wednesday, August 23, 2017, 4:15 – 6:15 PM)

THERIAN MAMMALS FROM THE LOWER BLACK PEAKS FORMATION, BIG BEND NATIONAL PARK, TEXAS ARE TORREJONIAN, NOT PUERCAN, IN AGE

WILLIAMSON, Thomas E., New Mexico Museum of Natural History, Albuquerque, NM, United States of America; STANDHARDT, Brian; Stanton, TX, United States of America; LESLIE, Caitlin, Baylor University, Waco, TX, United States of America

The early Paleocene mammal faunas from the Black Peaks Formation, Big Bend National Park, Texas, are the southernmost of North America and thus are important for understanding mammalian diversity and biogeographic patterns following the end-Cretaceous mass extinction. Some workers have argued the faunas from the lower parts of the Black Peaks Formation are Puercan in age based primarily on fossils collected from localities in or near the Dawson Creek area: TMM 41406 (LSU VL-111; "Tom’s Top") in Dawson Creek and TMM 42327 (LSU VL-108; "Dogie") from nearby Rough Run Amphitheater about 5 miles (8 km) east of the Dawson Creek section. "Tom’s Top" and "Dogie" have yielded diverse microvertebrate assemblages that are 20 m and 80 m, respectively, above the highest occurrence of dinosaur bones in those areas. A re-evaluation of these faunas indicates that they are Torrejonian, rather than Puercan, in age. The therian mammals from “Tom’s Top” includes a new small species of the carnivornmorphism *Bryanticus*, the eurhachont *Mictodexes* malaris, the plesiadiform *Plesiostes* wilsonei, and the "condylarth" *Promioclaenus* cf. *P. teumaroides*. "Dogie" contains a diverse fauna, including the therian *Verasertotherium* sp., the undescribed and unidentifiable cimololist, the new small species of *Bryanticus*, and six "condylarths"; cf. *Goniacodon levisanus*, *Periptychus* carinidens, *Haploconus* sp., *Ellipsodon* cf. *E. inaequidens*, and a new species of *Mioclaenus*. The presence of *Periptychus* carinidens indicates a Torrejonian age. The other mammal specimens are consistent with a Torrejonian age assignment. Several of the mammalian genera appear to be restricted to the American Southwest supporting the presence of a distinct southern mammalian faunal province during the Torrejonian.

Grant Information
SEPM, NSF (EAR-132552, 0207750, and 1325544), American Chemical Society (PRF #52822-DN18), and Baylor University Department of Geosciences’ Dixon Fund.

Technical Session XVI (Saturday, August 26, 2017, 11:00 AM)

A NEW CENTROSAURINE CERATOPSIS FROM THE UPPER CRETACEOUS TWO MEDICINE FORMATION OF MONTANA AND THE EVOLUTION OF THE ‘STYRACOSAUR’ DINOSAURS

WILSON, John P., Fowler Paleontology and Geology, Bozeman, MT, United States of America; RYAN, Michael J., Cleveland Museum of Natural History, Cleveland, OH, United States of America; EVANS, David C., Royal Ontario Museum, Toronto, ON, Canada

The Late Cretaceous Two Medicine Formation of northwestern Montana has produced numerous remains of centrosaurine ceratopsids, from which three stratigraphically separated taxa: *Einiosaurus* sp., *Periptychus* cf. *P. calvus*, *Einosaurus procovircrinis*, and *Achelousaurus horneri*, are currently recognized. *Rubesaurus*, the stratigraphically lowest at 60 meters below the upper contact with the Bearpaw Formation, is diagnosed by a parietal with medially inclined p3 processes, elongate p4 and p5 processes, and a tall, erect nasal horn. This taxon was originally known only from the isolated holotype parietal and first named *Syracosaurus ovatus*. With the recent referral of the more complete MOR 492 to *S. ovatus*, new characters were attributed to this taxon which separated it from *Syracosaurus* and created the need for the new genus name *Rubesaurus*. Here we reassess MOR 492 and provide evidence that it is not referable to *S. ovatus*. Rather than possessing seven parietal processes (p2-p7) per side, with elongate p4 and p5 processes as previously thought, MOR 492 only exhibits six processes (p2-p7) per side. This is supported by imbrication of the two anteriormost processes (p6 and p7), as conserved in all two Medicine Formation centrosaurines. With p6 and p7 identifiable, p4 is demonstrably non-elongate and p4 only somewhat elongate, unlike *S. ovatus*. Further, there is no evidence that the preserved p3 process of MOR 492 was mediolaterally inclined, but rather the anteroposteriorly near-straight lateral bar of MOR 492 produces a posteriorly deflected p3, as observed in the stratigraphically lowermost sucipine. Therefore, the characters from MOR 492 used to erect *Rubesaurus* no longer pertain to the diagnosis of *S. ovatus*, making *Rubesaurus* a junior synonym of *S. ovatus*. *S. ovatus* is a genuine taxon represented only by the holotype.

MOR 492 possesses a unique combination of characters drawn from *Syracosaurus albertensis* and *E. procovircrinis*, which is consistent with its intermediate stratigraphic placement and recovered phylogenetic position, and warrants diagnosing a new taxon. Like *Syracosaurus*, MOR 492 possesses an elongate, erect nasal horn, but like *Einiosaurus* it exhibits a small, p5 process. MOR 492 possesses an elongate P4 of *Rubesaurus* intermediate in length between the stratigraphically highest *Syracosaurus* specimens and lowest *Einosaurus* specimens. This is consistent with the hypothesis that these taxa represent anagenetic evolution, though cladogeticness remains a viable alternative. Overall, this study refines hypotheses of North American ceratopsid evolution.

Poster Session II (Thursday, August 24, 2017, 4:15 – 6:15 PM)

NEW GENERA AND SPECIES OF FOSSIL MARINE AMIOD FISHES (ACTINOPTERYGHII, HOLOSTEI) FROM THE LATE CRETACEOUS AGUOLT LOCALITY IN SOUTHEASTERN MOROCCO

WILSON, Mark V., University of Alberta, Edmonton, AB, Canada; MURRAY, Alison M., University of Alberta, Edmonton, AB, Canada; GRANDE, Terry C., Loyola University Chicago, Chicago, IL, United States of America

The Late Cretaceous agoult locality in southeastern Morocco has yielded a diverse array of marine fishes including *Maceromia*, *Pycnodontidae*, *Aspidorhynchidae*, *Bryanictis*, *Mioclaenus* *Pteraspis*, *Chapuisiidae*, *Haploconus*, *Apichthyoidae*, and *Pycnosteroididae*. Housed in University of Alberta collections from Agoult are numerous specimens of at least two undescribed amiod fishes. They share derived features with the Amiodae including a rounded or almost rounded caudal fin. There is no evidence that the preserved P3 process of MOR 492 was mediolaterally inclined, but rather the anteroposteriorly near-straight lateral bar of MOR 492 produces a posteriorly deflected p3, as observed in the stratigraphically lowermost sucipine. Despite this, pursuit diving seabirds are those that actively pursue prey under water using wing or foot propulsion – are more limited in diverse oceanic and closely tied to geographic factors because diving ability is often gained at the expense of flight capabilities. Today, pursuing diving seabird populations are restricted to waters cooler than 15ºC. In contrast, Late Cretaceous marine environments were characterized by greenhouse climate and high sea levels, producing marine environments generally warmer than 15ºC. Despite this, pursuit diving seabirds called hesperornithiforms are particularly well-represented from North American Western Interior Seaway (WIS) deposits. The contrast in distribution implies that different biotic and abiotic factors may have affected Late Cretaceous epipalaeozoic ecosystems than seen in today’s oceans.

Biotic factors like predator-prey relationships and competition are hypothesized to have affected fossil penguin diversity in the Cenozoic, and are also suggested to influence modern pursuit diving seabird distributions. However, the spatio-temporal overlap between hesperornithiforms, marine reptiles, and large predatory fishes does not support the same type of temperature-based competition or predator-prey relationships as the biogeographic driver in the WIS. Rather, it seems that the presence of different apex predators (most notably the lack of marine mammals) may partially account for biotic factors affecting hesperornithiform distribution. Additionally, the shallow depth, abundance of shoreline, and high primary productivity characterizing epipalaeozoic seas are the abiotic factors that likely explain why pursuit diving seabird distribution was so different in the Late Cretaceous compared to today.

Poster Session III (Friday, August 25, 2017, 4:15 – 6:15 PM)

IMPLICATIONS OF AN ANALYSIS OF DEEP PES TRACES AND MANUS IMPRESSIONS FOR THE SUPPOSED ATREIPUS-GRALLATOR ICHNODENOMEN PLEXUS: AN APOMORPHY-BASED APPROACH

WINITCH, Michael L., Scarsdale, NY, United States of America.; OLSEIN, Paul E., Lompton Doherty Earth Observing Paleontology, Greenport, NY, United States of America

The apparent continuum between the Triassic ichnogena *Atreipus* and *Grallator* has been used as a basis for hypothesizing an evolutionary continuum between their makers. We use an apomorphy-, cladistics-based methodology of track maker identification to test the hypothesis that *Atreipus* and *Grallator* represent an elongated manus diaphysis where the manus does not reflect a biological entity. Eastern North American *Atreipus* (A. milfordessis, A. sulcatus, and A. acudamius) morphology, in well-preserved examples, is consistent with a silesaurid, basing on the presence of a highly reduced digit II (hallux) on the pes that is an apomorphy of Silesauridae as is the deep footprints in which the metatarsus is impressed. In marked contrast, bromoiznids, including *Grallator*, have pedal traces consistent with early sauichians in retaining the primitive condition of a relatively long digit I, always present in deep footprints. *Atreipus* is usually a quadrupedal ichnite with a manus bearing 3 to 5 short digits and small claws. In contrast, the hypertrophied manus of *Grallator* monophrine has the primitive condition for the dinosaurian manus with elongate manual digits I-III that restricted quadrupedal locomotion (e.g., *Heterodontosaurus* and *Herrerasaurus*), and did not allow significant pronation, or extreme hyperextension. Examination of the very few cases of *Atreipus* manus impressions and *Grallator* manus impressions is consistent with this interpretation in which manus impressions are present only in resting traces. In medium sized bromoiznids (*Anchisaurus*) the manus trace consists only of knuckle Impressions of digits II and III. *Atreipus* had small manus with small claws primarily used for locomotion that would itself be highly derived compared to the primitive dinosaurian conditions. At this time, the manus were a separate-aside from dinosaurs and