The Intricacies of Counting to Four in Old English Poetry

Ian Cornelius
icornelius@luc.edu

Eric Weiskott
Boston College, weiskott@bc.edu

Follow this and additional works at: https://ecommons.luc.edu/english_facpubs

Part of the English Language and Literature Commons

Author Manuscript
This is a pre-publication author manuscript of the final, published article.

Recommended Citation

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Sage Publications, 2021.
The Intricacies of Counting to Four in Old English Poetry

ABSTRACT: The metrical theory devised by Eduard Sievers and refined by A. J. Bliss forms the basis for most current scholarship on Old English meter. A weakness of the Sievers–Bliss theory is that it occupies a middle ground between two levels of analytic description, distinguished by Roman Jakobson in an influential article as ‘verse instance’ and ‘verse design’. Metrists in the Sievers–Bliss tradition employ a concept of metrical position (a key component of verse design), yet the focus of attention usually remains on the contours of stress of individual verses. Important exceptions are the studies of Thomas Cable and Nicolay Yakovlev. The theoretical innovations of Cable and Yakovlev, among others, enable a more concise presentation of verse design than anyone writing on the subject has yet offered. The present essay attempts to show what such a presentation might look like, while also giving due acknowledgement to the complexities of position-count in this meter. We presume no prior knowledge of the Sieversian system. Illustrations are drawn principally from Cædmon’s Hymn and the Seafarer.

KEYWORDS: metrical correspondence rules, metrical position, metrical template, morphology, Nicolay Yakovlev, Old English meter, verse design

1. Introduction

In an influential statement, Roman Jakobson defined poetic meter—’verse design’ in his terminology—as the correlative concept of a ‘verse instance’. By this Jakobson meant that a concept
of meter is in play whenever we identify and begin to talk about verse. ‘Far from being an abstract, theoretical scheme’, Jakobson wrote, ‘verse design … underlies the structure of … any single verse instance’; it ‘determines the invariant features of the verse instances and sets up the limits of variations’ (1960: 364). Subsequent metrical theory divides verse design into two parts, a ‘template’ and a set of ‘correspondence rules’ (Duffell, 2008: 13–14; Halle and Keyser, 1971: 140–142; Suzuki, 1996: 1–3). A template establishes the external dimensions and inner structure of a unit of metrical composition. The correspondence rules state how linguistic materials—words and their constituent syllables—are fitted to the template. These two components of verse design are recognized in some traditional names of poetic meters without, however, being distinguished clearly. The name octosyllable, for instance, indicates a count of eight (the template) in which the entity to be counted is the syllable (the correspondence rule). Where the correspondence rules are more complex, it is often useful to designate the entity counted as a ‘metrical position’, a key concept in metrical theory.

For meters with a positional structure, the template can be analyzed into a fixed number of homogeneous or differentiated positions, and the correspondence rules define the kinds of linguistic material that will constitute a position in the template. In vers octosyllabe, the metrical positions are essentially homogeneous and each position is filled by a single syllable. To take a slightly more complex case, the poetic meter of classical Greek and Latin epic may be described as having a twelve-position template with a binary contrast between odd and even positions. The correspondence rules for this meter would state that odd positions in the template are filled by a single syllable of a certain phonological type (termed ‘long’ in traditional metrics) while the even positions are filled either by a single syllable of the same type or by two syllables of another phonological type (termed ‘short’ in traditional metrics), and the last position is anceps, open to a single syllable of either type. So conceived, a metrical position is agnostic towards the linguistic material that fills it (this is specified by the correspondence rules) and operates at a level below the
traditional concept of the metrical foot. A metrical position is a logical structure: a slot into which poets—and, in turn, their audiences—project language.

The positional structure of Old English poetry is especially complex, presenting special challenges to metrical theory. The metrical system devised by Sievers (1893) conceives of verses of Old English poetry as composed of four positions (G Glieder, ‘members’), yet the Glied remains under-defined in most Sieversian metrical theory, which tends to focus on contours of stress rather than the count of positions.¹ Important exceptions are Cable (1970; 1974; 1991: 6–40 and 137–151; 2016; forthcoming) and Yakovlev (2008: 42–82), who recognize the count of positions as the general principle.² The theoretical innovations of Cable and Yakovlev, among others, enables a more concise presentation of verse design than anyone writing on the subject has yet offered. The present essay attempts to show what such a presentation might look like, while also emphasizing the intricacies of position-count in this meter. Whereas Cable, Yakovlev, and other researchers have focused on Beowulf, our illustrations are drawn principally from Cædmon’s Hymn, the earliest datable surviving Old English poem and typically the first one encountered by students, and from the Seafarer, an undated short poem transmitted uniquely in Exeter, Cathedral Library, MS 3501 (the ‘Exeter Book’).³ An appendix supplies a scansion of the Hymn and of the first 57 lines of the Seafarer, for comparison with the traditional Sieversian scansion of these lines in R. D. Fulk’s metrical appendix to Eight Old English Poems (Pope and Fulk, 2001: 152–156).

2. A Prelude: Apples and Oranges

A template is a logical structure, which means that it may be transposed out of the linguistic domain. Consider, then, the following game. You have a basket of fruit—apples and oranges—to be distributed in sequence onto four plates. The fruit is distributed by blind draws. Any apple drawn from the basket receives a plate to itself. If an apple is drawn first, the plate on which it is placed is
considered full; the next piece of fruit—apple or orange—will be allocated to the second plate. If an orange and an apple are drawn in sequence, they too will be placed, sequentially, each on their own plate, for an apple always gets its own plate. But any number of oranges drawn in succession from the basket will be placed on a single plate. Play moves to the next plate only when the blind draw yields an apple. The last plate gets one piece of fruit only. When the game is complete, no two successive plates will be occupied by oranges. Plates one, two, and three will each have either a single apple or one or more oranges; the last plate must have an apple if the penultimate has an orange. Setting aside the difference between plates of one and more than one orange, there are eight possible permutations of apple and orange (2^4, or sixteen, minus the eight illegal permutations in which oranges occupy adjacent plates).

Now consider a variation on the game. Fruit is allocated to plates one and two as before, but the one-fruit limit that previously applied to plate four now applies as well to plate three. If the blind draw for plate three yields an apple, the play is unchanged. The last fruit drawn—apple or orange—will go to the fourth plate as before. If the draw for plate three yields an orange, this version of the game encounters a problem and risks failure, for a second orange drawn from the basket at this stage will put the game in an impossible position: if placed with its companion on the third plate, the second orange violates the new item-limit on that plate; if placed on the fourth plate, it violates the original rule against oranges on successive plates. The game is saved if the identity of the fruit placed on the last plate remains undeclared. Justification for this peculiar rule comes from the previous version of the game, where a functional difference between apple and orange (namely, that more than one orange may occupy the same plate, whereas each apple gets its own) was already neutralized by limiting the fourth plate to one fruit only. In this second version of the game there are accordingly two different sets of rules, and the pivot between them occurs in the second, or antepenultimate, plate. An apple drawn for this plate launches the game into the one-fruit-per-plate
rule-set. If an orange is drawn instead, play continues as in the previous version of the game until an apple is drawn. In either case, it is the appearance of an apple that determines subsequent play. The pivotal apple goes to the antepenultimate plate if drawn first, or else to the penultimate plate if drawn after one or more oranges.

Finally, a third variation on the game. Play proceeds as in the second version, but now there are two kinds of apple. Red apples always occupy their own plate. A green apple occupies its own plate if drawn immediately after a red apple. Otherwise, exactly one more fruit must be placed on the plate with the green apple before moving to the next plate. This is termed ‘topping up’ and it is necessary whenever a green apple is not immediately preceded by a red one. Plate capacity remains as it was in the previous version, except that plates three and four will have two pieces of fruit in cases of topping up. Oranges retain their previous behavior except that, if two or more oranges are drawn in succession after a green apple that needs topping up, the first orange goes on the plate with the green apple and any others go on the next plate. The last plate is not antepenultimate: if an orange is drawn for plate three, the game must contrive to draw an apple for plate four, and the red apple/green apple distinction remains in effect.

The play in this final version of the game will be nearest to the previous one when the second plate holds a red apple and the third also holds an apple (red or green). In such cases, there will be exactly one fruit on the second, third, and fourth plates. Any more general statement about a shift into the one-fruit-per-plate rule-set is stymied by the fact that the final plate discriminates between red and green apples if the third plate holds an orange. The sequence ‘orange–red apple’ on plates three and four ends the game, but the sequence ‘orange–green apple’ permits and requires the allocation of one more piece of fruit to the final plate, for topping up. We will see that the verse design of Old English poetry resembles this game.
3. Old English Meter: Template and Correspondence Rules

Each line of Old English poetry is bipartite, consisting of two paired half-lines, also called verses. Each half-line consists of four metrical positions, the plates of the prelude. The positions are differentiated, not homogeneous; the meter recognizes two position types, which may be termed ‘strong’ and ‘weak’. Strong positions (plates with apples) are the default or unmarked type; where a position of the weak or marked type (plates with oranges) intervenes, a position of the strong type must follow. Put another way, marked positions must not be adjacent. As Yakovlev shows, there are accordingly eight possible ways of filling the four-position frame: SSSS, WSSS, SWSS, SSWS, SSSW, SWSW, WSWS, WSSW. In this notation ‘S’ denotes a strong (unmarked) position and ‘W’ denotes a weak (marked) position. The remaining eight permutations of S and W (WWWW, SWWW, WSWW, etc.) are excluded by the rule against adjacent marked positions. The apples-and-oranges prelude implies several other details. These are best introduced once we have begun to describe the mapping of linguistic material onto template positions.

The meter is syllabic at base, in that linguistic material is parsed and mapped into template-positions at the level of the syllable, not the mora, foot, word, or phonological phrase, although each of these other levels of the prosodic hierarchy must be taken into consideration in specific metrical contexts. The minimal constituency of a position is one syllable. (A syllable is constituted by a vowel flanked by zero or more consonants. In Old English, consonants preferentially group with the following syllable, except that the beginning of consonant clusters close the preceding syllable: o.fer ‘over’, but af.ter ‘after’.) Four-syllable verses have prototypical status, yet two or more syllables are frequently bundled into a single position, and the mechanism of bundling differs according to position-type. The contrast posited in the template between strong and weak positions indicates that
the meter does not treat all syllables as equal. Syllables are assigned to strong or weak positions as a function of their morphological class membership and the surrounding metrical context.

Position-mapping begins at the point of least ambiguity, with the root syllables, suffixes, and stressed prefixes of open-class words (nouns, adjectives, verbal infinitives, participles, and derived adverbs), excluding finite lexical verbs, which have variable metrical value and must be treated separately. The syllables of these classes are always mapped to strong (unmarked) positions.

Consideration is taken of syllabic weight: the operative distinction is between a syllable with a long vowel or long diphthong or closed by a consonant (termed ‘heavy’) and an open syllable with a short vowel or short diphthong (termed ‘light’). A heavy syllable of the correct morphological class always makes position independently, one syllable per position. These are the red apples of the prelude. By contrast, a light syllable of the correct morphological class (a green apple) usually forms a strong position in combination with the next syllable. Termed ‘metrical resolution’ (‘topping up’, in the third version of the game in the prelude), this is illustrated by Cædmon’s Hymn 1b beofon-rīċes weard (guardian of the kingdom of heaven). The sequence beofon- (green apple plus orange) is mapped to the first position in this verse through metrical resolution; the heavy root of -rīc- (red apple) occupies the second position.

Cædmon’s Hymn 6b hālīġ scieppend (holy creator) and 9b frēa almīhtīġ (almighty lord) supply examples of verses formed entirely from heavy roots, suffixes, and stressed prefixes of open-class words. Each of the four positions in these two verses is of the strong type, a configuration denoted by the scansion SSSS. This notation makes no claims about contours of stress. ‘S’ stands for ‘strong’ not ‘stress’, and strong positions are simply the unmarked or default type in this verse form. A comparison with Sieversian scansion will clarify this point. In the Sieversian system Cædmon’s Hymn 6b is classified as a variant of contour Type A (two two-position units with falling stress) whereas Cædmon’s Hymn 9b is classified as contour Type D (a stressed monosyllable followed by a three-
position unit of falling stress, or perhaps a single four-position unit in which stress falls through four
distinct grades). The four-position theory accepts these stress contours—as Cable emphasizes, they
are the predicted outcome of the general prosodic system of the Old English language, operating
within the confines of the four-position metrical template—but disputes the need to record stress
contours in scansion of Old English verse. The stresses will take care of themselves. Metrical theory
should not reiterate what is already supplied in a description of the general prosodic system of the
language, yet this is what Sieversian scansion does. The scansional system presented here focuses
instead on the basic metrical operation of counting.

Resolution often does not take place after a strong, heavy constituent. Termed ‘suspension
of resolution’ (red apple followed by green apple, in the third version of the game in the prelude),
this behavior is illustrated by *Cædmon’s Hymn 3a weorc wuldor-fæder* (the work of the father of glory)
and *Seafarer 1b sóð-giedd wrecan* (tell a true tale). (In the first of these, the spelling *wuldor-* probably
represents a monosyllable, with resonant non-syllabic *r*, conserving or recalling a prehistoric form of
the word [Fulk, 1992: 90].) The light syllables *fæ-* and *wre-* (green apples) here make position on their
own. The reason seems to be that a heavy, strong constituent—the default occupant of a metrical
position—kicks the meter into a syllabic mode. When the penultimate position is filled by a strong,
heavy constituent, the final position is *anceps*, open to exactly one syllable of any type. When the
antepenultimate position is filled by a strong, heavy constituent and another strong constituent
follows, the meter waives the usual weight restrictions and assigns each syllable to its own position.7

This is a favorite verse configuration, illustrated by the two examples above and by the first two
verses of *Beowulf: Hwæt, wē Gār-Dena | in ġeārdagum* (Lo, we [have heard] of the Spear-Danes in the
days of yore).8 The heavy root syllables *Gār-* and *ġeār-* (red apples) make position on their own and
extend their character rightward, activating the meter’s syllable-counting mode. A basic syllable-to-
position correspondence comes into effect in these verse-terminal sequences.
We turn now to the syllabic sequences that may precede or interrupt the syllable-counting mode. An inflectional syllable not mapped to a strong position by resolution with a preceding light root or suffix is mapped to a weak position.\(^9\) The second syllables of disyllabic stems usually have the same behavior. An example is ēē (\(< *ōkja\)\), where the final -e behaves metrically like an inflectional syllable.\(^{10}\) In verses such as *Seafarer* 1b sōð-giedd wrecan and *Seafarer* 22a mǣw singende (a gull singing), where an inflectional syllable closes out the verse, forming its fourth position, the designation as ‘weak’ is without metrical consequence. Though weak by nature (that is, by morphological class membership), these syllables are prevented by their position in the verse from exerting any of the effects of a weak constituent. The position they occupy may be designated *anceps*.

The situation is different when the unresolved inflectional syllable occupies the third position, as it does in *Cædmon’s Hymn* 1b heofon-rīces weard and *Seafarer* 5b ēear-selda fela (many a sorrowful dwelling-place). Both verses scan SSwS, here employing ‘w’ to designate a monosyllabic weak position. This can be represented diagrammatically, with lines to represent grouping of syllables and numbers to represent a count of four positions:

\[
\begin{array}{cccc}
\text{heofon-rīces weard} \\
V & | & | & | \\
S & S & w & S \\
1 & 2 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{ēear-selda fela} \\
| & | & | & V \\
S & S & w & S \\
1 & 2 & 3 & 4 \\
\end{array}
\]

The weak constituent in the third position of these verses interrupts the meter’s syllable-counting mode and re-introduces the weight-restriction in the next and final (necessarily strong) metrical position. The light root syllable of *fela* resolves with the following syllable to form the final position of *Seafarer* 5b, just as the light root of *heofon-* resolves with the following syllable to form the initial
position of *Cædmon’s Hymn* 1b. In *Cædmon’s Hymn* 1b *beowon-* resolves because verse-initial; there is no preceding strong, heavy constituent to initiate the syllable-counting mode. In *Seafarer* 5b *fela* resolves because the syllable-counting mode initiated by the strong heavy constituent *-seld-* is interrupted by the weak constituent in position three, *-a*.

Adjacent weak syllables (oranges drawn in succession) group together into a single weak position. This metrical behavior is illustrated by the disyllabic genitive plural inflection *-ena* in *Beowulf* 443b *Geatena lēode* (the Geatish people), the structure of which may be represented as SWSx, employing ‘W’ for a weak constituent of more than one syllable and ‘x’ for the single syllable in the *anops* fourth position. The grouping of inflectional syllables in this verse perhaps resembles resolution; to confirm the fundamental difference between this grouping and resolution, it suffices to compare *Beowulf* 443b with another verse of congruent metrical configuration, such as *Beowulf* 580a *flōd æfter faroðe* (ocean [bore me] with the tide; SWSx with resolution of *faro-*). If we accept the congruence of these two verses, two observations about the character of weak positions follow. First, it is clear that considerations of weight do not apply in weak positions. The syllables of the preposition *æfter* are closed by consonants, hence heavy, yet they nevertheless group into a single position, equivalent to the position formed by *-ena* in *Beowulf* 443b. The morphological principle that assigns words like *æfter* to weak positions supersedes the quantitative principle that assigns syllables like *æf-* in *æfter* to strong positions. Second, the resolution of *faro-* in the third position of *Beowulf* 580a confirms that a weak position of any syllabic composition imposes the meter’s full weight requirement on the subsequent strong position. Just as a strong heavy constituent initiates a syllable-counting mode, a weak constituent requires resolvable syllables to resolve in a subsequent strong position. The two basic features of a weak position in this meter are accordingly that adjacent syllables group together into a single position; and that the following position, necessarily strong,
must meet the more exacting requirements for a strong position, either by formation from a heavy syllable or, if formed from a light syllable, by grouping with a subsequent syllable in resolution.

The coalescence of adjacent weak constituents into a single position is the logical counterpart of the template rule that weak positions must not be adjacent. The specific word classes that concern us now are finite lexical verbs and closed-class words (articles, pronouns, auxiliary verbs, conjunctions, prepositions, and simple adverbs). These are the oranges in the games described at the beginning of this essay. Their basic metrical behavior as weak constituents is illustrated by verses such as the following (morphemes contributing to weak positions underlined):

- **Seafarer 14a** hū ic earm-ćearig (WSSx) (how I, wretched and careworn)
- **Seafarer 27b** sē-be āg lifes wynn (WSwS) (he who enjoys a pleasant life)
- **Seafarer 32b** hæġl feoll on eorðan (SWSx) (hail fell on the earth)
- **Seafarer 44a** Nē biþ him tō hearpan hyġe (WSwS) (he has no desire for the harp)

Seafarer 27b and *44a* illustrate weak positions formed from three and four syllables, respectively.

There is no metrical difference between these polysyllabic weak positions and weak positions formed from two syllables. There is, however, a difference in distribution between weak positions of 2+ syllables and those of one syllable. Whereas positions in the first half of the verse are often formed of two or more syllables, those in the second half are usually monosyllabic. This distribution confirms the general tendency of Old English meter towards syllable-counting in its second half. It is also consistent with the ‘principle of closure’, an apparently universal tendency for poetic meters to be more restrictive at the end of verse units (Fulk, 1992: 201 and 234; Russom, 1998: 39). The functional distinction is between a single syllable and two or more adjacent syllables. In scansion of adjacent weak constituents (oranges), one may stop counting after 2.\(^\text{11}\)
Where a weak third position appears *prima facie* to be polysyllabic, it is usually constituted from a normal weak constituent plus an unstressed prefix (‘p’ designates the prefix), and here we move beyond the schematic games introduced in the prelude (prefixes underlined):

\[
\begin{align*}
Seafarer & \ 6a \ \textit{atol} \ \textit{ȳda} \ \textit{gewalec} \ (\text{SSwpS}) \ (\text{dreadful lurching of the waves}) \\
Seafarer & \ 16a \ \textit{wine-māgum} \ \textit{bedroren} \ (\text{SSwpS}) \ (\text{bereft of friends}) \\
Seafarer & \ 35a \ \textit{sealt} \ \textit{ȳda} \ \textit{gelāc} \ (\text{SSwpS}) \ (\text{play of the saltwater waves})
\end{align*}
\]

These unstressed prefixes have a special metrical character that differentiates them from inflectional syllables and other constituents of weak positions (Cable, 1974: 32–44; Donoghue, 1987; Duncan, 1993; Yakovlev, 2008: 57–60). They are, in the metaphor of the prelude, a special variety of orange. Although an unstressed prefix not infrequently supplies a metrically necessary weak position on its own—for instance, *Seafarer* 52b *feorr ġewītan* (to travel far) (SwSx)—there are also verses in which an unstressed prefix, if counted as a weak constituent, would yield a verse with five positions, rather than the normative four:

\[
\begin{align*}
Seafarer & \ 5a \ \textit{ġecunnod} \ \textit{on} \ \textit{ċēole} \ (\text{pSWSx}) \ (\text{known aboard ship}) \\
Seafarer & \ 28a \ \textit{ġebiden} \ \textit{on} \ \textit{burgum} \ (\text{pSwSx}) \ (\text{endured in town})
\end{align*}
\]

The negative proclitic *ne* exhibits the same behavior. These verse configurations indicate that unstressed prefixes and *ne* may optionally be excluded from the metrical count. The phenomenon is termed ‘anacrusis’ (G *Anflakt*) in Sieversian metrics, yet it is difficult to square with Sievers’s accentual understanding of the meter. As Yakovlev remarks, ‘the prominence of the syllable may be low, but it will still be part of the intonational contour of the verse’ (2008: 80). This problem does not arise for a metrical model based on counting. Whereas contours are continuous curves, counts are discrete integers, and the very nature of counting entails the option of excluding an item from the count. The meter of Old English verse implements this option: verbal prefixes and proclitic *ne*
are a well-defined category of syllables that are counted or not, depending on verse context. The historical reason, if any, why Old English meter accords a special status to verbal prefixes and ne, but to no other weak syllables, has not been established, but such a license interlinks the other features of the metrical system described here. The ‘prefix license’, as Yakovlev terms it, reduces prima facie five-position verses to the expected count of four and reduces prima facie polysyllabic weak sequences to their expected monosyllabic dimension in the third verse position.¹²

Verses like Cadmon’s Hymn 4b ōr astealde (established the origin), where a finite verb is placed at the right edge of the verse, cannot be scanned according to the rules given so far, and require a finer sifting of compositional possibilities. Elements belonging to the weak morphological classes may be divided into two groups according to their boundedness to a strong constituent. Prefixes, articles, prepositions, and inflections stand in fixed relation to a strong constituent. (Prepositions are a partial exception, since they may be postposed with respect to the noun they govern.) By contrast, pronouns, finite verbs, and simple adverbs are freer, forming a mobile subclass of closed-class words, and they sometimes contribute a strong position. They are oranges that sometimes count as apples. The default or unmarked position for these mobile elements is the first or second position of a clause-opening verse, where they contribute a weak position. When a member of this mobile subclass is placed along the right edge of the verse, its root syllable will form a strong position, in accordance with observations about Germanic metrical syntax made by Hans Kuhn and known to specialists as ‘Kuhn’s Laws’ (Blockley and Cable, 2000: 274–275; Kendall, 1991: 43–47). Examples involving finite verbs are Cadmon’s Hymn 4b ōr astealde (SwSx) and the following (underlining designates mobile closed-class words that contribute strong positions):

Seaferer 4b gebiden _hæbbe_ (wSSx) ([I] have suffered)
Seaferer 10b _pēr pa ceara seanodon_ (WSSx) (where cares sighed)
Seaferer 55b _Þæt se beorn ne _wæt_ (WSwS) (the man does not know that)
“Seafarer 10b, with resolution of seofo-, shows that weight restrictions apply, as expected in strong positions.

Members of this mobile subclass of weak constituents may also serve in lieu of a strong constituent in the first half of a verse that would otherwise be deficient in position-count. The behavior is best understood in cases where a finite verb or another weak constituent participates in alliteration. In such cases, metrists working in an accentual paradigm of Old English meter have argued persuasively that a weak constituent may supply a metrical stress (Cable, 1974: 22–24; Russom, 1998: 128–133; Suzuki, 1996: 49–54). An example is *Cædmon’s Hymn* 8b *æfter tēode* (adorned afterwards) (SwSx), where adverbial *æfter* contributes the first two positions in the absence of a strong constituent. When alliteration is absent the verse structure is more open to debate, yet it seems likely, as Sievers believed, that a finite verb or another weak constituent in verse-initial position may be recruited to the role of a strong constituent (may be counted as an apple) whenever the meter would otherwise be deficient in position count, with or without alliterative highlighting (Cable, 1970; Cable, 1991, 20–22; Yakovlev, 2008: 53 and 75). Relevant instances are supplied by the first verses of *Cædmon’s Hymn* (*Nū sculon herian* [now let us praise]) and the *Seafarer* (*Mæġ iċ be mē selfum* [I can [tell] concerning myself]). Designated Type A3 in the Sieversian classification, such verses are understood by most Sieversian metrists, though not by Sievers himself, to possess only one metrical stress and three metrical positions, weak–strong–weak. If an initial finite verb or a particle is recruited to a strong position in such verses, these verses join the standard four-position template, scanning (S)WSx. ‘(S)’ designates a strong position projected onto a weak constituent in retrospect, once a metrically attuned reader reaches the end of the verse and senses that it is wanting in position-count. Somewhat like the contextual promotion of closed-class words in accentual-syllabic meters, the metrical value of closed-class words and finite lexical verbs in Old English verse must be
inferred on a case-by-case basis. The relevant context for discerning the metrical value of morphemes of this ambiguous class is furnished by the four-position template.

The contextual promotion of weak constituents is joined in accentual-syllabic meters by the inverse operation, the contextual demotion of strong constituents. The root syllables and stressed prefixes of nouns and adjectives are never demoted in Old English meter, but there is variation in the metrical behavior of certain suffixes and in the second elements of obscured compounds. These belong historically and morphologically to the same class as stressed prefixes and roots, and their behavior usually agrees with this class membership when they occur along the right edge of the verse, where the syllable-counting mode predominates. When, however, a prosodically light suffix or the prosodically light second element of an obscured compound occurs earlier in the verse, it usually exhibits the metrical behavior of an inflection, forming a weak position: ‘suffixes like -scipe and -sume, with an etymologically short high vowel in the penultimate syllable, count as two metrical positions [strong plus anceps (Sx) in the notation of the present essay] in the coda of a verse; otherwise they count as one [an extended weak position (W) in the notation of the present essay]’ (Fulk, 1992: 201; cf. Cable, 2016). The only example of the weak metrical behavior in the sample passages is Seafarer 19b hwīlum ielfete sang (sometimes the song of a swan), an irregular verse probably scanning WSWS.

Taken together, the ambivalent morphological classes introduce flexibility and complexity into the system. Closed-class words are usually mapped to weak positions but may be mapped to a strong position in certain contexts where that designation yields a four-position verse. Unstressed prefixes and the negative proclitic ne are usually mapped to weak positions but may be excluded from the metrical count. Light suffixes and second elements of obscured compounds behave like normal strong constituents at the right edge of verses but often like weak constituents internally. These ambivalent morpheme classes allow verse to deviate from prototypical realizations of the meter yet still hit the target position-count. The four-position template, contextual promotion, and
the prefix license are interdependent features of the metrical system. They form part of an unavoidable circle that is the mental process of listening to or composing verse.

We may now return to the basic template, introduced at the beginning of this exposition of Old English meter. As we noted then, the restriction against consecutive weak positions yields eight permutations of weak and strong positions in a four-position frame: SSSS, WSSS, SWSS, SSWS, SSSW, SWSW, WSWS, WSSW. This initial output was refined in subsequent exposition, where we noted that weak positions are restricted to a single syllable in positions three and four. (This rule is represented in the second version of the game in the prelude, where plates three and four must have exactly one fruit). We also argued that, whenever the third position is strong (the ‘pivotal apple’ of the prelude), the strong-weak distinction is neutralized in the final position, which becomes functionally *anceps*. It follows that the eight permutations reduce to five: SSSx, WSSx, SWSx, SSwS, WSwS. These five configurations cut across the five Sieversian types (for example, the notation ‘SSSx’ covers variants of both Sievers Type A and Type D, according as it is subdivided by word boundaries either SS|Sx or S|SSx), and we do not mean for them to supplant the simpler eight-permutation template presented at the outset. Instead, the five configurations SSSx, WSSx, SWSx, SSwS, and WSwS denote the possible paths of play within the four-position game.¹⁴ The paths of play are further divisible into two disproportionate sets, according to the quality of the third (penultimate) position. When the third position is strong, the first two positions are open to the usual permutations of strong and weak constituents (SS-, WS-, and SW-) and the final position is filled by any single syllable (-x). This is the more common arrangement, occurring in 13 of the 18 verses in *Cædmon’s Hymn* and 74 of the 113 verses in our passage from the *Seafarer*. When the third position is weak, the bordering positions are necessarily strong (-SwS); only the first position remains open to strong-weak alternation (S- and W-).
So-called ‘hypermetric’ verses fall outside the scope of this article; these are related to the normal meter, but require separate treatment.15 Nor does this article solve the riddle of five-position verses designated as Type D* in the Sieversian system and illustrated in the \textit{Seafarer} by, e.g., 4a \textit{bitre brēost-ċeare} (bitter care at heart) (SwSSx) (cf. \textit{Seafarer} 17a, 48a, and 49a). Cable (1974: 80–81) and Suzuki (1996: 24–35) argue that the initial Sw sequence in Type D* verses reduces to a single position, bringing this verse type into agreement with the four-position norm. These arguments are based in consideration of stress accent and phrasal intonation, and they are plausible in part because an accentual motivation may also be supplied for the promotion of a weak element in the onset of Sievers’s Type A3 verses. If the dominant modality of Old English meter is morphological, as Yakovlev holds, it is likely that an accentual modality comes into play in restricted contexts.16 Other interpretations of Type D* are possible. This verse configuration may just be robustly asystematic, that is, a configuration securely attested in the poems but not conformant with the abstract metrical system articulated in the template and correspondence rules (Yakovlev, 2008: 65–69 and 283–285; for the concept of asystematic metrical patterns, see Weiskott, 2016b). The five-position pattern could be a vestige of a prehistoric state of the meter in which an octosyllabic long line was perhaps subdivided 5 / 3 or 3 / 5, as in some other Indo-European octosyllabic meters, instead of 4 / 4.17 Whatever their genesis and however understood, verses like \textit{Seafarer} 4a are eccentric to the general system of the meter without falling outside the limits of acceptability to poets and audiences.

Alliteration, usually the first feature of Old English meter to be mentioned in descriptions of it, stands at two removes from the basic underlying metrical structure described here. Alliterating sounds occur as splashes of aural color, crowning the stress peaks in the accentual contour of the verse. The accentual contour, in turn, expresses the general prosodic system of the Old English language, operating within the confines of the four-position metrical template. The alliteration termed ‘structural’ in descriptions of Old English meter is a signifier of structure rather than the
structure itself. Alliteration would come to possess a closer, but still non-identical, relationship to English alliterative meter by the fourteenth century, by which time the accentual principle emphasized in Sieversian scansion supplanted the morphological principle isolated by Yakovlev. To follow Yakovlev’s description of Old English meter, as we do, is to locate metrical structure at a level beneath the alliterating peaks of Old English poetry. Alliteration and meter interact and interplay, but they do so from a greater distance than Sievers recognized.

4. Stresses, Contours, and Positions: A Reply to Critics

In a sustained critique of Yakovlev’s theory of Old English meter, Leonard Neidorf and Rafael J. Pascual object that a meter that permits four consecutive strong positions ought to permit verses composed of four monosyllabic open-class words or their resolved equivalents:

\[\text{if a verse such as } \text{glædman Hröðgār genuinely consisted of four strong positions that were metrically equivalent, then it would have been perfectly acceptable for the } \text{Beowulf poet to have composed verses such as } *\text{frōd cyning þrīo wicg or } *\text{snotor guma bēah ġeaf, consisting of four ictic monosyllables or resolved equivalents. (2020: 247)} \]

The constructed verse *frōd cyning þrīo wicg (the wise king three horses) is not well chosen, for resolution of cyning should be suspended in this context, yielding an asystematic five-position verse, yet Neidorf and Pascual’s general point holds. Old English poets did not compose verses like *snotor guma bēah ġeaf (the wise man gave a ring), with four ictic words. From this observation, Neidorf and Pascual infer that an adequate representation of Old English meter must recognize word division and multiple levels of stress, as the traditional Sieversian system does, and that a verse like Beowulf 367b \text{glædman Hróðgār (gracious Hrothgar)} must be scanned /\|/\ (two ‘feet’ consisting of ‘primary’ and ‘secondary’ stress). The argument merits consideration, but frames the problem too narrowly. Neidorf and Pascual presume that \text{glædman Hröðgār} is acceptable because it has the right stress contours, whereas *\text{snotor guma bēah ġeaf} does not. Other considerations may be in play.
As Neidorf and Pascual emphasize, what is unusual about the non-occurring verse-structure is its abundance of ictic or stress-bearing words. The nearest relevant comparison is not two-word verses like *Beowulf* 367b, but three-word verses like *Seafarer* 17b *hæġl scūrum flēag* (hail fell in showers) and *Beowulf* 147a *twelf wintra tid* (the space of twelve years). Such verses are termed ‘heavy’ in Sieversian metrics, in acknowledgement that they seem to exceed, by one, the count of expected word-stresses (Hutcheson, 1995: 164–168). The super-heavy verses constructed by Neidorf and Pascual exceed the expected count by two. So-called heavy verses occur uncommonly but unquestionably in the poetry, whereas super-heavy verses do not occur. Sieversian accentual scansion can explain the non-occurrence of super-heavy verses but has trouble with the occurrence of the ones it designates as heavy. This ought to raise doubts about the Sieversian explanation for the non-occurrence of the super-heavy verses. The decisive factor might not be the precise accentual contours involved, as Sieversian scansion supposes, but prosodic legibility as such, for the syntax and prosody of a string of stressed monosyllables (or their resolved equivalents) can be difficult to parse. As Mary Blockley and Cable have remarked, ‘a polysyllabic word gives a shape to the verse and narrows the possibilities for assigning ambiguous categories’ (2000: 275). Compounding and inflection give metrical shape to verses like *Beowulf* 147a and *Beowulf* 367b, which perhaps explains why these verse configurations were acceptable to poets. By contrast, when four ictic words are cramped into a four-position template, as in Neidorf and Pascual’s constructed examples, there is no opportunity for differentiation. The verse dissolves into a jumble of words, rightly avoided by the poets. The four-position template again seems primary, capable of explaining both the occurrence of the so-called heavy verses and the non-occurrence of super-heavy verses. This permits us to reiterate what is gained in giving priority to position-count in discussions of Old English meter.

Whereas presentations of Sieversian theory often state that a well-formed verse has two ‘primary’ stresses, this expectation is routinely challenged by the poetry. ‘Heavy’ verses have that
name because they appear to have one too many stress-bearing words. The Sieversian system is too restrictive in this case. To preserve the fixed count of ‘primary’ stresses in ‘heavy’ verses, a Sieversian scansion must treat one word-stress as non-primary. Finite lexical verbs present a problem of a different order, for they have linguistic stress on their root syllable like nouns and adjectives, yet their metrical behavior is differentiated from that of nouns and adjectives. In this case Sieversian theory acknowledges that the operative factor is grammatical category membership, not stress as such. Finally, clashing stress, a salient characteristic of Old English poetry, is the source of problems for any metrical theory that sets itself the task of tracing out and classifying stress-contours (Cable, 1974: 65–74; 1991: 27–37 and 137–151; Yakovlev, 2008: 81). When stresses clash, are they spaced out or differentiated? If spaced out, is the pause a performance-feature or part of the metrical structure? If differentiated, which of two clashing stresses is the more prominent, and does the meter retain a count of two ‘primary’ stresses?

These questions do not arise for the four-position theory. The reason is that the theory expounded here treats contours of stress as a feature of verse instances, not verse design, and makes no stipulations on the count of stresses, ‘primary’ or otherwise. Moreover, adjacency is embedded into the very definition of the strong-weak contrast that undergirds the four-position theory. Strong metrical constituents are those that, when adjacent, do not coalesce into a single metrical position. When strong constituents occupy adjacent metrical positions, the result is sometimes clashing stress. This eventuality is theoretically unexceptional. Similarly unexceptional are ‘heavy’ verses like Seafarer 17b *hæġl scūrum flēag*. This verse scans SSwS and is metrically equivalent to Seafarer 19a *iš-ċealdne wǣg* (ice-cold wave). The first verse has three ‘primary’ word-stresses; the second has two ‘primary’ stresses and one ‘secondary’ stress. The allocation of linguistic stress among the constituents of these verse instances is an appropriate object of study for intonational phonology and may contribute to the expressivity of Old English verse as read silently or aloud, but the metrical system...
operates on another register. A theory of meter should keep itself within the bounds of metrical structure and should resist the temptation to become a general grammar.

5. Conclusions

When one reads poetry with attention to meter, one is engaged in an ‘exercise in abstraction’, in W. K. Wimsatt and Monroe C. Beardsley’s (1959) well-known phrase. The description of Old English meter presented here, indebted especially to the work of Cable and Yakovlev, carries the exercise in abstraction farther than Sieversian metrics has done. First, whereas the Sievers–Bliss system projects a combination of prosodic features and metrical constraints—stress, syllable weight, syllable count, position count, and alliteration—acknowledged to be ‘unparalleled in the world’s languages’ (Pope and Fulk, 2001: 149), the four-position theory is more selective. Second, where Sieversian metrics prioritizes a qualitative feature—stress contour—the four-position theory prioritizes instead an act of counting.

As a principle of verse design, a count is at once concrete, as Jakobson states in the passage quoted at the beginning of this article, and abstract, as Wimsatt and Beardsley affirm. A metrical count is concrete because it works upon the linguistic material of poetry. It is abstract because enumeration presupposes an ability to generalize an enumerandum, an entity to be counted, within and across the linguistic material of individual verse instances. One must be able to identify and generalize those particular verse-properties that enter into the count and permit a group of verses to be recognized as instances of a single design. As a prosodic system whose very modality—accentual, morphological, syllabic, or quantitative—remains in question, Old English meter presents a theoretical problem in an acute form. We are still learning how and what to count.

There is a further, expository problem. Metrical systems have a non-sequential logic: components of the system operate simultaneously. But expository discourse is sequential: it requires
a starting point. The point of entry is important because it will shape the ensuing enquiry, suggesting places for emphasis and raising or ruling out connections among system elements. Sievers’s point of entry was an equation between linguistic stress and metrical stress. In his account, Old English meter is an accentual or stress-based form with structural alliteration and secondary considerations of syllable weight. The metrical position was simply a constituent part of a stress contour. Cable and Yakovlev reverse the logical relation between these theoretical elements, recognizing the count of four positions as the general principle or metrical invariant that establishes any given verse instance as commensurate with other verse in the same meter. The new starting point re-focuses attention on the intricacies of counting. Notwithstanding the technical nature of resolution and the prosodic ambiguity of certain classes of morphemes, the underlying metrical forms of Old English verse emerge here as quasi-syllabic, a count from one to four, under special conditions, on infinite repeat. A metrical count is the framework within which perceptual givens come to bear significance. The artistry of Old English verse lies in the kaleidoscopic variety of effects that poets derived from the interaction between a four-position count and the materials of language.
Appendix

As illustrations of the metrical theory we advocate in this article we present scansion of Cadmon’s Hymn (normalized West Saxon version) and the Seafarer 1–57. Texts, macrons (for long vowels), lineation, and punctuation are reproduced from Pope and Fulk (2001). A-verse and b-verse are separated with a tabbed space, in agreement with modern convention. Silent letters are subpuncted.

Morphemes contributing strong metrical positions are printed in bold. Morphemes contributing weak metrical positions are printed in regular type. Typeface registers metrical function, not morpheme class per se: a morpheme from a weak class appears in bold when subject to contextual promotion (e.g., Nū in Cadmon 1a); similarly, a syllable from any class appears in bold when it forms a strong position in combination with a preceding short root syllable through metrical resolution (e.g., inflectional -en in Seafarer 4b gebiden). Resolution operates at the level of the syllable, a distinction registered in the resolved sequences of Cadmon 2a and Seafarer 15a, 40a, etc. These bolded elements follow syllabic boundaries; in all other cases, the bolded element is a morpheme, not a syllable. The discrepancy in notation is necessary, as it corresponds to a discrepancy in Old English meter between quantitative and morphological correspondence rules.

Our scansion is presented in three rows of type below each line of verse. The first row indicates whether a syllable makes position on its own or groups with others. We indicate one-syllable positions with a vertical line (|) tying the syllable to its metrical notation in the second row of type; polysyllabic positions are indicated with a vertical bracket (V). In the second row, we assign metrical value to positions, weak, strong, or anceps, using the following symbols to reflect the value and constituency of a position:

\begin{itemize}
 \item S \hspace{1cm} an ordinary strong position
 \item (S) \hspace{1cm} a strong position formed by contextual promotion of a morphologically weak element in the verse onset
 \item W \hspace{1cm} a polysyllabic weak position
\end{itemize}
w a monosyllabic weak position
p a verbal prefix or proclitic *ne* omitted from the metrical count
x *anceps* in the fourth position

In the third row, we count positions. Syllables that receive the notation ‘p’ in the second row are omitted from the count of positions in the third row.

The three rows of type do not correspond to three steps or stages of scansion. On the contrary, the actions distributed into these three rows—grouping of syllables into positions, determination of the metrical value of ambivalent elements, and counting of positions—are interdependent and simultaneous mental operations. Scansion records an outcome of these operations.

A. Caedmon’s Hymn

1a

*Nū sculon herian*¹⁸

V	V
(S) W S x S S w S
1 2 3 4 1 2 3 4

1b

heofon-rīces weard,

V	V
1 2 3 4

2a

metodes meahta and his *mōd-ġēbanc,*

| S W S x W S w S |
---|---|
1 2 3 4 1 2 3 4

2b

V
1

3a

weorc wuldor-fæder, swā hē *wundra ġehwæs,*

| S S S x W S w p S |
---|---|
1 2 3 4 1 2 3 4

3b

V
1

4a

ēce dryhten, *ōr astealde.*

| S w S x S w S x |
---|---|
1 2 3 4 1 2 3 4

4b

1
5a
Hē ārest scōp ielda bearnum

w	S	S	x	S	w	S	x
1	2	3	4	1	2	3	4

6a
heofon tō hrōfe, hālig scieppend;

V							
S	w	S	x	S	S	S	x
1	2	3	4	1	2	3	4

7a
þā middan-ġeard mann-cynnes weard,

w	S	w	S	S	S	w	S
1	2	3	4	1	2	3	4

8a
ēċe dryhten æfter tēode—

S	w	S	x	S	w	S	x
1	2	3	4	1	2	3	4

9a
fīrum foldan frēa ælmihtiğ.

S	w	S	x	S	S	S	x
1	2	3	4	1	2	3	4
B. *The Seafarer*, lines 1–57

1a

\[\text{Mæg iċ be mē selfum, sōd-ġiedd wrecan,} \]

1b

| V | | | | | |

(S) W S x S S S x

1 2 3 4 1 2 3 4

2a

\[\text{sīðas secgan, hū iċ ġeswinc-dagum} \]

2b

| | | | V | | |

S w S x W S S x

1 2 3 4 1 2 3 4

3a

\[\text{earfob-hwīle oft prōwode,} \]

3b

| | | | | | |

S w S x S S S x

1 2 3 4 1 2 3 4

4a

\[\text{bitre brēost-čeare ġebiden hæbbe,} \]

4b

| | | | | V |

S w S S w w S S x

1 2 3 4 5 1 2 3 4

5a

\[\text{ģecunnod on čēole čear-selda fela,} \]

5b

| | V | | | | | |

p S W S x S S w S

1 2 3 4 1 2 3 4

6a

\[\text{atol ųða ġeawalč, pāer meċ oft begeat} \]

6b

| V | | | | | |

S S w p S W S w S

1 2 3 4 1 2 3 4

7a

\[\text{nearu niht-wacu āet nacan stefnan,} \]

7b

| V | | | | | |

S S S x w S S x

1 2 3 4 1 2 3 4
<table>
<thead>
<tr>
<th>Line</th>
<th>Partial Text</th>
<th>Full Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>8a</td>
<td>þonne hē be clifum cnossāb.</td>
<td>Čealdum clammum, þār þā ceara seofodon</td>
</tr>
<tr>
<td>9a</td>
<td>fruron mīne19 fēt,</td>
<td>bær þā cēara seofodon</td>
</tr>
<tr>
<td>10a</td>
<td>ĉealdum clammum,</td>
<td>bær þā cēara seofodon</td>
</tr>
<tr>
<td>11a</td>
<td>hāt’ ymb heortan;</td>
<td>hungor innan slāt</td>
</tr>
<tr>
<td>12a</td>
<td>mere-wēr̩ges mōd.</td>
<td>bæt sē mann ne wāt</td>
</tr>
<tr>
<td>13a</td>
<td>þe him on foldan</td>
<td>fǣgroste limpeb,</td>
</tr>
<tr>
<td>14a</td>
<td>hū iċ earm-ċearig</td>
<td>ñis-ċealdne sæ</td>
</tr>
<tr>
<td>15a</td>
<td>winter wuno</td>
<td>wreċčan lāstum,</td>
</tr>
</tbody>
</table>
28

16a [16b absent]
wine-māgum bedroren,
| V | | V |
| S | w | p | S |
1 2 3 4

17a
behangen hrīm-giclum; hægl scūrum flēag.
| | | | | | | |
| p | S | w | S | S | w | S | S |
1 2 3 4 5 1 2 3 4

18a
bǣr ic ne gehīerde būtan hlimman sæ,
| V | | V | | V | |
| (S) | W | S | x | W | S | w | S |
1 2 3 4 1 2 3 4

19a
īs-ċealdne wāg, hwīlum ielfete sang.
| | | | V | | V | |
| S | S | w | S | W | S | W | S |
1 2 3 4 1 2 3 4

20a
Dyde ic mē tō gamene ganotes hlēoðor,
| V | V | V | | V | | V | |
| (S) | W | S | x | S | w | S | x |
1 2 3 4 1 2 3 4

21a
and hwilpan swēg fo hleahtor wera,
| | | | V | | V | |
| w | S | w | S | W | S | w | S |
1 2 3 4 1 2 3 4

22a
mǣw singende fo medu-drinče.
| | | | V | V | | | |
| S | S | S | x | W | S | S | x |
1 2 3 4 1 2 3 4

23a
Stormas bǣr stān-clifu bēotan, bǣr him stearn oncwæþ,
| V | | V | | V | | |
| S | W | S | S | S | w | W | S | w | S |
1 2 3 4 5 6 1 2 3 4
24a 24b
īsīḡ-feofrans; full oft þæt earn beȝeall,
| | | | V | | |
S S S x W S w S
1 2 3 4 1 2 3 4

25a 25b
ūriḡ-feðrans; nǣniḡ hlēo-māga
| | | | V | | |
S S S x W S S x
1 2 3 4 1 2 3 4

26a 26b
fēa-sceaftef serpfr frēfran meahte.
| | | | | | | | | | |
S S S x S w S x
1 2 3 4 1 2 3 4

27a 27b
For-þon him ġelīefeb lýt, sē-þe æg lifes wynn
V | | | | V | |
W S w S W S w S
1 2 3 4 1 2 3 4

28a 28b
ġebiden on burgum, bealu-sīda hwōn,
| V | | | | V | | |
p S w S x S S w S
1 2 3 4 1 2 3 4

29a 29b
wlanc and wīn-gāl, hū iċ wēriḡ oft
| | | | V | | |
S w S x W S S x
1 2 3 4 1 2 3 4

30a 30b
on brim-lāde bīdan scolde.
| w S S x S w S x
1 2 3 4 1 2 3 4

31a 31b
Nāp20 niht-scua, norðan snīwde,
| w S S x S w S x
1 2 3 4 1 2 3 4
nē his giefta þæs gōd, nē on geoguþe tō þæs hwæt,
\[\begin{array}{cccc}
V & V & V & V \\
W & S & W & S \\
1 & 2 & 3 & 4
\end{array}\]

nē on his ðædum tō þæs dēor, nē him his dryhten tō þæs hold,
\[\begin{array}{cccc}
V & V & V & V \\
W & S & W & S \\
1 & 2 & 3 & 4
\end{array}\]

þæt hē ā his sǣ-fōre sorge næbbe,
\[\begin{array}{cccc}
V & V & V & V \\
W & S & S & x \\
1 & 2 & 3 & 4
\end{array}\]

tō hwon hine dryhten gedōn wille.
\[\begin{array}{cccc}
V & V & V & V \\
(W) & S & x & w \\
1 & 2 & 3 & 4
\end{array}\]

Nē bīb him tō hearpan hyge nē tō hring-þége—
\[\begin{array}{cccc}
V & V & V & V \\
W & S & w & S \\
1 & 2 & 3 & 4
\end{array}\]

nē tō wīfe wynn nē tō weorolde hyht—
\[\begin{array}{cccc}
V & V & V & V \\
W & S & w & S \\
1 & 2 & 3 & 4
\end{array}\]

nē ymbe āwihtelles nefne ymb ņōa ġewalc;
\[\begin{array}{cccc}
V & V & V & V \\
W & S & S & x \\
1 & 2 & 3 & 4
\end{array}\]

ac ā hafaþ langunge sē-þe on ñagu fundaþ.
\[\begin{array}{cccc}
V & V & V & V \\
W & S & S & x \\
1 & 2 & 3 & 4
\end{array}\]
56a 56b
sēft-ēadiġ secg. hwæt þā sume drēogæþ
 V V
S S S x W S S x
1 2 3 4 1 2 3 4

57a 57b
þe þā wræc-lästas widost lecgæþ.
 V
W S S x S S S x
1 2 3 4 1 2 3 4
References

For a clear and concise account of Sieversian metrical theory, see the appendix on meter in Pope and Fulk (2001: 129–158). Stockwell and Minkova (1997) is a useful survey of scholarship in this field.

Suzuki (2014) is a valuable empirical study that implements Cable’s definition of metrical position. For summaries and evaluations of Yakovlev’s theory of Old English meter, see Cable (2009: 263–264); Cornelius (2017: 57–62); Neidorf and Pascual (2020); O’Neil (2018: 76); Pascual (2018: 222–226); Weiskott (2016a: 24–32); Weiskott (2020).

These poems are quoted from Pope and Fulk (2001).

Note ‘permutations’, not ‘types’ as Neidorf and Pascual (2020: 247–248) state in a critique of Yakovlev. The difference is that a permutation series can be expressed in a mathematical notation, whereas types require piecewise illustration.

Generally speaking, stressed prefixes are those prefixing nouns and adjectives, while verbal prefixes are unstressed including in infinitives. The minimal prefixes be- and ge- are unstressed in both nouns and verbs.
Light suffixes and the second elements of obscured compounds form a partial exception. See below. The second elements of dithematic proper names are variable in metrical behavior.

Compare Cable’s ‘antepenultimate syllable rule for resolution’ (1991: 19–20 and 26; 2016) and Fulk’s ‘rule of the coda’ (1992: 197–234). A stress-based theory has difficulty explaining why a resolvable sequence should be more likely to resolve under conditions of ‘intermediate’ intensity or prominence. Hence the positional explanations advanced by Cable and Fulk. Cable and Fulk identify additional conditions for the suspension of resolution, omitted here because not required for scansion of our sample passages.

Beowulf is quoted from Fulk, Bjork, and Niles (2008).

This includes all case markers of nouns and adjectives, the terminations of uninflected verbal infinitives (-an), and the terminations of passive participles. The heavy syllable in the terminations of the inflected infinitive (-enne) and active participle (-ende) maps to a strong position. The stem vowel -i- that appears in certain forms of weak class 2 verbs and the syllable -ad- in preterites of the same class has a metrical behavior that varies as a function of the position of these words within the verse. See Fulk (1992: 203–206) and discussion of light suffixes, below.

See _Cædmon’s Hymn_ 4a and 8a. Other stem syllables that have the metrical behavior of inflections in our sample passages are the second syllables of _dryhten_ (< _dryht_ + suffix *-ino-z) and of _niddan-ʒeard_ (cf. Gothic _midjun-ʒid_). See _Cædmon’s Hymn_ 4a, 7a, and 8a. In _Seafarer_ 21b _ore hlēahtor weorð_ (instead of laughter of men), the syllable _-tor_, formed from a parasitic vowel (< *_hlæht-az_), likewise forms a weak position.

The exceptions in the scanned passages are _Seafarer_ 40–41, four verses with very similar syntactical structures in anaphora, all scanning WSWS (and cf. _Seafarer_ 19b).

Cable (1974: 24) states the matter well, though in terms of stress-count rather than position-count: ‘[I]f a principle is established in the great majority of lines, it is reasonable to assume that ambiguous verses are constructed upon that same principle instead of upon a completely new one. If the principle requires a minimum of two stresses to the verse, it is reasonable again to assume that the poet and his audience felt two stresses in those occasional verses where the stress is less obvious to the modern reader’.

Certain linguistically possible four-position configurations, such as that represented by a hypothetical verse *_hilderinc har_ (the old warrior), are in fact vanishingly rare in the poetic corpus. The non-occurrence of this pattern—_Sxs|S_ in
Sieversian scansion—is covered by Cable’s rule (1991: 148–149) that the second of two clashing stresses must not be heavier than the first. Cable’s modified accentualism performs better than the morphological theory in this respect.

16 Yakovlev does not deny the functionality of the accentual principle in Old English meter, as suggested by Neidorf and Pascual (2020). His contention, and ours, is instead that the morphological modality governs the accentual one. In the Sieversian description of Old English meter, the relationship between these modalities is the opposite: in that system, the accentual modality predominates over the others.

17 For speculation about prehistoric states of the English/Germanic alliterative meter, see Cable (2016: 48); Mees (2007); Suzuki (1988).

18 The inflectional -i- in this verb class is consonantal and so does not form a separate syllable. See Pope and Fulk (2001: 145n30).

19 Or SSwS with *ad hoc* contextual promotion of *mine*. The manuscript reads *fruron* wæron. Cf. Pope and Fulk (2001: 145–146n33 [discussion] and 153 [scansion]).

20 Or scan SSSx with contextual promotion of the alliterating finite verb in initial position. Cf. *Seafarer* 36a and 54a and the following note.

21 Also plausible is SwSwS (Sievers Type D*) with contextual promotion of alliterating *manaþ*. Cf. *Seafarer* 54a, on which see Pope and Fulk (2001: 156).