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Observations of the time-dependent cosmic-ray Sun shadow have been proven as a valuable diagnostic
for the assessment of solar magnetic field models. In this paper, seven years of IceCube data are compared
to solar activity and solar magnetic field models. A quantitative comparison of solar magnetic field models
with IceCube data on the event rate level is performed for the first time. Additionally, a first energy-
dependent analysis is presented and compared to recent predictions. We use seven years of IceCube data for
the moon and the Sun and compare them to simulations on data rate level. The simulations are performed
for the geometrical shadow hypothesis for the moon and the Sun and for a cosmic-ray propagation model
governed by the solar magnetic field for the case of the Sun. We find that a linearly decreasing relationship
between Sun shadow strength and solar activity is preferred over a constant relationship at the 6.4σ level.
We test two commonly used models of the coronal magnetic field, both combined with a Parker spiral, by
modeling cosmic-ray propagation in the solar magnetic field. Both models predict a weakening of the
shadow in times of high solar activity as it is also visible in the data. We find tensions with the data on
the order of 3σ for both models, assuming only statistical uncertainties. The magnetic field model CSSS fits
the data slightly better than the PFSS model. This is generally consistent with what is found previously
by the Tibet AS-γ Experiment; a deviation of the data from the two models is, however, not significant at
this point. Regarding the energy dependence of the Sun shadow, we find indications that the shadowing
effect increases with energy during times of high solar activity, in agreement with theoretical predictions.

DOI: 10.1103/PhysRevD.103.042005

I. INTRODUCTION

The existence of the cosmic-ray Sun shadow, which
commonly refers to cosmic rays being blocked by the Sun,
has first been suggested by George W. Clark in 1957 [1].
While cosmic rays that propagate close to the moon are
only deflected marginally by the geomagnetic and helio-
spheric magnetic fields, cosmic rays that traverse the
coronal solar magnetic field can be deflected strongly
and irregularly.
Hence, the cosmic-ray moon shadow essentially blocks

cosmic rays from a well-known solid angle and can be used
as a direction and resolution standard. Several experiments

have exploited this feature to study their angular resolution,
absolute pointing, and absolute energy scale,1 e.g., Tibet
AS-γ, MILAGRO, MACRO, Soudan2, ARGO-YBJ, and
IceCube [2–7].
The cosmic-ray Sun shadow, on the other hand, contains

the footprint of the solar magnetic field in the form of those
cosmic rays reaching Earth that come from directions close
to the Sun. In 2013, the Tibet AS-γ Collaboration compared
coronal magnetic field models using the cosmic-ray Sun
shadow at a median primary cosmic-ray energy of
∼10 TeV [8]. Later, they also studied the influence of
solar coronal mass ejections (CMEs) on the cosmic-ray Sun
shadow at energies of ∼3 TeV [9] and concluded that
Earth-directed CMEs (ECMEs) affect the cosmic-ray Sun
shadow at these energies. The influence of the solar*Also at Università di Padova, I-35131 Padova, Italy

†Also at National Research Nuclear University, Moscow
Engineering Physics Institute (MEPhI), Moscow 115409, Russia

‡Earthquake Research Institute, University of Tokyo, Bunkyo,
Tokyo 113-0032, Japan

1The latter is done by using the energy-dependent shift of the
position of the shadow due to the Earth’s magnetic field.
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magnetic field on the cosmic-ray Sun shadow has been
studied by several other experiments, like Milagro, ARGO-
YBJ, and HAWC, as well [10–12]. Such efforts are
especially important since no in situ measurements of
the solar magnetic field closer than to about 0.29 ua
(≈62 solar radii) distance from the Sun Helios spacecraft
[13]) existed until very recently. Even the Parker Solar
Probe, which will eventually approach the Sun up to ∼8.9
solar radii in 2024 [14], has as of yet not been closer than
27.8 solar radii, i.e., about 0.13 ua.
In this paper, we investigate a possible time dependence

of the cosmic-ray Sun shadow using seven years of IceCube
data. The measurements are based on atmospheric muons
detected with IceCube, induced by cosmic rays entering the
Earth’s atmosphere. For the first time, we use IceCube data
for a comparison of measurements with the expected
shadow for solar activity with different solar magnetic
field models. We calculate the median energy of the
primary cosmic rays in our sample to 50–60 TeV, depend-
ing on the cosmic-ray flux model that is used to derive
cosmic-ray energies from the measured muons. This is,
therefore, the highest energy measurement of the Sun
shadow so far, as compared to the median primary
cosmic-ray energies of the earlier measurements that lie
around 1–10 TeV. Additionally, the energy dependence of

the Sun shadow is investigated; i.e., two samples with
respective median energies of 40 TeV and 100 TeV are
produced and qualitatively compared to a recent prediction,
in which the energy-dependence of the Sun shadow in a
low-activity solar magnetic field is shown to differ signifi-
cantly from that in a high-activity solar magnetic field [15].
The data we use for studying the cosmic-ray Sun shadow in
IceCube comprise the time from late 2010 until early 2017
and cover large parts of Solar Cycle 24. This cycle is
defined for the time interval from late 2008 to some time
around late 2019 to early 2020, wherein the exact location
of the minimum that defines the end of the cycle is not clear
at this point. This work follows an earlier study, which
reported on the detection of a temporal variation of the
cosmic-ray Sun shadow measured with IceCube and found
a correlation with solar activity to be likely [16].

II. THE ICECUBE NEUTRINO OBSERVATORY

The IceCube Neutrino Observatory is a detection array
deployed in the Antarctic ice near the geographic South
Pole and comprises a volume of about 1 km3 instrumented
with 5160 digital optical modules (DOMs) on 86 strings
[17]. IceCube is located at a depth between 1450 m and
2450 m and detects relativistic secondary particles induced

50 m

1450 m

2450 m 

2820 m

IceCube Array
 86 strings including 8
5160 optical sensors

DeepCore 
8 strings-spacing opti
480 optical sensors

Eiffel Tower
324 m 

IceCube Lab

IceTop
81 Stations
324 optical sensors

Bedrock

l

l

FIG. 1. The IceCube Neutrino Observatory.
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by astrophysical neutrinos, gamma rays, and cosmic rays.
The detector was built at the South Pole between 2005 and
2010 and exploits the clear Antarctic ice as its detection
medium for Cherenkov radiation of charged particles
traversing it.
A sketch of the IceCube Neutrino Observatory including

its subarray DeepCore [18], which aims to improve the
sensitivity to lower-energy neutrinos, can be seen in
Figure 1. Data from DeepCore have not been used in
this analysis. For neutrinos, IceCube’s main array has an
energy threshold of about 100 GeV. In this paper, we
use atmospheric muons, which are a background to the
neutrino searches. In this sample, the energies of the
primary cosmic rays inducing these atmospheric muon
events are typically ≳1 TeV.

III. DATA SAMPLE

In IceCube, high-energy muons are observed. As these
are predominantly produced by cosmic-ray air showers,
they trace the direction of the primary particles, with the
angular uncertainty being dominated by the uncertainty of
the light propagation in the ice and limited by the kinematic
angle between primary and secondary particle. We thus
measure an event rate of high-energy muons in IceCube.
The event rate increases with increasing elevation because
of the decreasing amount of ice overburden that cosmic-ray
induced atmospheric muons have to cross to reach the
detector. In this section, we describe the details of our data
sample.

A. Moon and Sun as seen from the South Pole

This paper uses data from IceCube’s 79-string configu-
ration (IC79), which was available in the 2010=2011 season
and from the final 86-string configuration (IC86), whichwas
available from the 2011=2012 season and onward. We use
the high-energy atmospheric muons that pass through the
detector for our analysis, as they are direct tracers of the
primary particles. The strength of the cosmic-ray shadow of
the moon and Sun is determined by the number of cosmic
rays that are blocked.Without additional forces, this number
results from the solid angle that is spanned by the moon and
the Sun as seen from Earth, i.e., their angular radii. Using
their respective physical radii R and distances d from Earth,
the (apparent) angular radius Rapp of the moon and Sun as
seen from Earth is calculated as

Rapp ¼ arctan ðR=dÞ: ð1Þ

The values for R and d are taken from [[19], p. 447,
Table C.6, p. 450, Table C.13] and [[19], pp. 134–135],
respectively.
The resultingminimumandmaximumangular radii of the

moon and Sun as seen from the South Pole amount to 0.245°
to 0.279° for the moon and 0.262° to 0.271° for the Sun.

Notably, both objects have an angular diameter of ∼0.5°,
which makes a comparison relatively straightforward.
The maximum elevation of the moon at the South Pole

varies between 18.3° and 28.6° due to its orbital inclination
and Earth’s axial tilt. While the Earth axial tilt changes only
very slowly, the moon’s orbital inclination varies with a
nodal period of about 18.6 years. For the Sun’s elevation,
on the other hand, only the Earth axial tilt is relevant for
its maximum elevation, which amounts to about 23.4°
each year. The Sun rises and sets only once per year at
the South Pole, resulting in one continuous observation
period approximately from November through February
each year. The moon instead rises and sets approximately
every 27 days, which leads to about 13 separate observa-
tion periods. An example of one such period is shown in
Figure 2. As can be seen in Figure 2, when the elevation of
the moon (same for the Sun) is below ∼7.5°, the event rate
drops essentially to zero. Therefore, the final moon and Sun
shadow data samples (cf. next section) contain almost no
events for such small elevations of moon and Sun. As a
result, the background or signal regions of the final data
sample are unaffected by possible boundary effects close
to the horizon. Such effects are also prevented by choosing
the background from the same zenith band as the Sun.
Elevation and declination values given above and shown in
Figure 2 have been calculated using ASTROPY [20,21] and
its built-in ERFA routines [22].

B. Data selection and quality cuts

At the South Pole, the direction of each muon event is
reconstructed using a comparably simple and thus fast
maximum-likelihood method (cf. [23] for details). Since
atmospheric muons detected in IceCube are ultrarelativis-
tic, the opening angle between muon direction and primary
cosmic-ray direction, which is on the order of 0.1° for
multi-TeV muons [7], is part of the directional uncertainty

FIG. 2. Comparison of moon declination δ and final moon
shadow sample event rate. At the South Pole, the elevation of an
object equals −δ.
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between the actual primary cosmic-ray direction and the
reconstructed event direction. Data are only taken when the
moon and Sun are above the horizon (at least 15° above the
horizon for data between May 2010 and May 2012; as in
these early years, directional reconstruction near the hori-
zon was not good enough). These moon and Sun filters are
implemented at the South Pole and are necessary in order to
reduce the data to a manageable amount for satellite data
transmission to the Northern hemisphere.
For further event reconstruction, a �10° zenith band

(�180° in azimuth) around the known position of moon
and Sun in the sky is considered. While this full azimuth
band is available at the low-level of the analysis, the six off-
source regions that we chose only make use of parts of this
band, in total 54° × 6°. The reason not to include more off-
source regions is that it would increase the processing (and
final data file sizes), while not substantially reducing the
statistical uncertainty.
The events are then selected with the requirement to hit

at least eight DOMs on three different strings.
After the first selection at the South Pole, the data are

transferred North and more sophisticated reconstruction
algorithms are applied to the following parameters: Besides
the multi-photo-electron (MPE) fit [23], which accounts for
the total number of Cherenkov photons collected by each
DOM, this includes a paraboloid fit to the likelihood profile
of the directional coordinates [24].
To ensure that only well-reconstructed events are used

for the final data analysis, two quality cuts based on these
reconstructions are applied:
(1) The reduced log-likelihood (rlogl), which represents

the goodness of fit of the MPE reconstruction, is
required to satisfy rlogl <8.1, see [24].

(2) The angular uncertainty σ, which is derived from the
paraboloid fit to the likelihood profile,2 is required to
satisfy σ < 0.71°.

Both quality cuts were determined with the goal to
maximize the statistical significance of the shadows in
[25] and have been used in previous studies [16,26,27].

IV. DATA ANALYSIS

A. Relative coordinates

For calculating relative coordinates, the direction of each
muon in the sample is compared to the known position of
moon and Sun in the sky3 using equatorial coordinates, i.e.,
right ascension α and declination δ.
To this end, relative right ascension Δα and relative

declination Δδ are calculated as

Δα ¼ αμ − αMoon=Sun ð2Þ

Δδ ¼ δμ − δMoon=Sun; ð3Þ

wherein αμ and δμ represent the individual reconstructed
right ascension and declination of each muon event. Then,
quasi-Cartesian coordinates relative to the center of the
moon and Sun are determined as

x ¼ Δα cos δμ ð4Þ

y ¼ Δδ: ð5Þ

B. On- and off-source regions

Based on the calculated quasi-Cartesian relative coor-
dinates x and y, one on-source region and eight off-source
regions are defined as shown in Figure 3. Each region has
an angular extent of 6° × 6°, resulting in a total angular area
of 54° × 6° for the nine regions.
In order to account for the spherical distortion, we keep

the corrected relative right ascension Δα cos δμ of the entire
analyzed region constant at 54° rather than the uncorrected
relative right ascension Δα.

C. Event numbers and average declination

The number of events contained in the 54° × 6° window
described in Section IV B and their average declination are
given in Table I.
It can be seen that the number of events varies between

3.8 and 7.9 million events for the moon shadow sample,
while it amounts to 13.1 to 13.3 million events for the Sun
shadow sample, except for IC79, which contains about
9 million events.
The average declination, on the other hand, varies

between −16.7° and −22.1° for the moon shadow sample
and amounts to −21.8° for the Sun shadow sample, except
for IC79, where it is slightly smaller with −22.1°. These
values are used later for modeling the expected relative
deficit due to the lunar and solar disk as described in detail
in Section V C.

D. 2D maps and smoothing

After defining on- and off-source regions as described in
Section IV B, the off-source regions are shifted with respect
to the on-source region such that they are centered at x ¼ 0°
(displayed as the black × in Figure 3), becoming directly
comparable to the on-source region, which is centered at
x ¼ 0° by definition.
Then, two two-dimensional binned histograms contain-

ing the number of events are defined: The first encloses the
on-source region, and the second represents the average of
the eight off-source regions. Both histograms cover 6° × 6°
in x and y and consist of 60 × 60 bins ði; jÞ (i ¼ 1…60,
j ¼ 1…60), wherein each bin has a size of 0.1° × 0.1°.

2The likelihood profile is defined as the entirety of likelihood
values as a function of the directional coordinates; see [24] for
details.

3Sky positions of the moon and Sun are calculated with
IceCube-internal C++ routines using the SLALIB library [28].
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Then, the relative deficit due to the shadowing of the
moon and Sun in each bin ði; jÞ is calculated using the
number of events Ni;j

on in bin ði; jÞ in the on-source region
and the average number of events hNoffii;j in the eight off-
source regions:

�
ΔN
hNoffi

�
i;j

¼ Ni;j
on − hNoffii;j
hNoffii;j

: ð6Þ

The average number of events hNoffii;j in a bin ði; jÞ
located in the off-source regions is calculated by averaging
over the off-source regions:

hNoffii;j ¼
1

8

X8
n¼1

ðNi;j
offÞn; ð7Þ

where ðNi;j
offÞn is the number of off-source events in the nth

off-source region. The result is a two-dimensional map of
the relative deficit due to the moon and Sun shadows.
In order to better suppress statistical fluctuations, the

two-dimensional relative deficit map is smoothed with a
boxcar smoothing algorithm. The smoothed relative deficit
in each bin ði; jÞ is determined as the average of all bins
whose bin centers are within a certain angular distance
around the center of bin ði; jÞ. Here, this smoothing radius
is set to 0.7°, which approximately corresponds to the
median angular resolution and yields a reasonable balance
between angular resolution and statistical uncertainty.

To guide the eye, and for the numerical analysis
presented in the next section, the center of gravity of
the shadow is determined and plotted as well4 (see
Figs. 6 and 7). It is determined by averaging over
the positions of all bins with a relative deficit of 3% or
more after smoothing. As typical statistical uncertainties
after the smoothing amount to about 0.6%, this threshold
defines bins that show a statistically significant deficit of
events.

E. Numerical analysis

In order to quantify the deficit of cosmic-ray induced
muon events due to the shadowing of the moon and Sun,
the relative deficit of events in a 1°-circle around the
center of gravity (cf. previous section) is computed.
Choosing a reasonable search radius is a trade-off
between a smaller statistical error on the one hand and
more off-source background contamination (washing out
the deficit due to the moon and Sun) on the other hand.
Within 1°, the cumulative point spread function contains
about 70% of events, while the off-source background
contamination is still relatively small. The statistical
uncertainty of the relative deficit is computed using error
propagation as

σRD ¼ Non

hNoffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Non
þ 1

s · hNoffi

s
; ð8Þ

with the number of off-source regions s ¼ 8.
In addition to the relative deficit, the significance of the

shadowing effect is calculated using a standard formula5

developed by Li and Ma, whereby a 0.7°-circle around the
center of gravity is chosen as a search area. The selected
search radius maximizes the statistical significance for very
large numbers of background events and for an angular
resolution typical for atmospheric muon events (cf. [25,27]
for details).

FIG. 3. On- and off-source regions used for the data analysis. The black “x” marks the zero point of the relative coordinates, i.e., the
center of the moon and Sun.

TABLE I. Number of events and average declination of the data
sample for each year.

Moon Sun

Season Period N=106 −hδi=° N=106 −hδi=°
2010=2011 IC79 7.9 22.1 9.0 22.1
2011=2012 IC86-1 7.7 20.7 13.1 21.8
2012=2013 IC86-2 6.4 18.9 13.1 21.8
2013=2014 IC86-3 4.5 17.7 13.2 21.8
2014=2015 IC86-4 3.8 16.9 13.2 21.8
2015=2016 IC86-5 4.1 16.7 13.3 21.8
2016=2017 IC86-6 5.1 17.2 13.3 21.8

4It should be noted that for the Sun shadow, the center of
gravity is not necessarily expected to align with the center of the
solar disk due to the influence of the solar magnetic field.

5See Eq. (17) in [29].
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V. SIMULATIONS

A. Models

The simulations used for characterizing the cosmic-ray
induced atmospheric muon flux are based on CORSIKA [30].
More specifically, two CORSIKA-generated simulation sets
are used, covering primary energies from 600 GeV to
100 EeVand containing 1H, 4He, 14N, 27Al, and 56Fe nuclei.
Hadronic interactions are simulated with SIBYLL 2.1 [31]
and the MSIS-E-90 atmospheric profile [32]. Lepton
propagation in ice is carried out using the lepton propa-
gation tool PROPOSAL [33]. Light emission and propagation
is handled using GEANT4 [34] and the IceCube-internal
software package CLSim that has been developed based on
the Photonics code [35]. The Antarctic ice in which IceCube
is embedded is modeled using the SPICE Lea model [36,37].
The detector response is simulated based on internal
software. After simulating atmospheric muon events using
the models described above, each event is weighted based
on a model of the primary cosmic-ray flux: The weight w of
an event induced by a primary cosmic ray with energy E,
mass number A, and atomic number Z is determined as the
ratio of the cosmic-ray flux Φmodel according to a chosen
model and the simulated cosmic-ray flux Φsim:

wðE; A; ZÞ ¼ ΦmodelðE; A; ZÞ
ΦsimðE; A; ZÞ

: ð9Þ

Here, the model by Gaisser with an extragalactic compo-
nent presented in [38] and based on the Hillas approach,
thus called the HGm model hereafter, is used.

B. Sample characteristics

Based on the models described in the previous section
and the data analysis presented in Section IV, the (simu-
lated) data sample is characterized with respect to the
energy distribution of primary cosmic rays (Figure 4) and

the probability density function (PDF) of the opening angle
Δθ between reconstructed muon direction and actual
cosmic-ray direction (Figure 5). Both figures show the
distribution of the final simulation sample after the same
steps as described in Section III. The base declination δ0 is
chosen such that the�3° declination band around it has the
same average declination as the final Sun shadow data
sample (cf. [27] for more details). The simulation sample
contains events with primary energies between∼1 TeV and
∼100 PeV. The median energy amounts to about 60 TeV
and the 68% interval is between 14.6 TeVand 302 TeV. The
median angular error amounts to 0.77°, and the 68%
interval covers values between 0.31° and 2.1°.

C. Simulating the shadows

The shadowing of cosmic rays due to the moon and Sun
is modeled by modifying the primary cosmic-ray weight w
of each event. Using the probability p of each primary
cosmic ray to pass through interplanetary space without
hitting the moon or the Sun, the modified weight w0 is
calculated as

w0 ¼ p · w: ð10Þ

In the simplest model, the moon and Sun are treated as
nonmagnetic, totally absorbing spheres in space, which
block those cosmic rays that come from directions within
the respective lunar and solar disk as seen from Earth. In
this model, p is a step function only depending on the space
angle Δθ between the cosmic-ray direction and the center
of the moon and Sun.
Although cosmic rays are deflected by the geomagnetic

field, the net shadowing effect remains largely unaffected,
besides a small shift of the shadow that is significantly
smaller than the resolution of the detector is expected.
Moreover, by applying the center-of-gravity correction
presented in Section IV E before calculating the relative
deficit, such a shift is accounted for in the analysis method.

FIG. 4. Energy distribution in a �3° declination band around
the base declination δ0 ¼ −21.3°. The thick yellow, orange, and
red lines indicate the median primary cosmic-ray energies studied
in Section VG.

FIG. 5. Angular error distribution in a �3° declination band
around the base declination δ0 ¼ −21.3°.
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In order to simulate the expected relative deficit due to
the lunar and solar disk, two key parameters are taken into
account: the average declination hδi of each data sample
given in Table I and the weighted average of the apparent
radius hRMoon=⊙

app i of the moon and Sun. While the average
declination determines typical energies and the median

angular resolution (cf. [27]), the apparent radius deter-
mines, in simple words, how large lunar and solar disk have
to be modeled.
For calculating hRMoon=⊙

app i, the number of events for each
Modified Julian Date (MJD), NMJD, is determined together
with the apparent radius in the sky for each individual MJD

FIG. 6. Boxcar-smoothed two-dimensional contour map of the moon shadow for the years IC79 to IC86-6 showing the computed
center of gravity of the shadow as a white cross. The white circle indicates the seven-year mean of the weighted average of the angular
moon radius.

FIG. 7. Boxcar-smoothed two-dimensional contour map of the Sun shadow for the years IC79 to IC86-6 showing the computed center
of gravity of the shadow as a white cross. The white circle indicates the weighted average of the angular Sun radius.
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of the sample, RMJD
app . The latter is calculated using Eq. (1)

after obtaining the Earth-moon distance for that specific
MJD through ASTROPY [20,21]. Using these pieces of
information, the weighted apparent radius becomes

hRMoon=⊙
app i ¼

P
MJDNMJD · RMJD

appP
MJDNMJD

: ð11Þ

With this procedure, the weighted average of the apparent
radius of the moon in the sky is shown to vary between the
0.251° (IC86-6) and 0.274° (IC86-2).
For the Sun, the range of its apparent size varies, in

general, between 0.262° and 0.271° over the year. For the
time from November through February studied in this
paper, however, it amounts to 0.271° for each year. As a
result of neglecting the subpercent variation of this value,
the expectation for the geometrical shadowing effect of the
solar disk is the same in each year.
For simulating the Sun shadow, including the effect of

the solar magnetic field, the picture is much more complex.
Besides the geomagnetic field, the heliospheric magnetic
field and especially the solar coronal magnetic field also
deflect cosmic rays. While the heliospheric magnetic field,
like the geomagnetic field, is comparably regular, the
coronal magnetic field can become highly irregular. This
increased level of magnetic small-scale variability enhances
the interactions of cosmic rays with the magnetic field, thus
changing the net shadowing effect of the Sun. A first
quantification of how the shadowing effect is changed has
been discussed in [15]. It is thus necessary to actually
simulate cosmic-ray propagation in the heliospheric and
coronal magnetic field. In such a simulation, the passing
probability p of each primary cosmic ray can be deter-
mined. It can be calculated as the number of cases npass, in
which the cosmic-ray particle traverses the solar corona
without hitting the photosphere, divided by the total
number of trials ntotal,

p ¼ npass
ntotal

: ð12Þ

This implies that the solar photosphere is treated as a
perfect absorber for CRs of any energy and that any
interaction possibly occurring in the lower solar atmos-
phere [39] is neglected at this point. The shadow effect
should not be changed significantly, as the secondary high-
energy particles will mostly be absorbed by the Sun. The
effect is rather important for neutrino measurements from
the Sun: The neutrinos in cosmic-ray interactions in the
solar atmosphere represent a background for dark matter
searches in IceCube as early estimated by [40,41]. These
neutrinos define the so-called neutrino floor for the dark
matter searches with IceCube, as predicted in [42–44].
These most recent estimates of the neutrino flux from solar
atmospheric neutrinos predict ∼1 event per year [42], ∼2–3
events per year [43], and ∼5–6 events per year [44] within

IceCube, respectively. Cutting away the GeV background
of neutrinos actually provides the opportunity to measure
these neutrinos produced in the solar atmosphere directly,
with first limits presented in [45] by searching for neutrino
emission from the Sun with IceCube. For the latter analysis,
the used data are complementary to the one in this analysis
as for the purpose of background reduction, and only data
are used when the Sun is below the horizon, while we use
the data when the Sun is above the horizon at South Pole.
The potential neutrino flux of ∼1 per year is negligible as
compared to our signal of ≫106 events per year.
The above probability can be calculated by propagating

cosmic rays in the magnetic field of the Sun. Here, we use a
backtracking approach for computing time-efficient simu-
lations, and we perform the propagation in two different
magnetic field models. The details of these parts of the
simulation are described in the subsequent Sections V D
and V E.

D. Particle propagation in the solar magnetic field

In order to produce simulations of the cosmic-ray
shadow at Earth, the first step is to numerically propagate
the particles through the magnetic field of the Sun. We use
the test-particle approach, which implies that the magnetic
field configuration is not changed by the particle current.
This is a reasonable assumption for such high-energetic
particles, whose coronal crossing time of a few minutes is
much smaller than the timescales of solar magnetic
variability and thus allows us to keep the magnetic field
configuration constant for the simulation of one particle
trajectory. Moreover, since the mean free paths of TeV
particles traversing the solar corona are significantly longer
than the system scales of a few solar radii to 1 AU, the usual
diffusive approach (e.g., [15,46,47]) often employed in the
interstellar medium is not appropriate for the present
setting. Therefore, the particles are instead propagated
according to the equation of motion,

dp⃗
dt

¼ qðv⃗ × B⃗Þ; ð13Þ

following the approach in [15]. As described in the
following subsection, the simulations are performed for
two magnetic field models. Thereby, the simulations are
performed for different magnetic field configurations,
corresponding to the solar magnetic field at different times.
More precisely, 3D solar magnetic fields are generated for
each month from 2D solar magnetograms and are kept
constant for that month. Details of the two models and their
respective implementations are described in the following
section.
Propagating particles forward is very inefficient, as it

cannot be defined beforehand which of these particles
actually hit Earth and which do not. Thus, in order to
produce a computing-time efficient simulation, only those
cosmic rays that eventually induce an atmospheric muon
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event in the final simulation sample are propagated. This is
achieved by using a backtracking method, which takes the
known primaries of the final simulation sample, changes all
particles into their antiparticles, and, at the same time,
inverts their momentum vector. This means that in the
simulations, we start antiparticles at Earth, propagate them
around the Sun, and detect the resulting projected shadow
behind the Sun. Changing the charge and the direction at
the same time delivers the same result as the propagation of
particles along the inverted path. The backtracking method
is therefore well-suited to reduce computational time while
still providing a proper picture of the propagation in the
magnetic field.

E. Solar magnetic field models

As mentioned before, the solar magnetic field consists
of two components: the coronal magnetic field and the
heliospheric magnetic field. While the coronal magnetic
field is modeled using (a) a potential-field model and (b) a
magnetohydrostatic model, the heliospheric magnetic field
is modeled using a Parker spiral approach [48], with a
piecewise-linear approximation of the radial solar wind
velocity profile.

1. PFSS model

The potential-field source-surface (PFSS) model [49,50]
assumes the solar corona current-free, i.e., j⃗ ¼ 0⃗, and hence
force free, with the current density j⃗. Neglecting the
displacement current, j⃗ can be related to the curl of the
magnetic field B⃗ as

j⃗ ¼ 1

μ0
ð∇⃗ × B⃗Þ: ð14Þ

For a current-free corona, the magnetic field must hence be

curl free, ∇⃗ × B⃗ ¼ 0⃗, which means that it can be expressed
as the gradient of a scalar potential Φ, B⃗ ¼ −∇Φ. With

∇⃗ · B⃗ ¼ 0, this yields the Laplace equation,

∇⃗2Φ ¼ ΔΦ ¼ 0: ð15Þ

The PFSS model uses one parameter, the source-surface
radius Rss, which delimits the domain in which the
magnetic field dominates the plasma. Beyond this source
surface, the plasma becomes superalfvnic, and the magnetic
field is passively advected outward in it. The source-surface
radius is set to Rss ¼ 2.5R⊙, which is a commonly used
value and has also been tested in [8].
For computing magnetic fields according to the above

model on a 3D spherical grid extending from the photo-
sphere up to the source surface, we used 2D magnetic flux
integral synoptic maps obtained from SOLIS [51] as
photospheric boundary conditions to the FDIPS code [52].

2. CSSS model

The current-sheet source-surface (CSSS) model [53] is
based on the magnetohydrostatic equation,

0⃗ ¼ j⃗ × B⃗ − ∇⃗pþ ρg⃗; ð16Þ

which balances the Lorentz force, the gradient of the
plasma pressure p, and the gravitational acceleration g⃗
that acts on the plasma density ρ.
The CSSS model is based on the solution presented in

[54] and uses three parameters: the source-surface radius
Rss, the cusp radius Rcp, and the length scale la of horizontal
currents. While Rss is set to 2.5R⊙ and has the same
meaning as in the PFSS model, Rcp is the radius where
magnetic field lines become closed. Rcp is set to 1.7R⊙,
which is a typical height for coronal streamers. Above Rcp,
magnetic field lines are assumed to be open. The length
scale la of horizontal currents is set to 1R⊙.
As for the PFSS model, we used the 2D magnetic flux

integral synoptic maps obtained from SOLIS [51] as
photospheric boundary conditions. For implementing the
model described in this section, however, a code written by
X.P. Zhao and J.T. Hoeksema [53,55,56] based on a
spherical harmonics approach was used. The order of
the spherical harmonic series is set to n ¼ 10, which is
sufficient for describing small-scale structures that are
relevant to ≳1 TeV particles (cf. [8]).

3. Parker spiral

The heliospheric magnetic field is implemented using
the model first developed by Parker [48] (cf. [57] for a
review). Field lines of the Parker spiral in general have their
footpoints as an inner boundary of the description of the
field, which, for the Sun, is typically assumed to be the
coronal base [57], and from which, field lines start out
radially. Since both the PFSS and CSSS model enforce
exactly such radial field lines at the source surface Rss, it is
natural to identify the latter with said coronal base used in
the Parker spiral. While the magnetic field at the footpoints
of the Parker spiral is determined using the coronal models
described above, the three components of the Parker spiral
magnetic field beyond the coronal base are computed using
equations (1), (3), and (4) from [57]. This allows us to
continue the computed magnetic field solution toward lager
radii in a way that not only ensures conservation of
magnetic flux across the source surface, but also avoids
the use of inappropriate simplifications, such as a global tilt
angle of the magnetic equator [58], which would not be a
meaningful concept for the complex polarity distributions
arising from magnetograms. The radial velocity Vr of the
solar wind, which, in the frozen-magnetic-flux model,
determines the azimuthal component of the magnetic field,
is modeled as a piecewise-linear approximation of the
Parker [48] isothermal solar wind profile:
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VrðrÞ ¼
�
C · ðr=R⊙Þ r < Rc

V0 r ≥ Rc;
ð17Þ

with the slope C ¼ V0 · ðR⊙=RcÞ ¼ 20 km s−1 and the
critical radius Rc ¼ 22.5R⊙. Beyond Rc, the radial velocity
is assumed constant with a value of V0 ¼ 450 km s−1,
which is a typical value for the radial solar wind velocity at
1 ua (cf. [57]).

F. Coordinate transformation for signal simulation

For a proper description of the propagation, coordinates
need to be transformed into ecliptic coordinates before
starting the propagation around the Sun, which adds an
additional transformation step. The relative coordinates
with respect to the Sun’s position, Δλ and Δβ, are given by

Δλ ¼ λcr − λ⊙ ð18Þ

Δβ ¼ βcr − β⊙; ð19Þ

with ðλ⊙; β⊙Þ as the position of the Sun in ecliptic
coordinates and ðλcr; βcrÞ as the position of the detected
cosmic ray in ecliptic coordinates. These relative coordi-
nates can then be transformed into quasi-Cartesian coor-
dinates as follows:

x0 ¼ cos βcr · Δλ ð20Þ

y0 ¼ Δβ: ð21Þ

Here, x0 is corrected for the spherical distortion by the
cos βcr factor, just as it is done for the moon in equatorial
coordinates. While Earth’s axial tilt of about 23.4° is taken
into account by transforming from equatorial to ecliptic
coordinates, the tilt of the Suns rotational (and magnetic)
axis with respect to the ecliptic of about 7.25° is neglected
in this approach, as it is significantly smaller than the
Earth’s axial tilt with respect to the ecliptic. Finally, the
coordinates are transformed back into the equatorial system
that is used for the data analysis of moon and Sun and also
for the simulation of the moon data.

G. Energy reconstruction

For studying the cosmic-ray Sun shadow at different
energies, the data are divided into three energy bands.
This is achieved by using an energy-correlated observable,
qdir, which represents the charge deposited in direct hits.
These direct hits are defined as not having undergone
significant scattering in the ice from the point of their
emission, thus providing more accurate timing information.
For the observable qdir, the sum of charge deposited in all
DOMs that are hit within a time window of (−15 ns, 75 ns)
around the first geometrically possible arrival of a

Cherenkov photon in a DOM is given in units of photo-
electrons (PE).
The three bins are defined as qdir < 18 PE, 18 ≤ qdir ≤

30 PE, and qdir > 30 PE, resulting in an approximately
equal number of events in each energy bin; see Table II for
details. These three subsamples have median primary
energies of 40 TeV, 55 TeV, and 100 TeV as shown in
Figure 4.

VI. RESULTS

A. Shadow maps

The shadow maps for the moon and the Sun as a result of
this analysis are presented here for each IceCube season.
Figure 6 shows the cosmic-ray shadow of the moon. Each
panel shows one year of data, starting with the earliest
season 2010=2011 (IC79) on the top left, followed by data
for the seasons 2011=2012 (IC86-1), 2012=2013 (IC86-2),
and 2013=2014 (IC86-3) in the top row, and 2014=2015
(IC86-4), 2015=2016 (IC86-5), and 2016=2017 (IC86-6) in
the bottom row from the left to the right. Data have been
smoothed with the boxcar average algorithm, where the
smoothed relative deficit in each bin ði; jÞ is determined as
the average of all bins with centers within a certain angular
distance around the center of bin ði; jÞ. Here, this smooth-
ing radius is set to 0.7°, which approximately corresponds
to the median angular resolution of the simulation sample
and yields a reasonable balance between angular resolution
and statistical uncertainty (cf. Section IV D).
The figure shows that the relative deficit reaches a depth

larger than 8.0%. Figure 7 shows the corresponding
pictures for the location of the Sun.
The significance of the shadowing effect (cf. Section IV E)

is found to fall between 7.5σ and 14.2σ for the moon and
between approximately 9.5σ and 16.9σ for the Sun (see
Table III). The reason for the higher significance of the Sun
shadow is its larger data sample. An interpretation of these
figures, and, in particular, a quantification of a possible
temporal change in the shadow, will be given in the next
section.

B. Comparison to lunar/solar disk

As described in Section IV E, the relative deficit
within a 1.0°-circle around the center of gravity of the
shadow is used for quantifying the deficit of cosmic-ray
induced muon events due to the moon and Sun shadows.
Figures 8–11, 13, 14 thus use this quantity. In Figure 8, the

TABLE II. Summary of the parameters for the three energy bins
of the analysis.

qdir=PE range ð68%Þ=TeV Emedian=TeV

<18 (12–160) 40
18–30 (15–260) 55
>30 (21–630) 100
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observed relative deficit due to the cosmic-ray moon
shadow is compared to the relative deficit expected due
to geometrical shadowing of the moon. The simulations
show the same slight dip as the data. The reason for this dip
is the slightly different distance between moon and Earth,
which changes the angular radius and hence, the shadowed
solid angle. Additionally, the average declination of the
event sample is slightly different for each year. Both effects
are accounted for in the simulations shown in Figure 8.

In Figure 9, the observed relative deficit due to the
cosmic-ray Sun shadow is compared to the relative
deficit expected due to geometrical shadowing of the
Sun. There is no substantial variation in the distance
between Sun and Earth for the observation period
November through February. Also, the average declina-
tion of the data sample is essentially the same each year.
Thus, the expected relative deficit due to the geometrical
shadowing by the solar disk is the same every year and
amounts to ð4.4� 0.1Þ%.
In order to statistically quantify the agreement between

measured and expected relative deficits shown in Figs. 8
and 9, a χ2-test is performed. To this end, the χ2 between
the data points xidata and the simulated data points xisim is
calculated as

χ2 ¼
X
i

ðxidata − xisimÞ2
ðσidataÞ2

; ð22Þ

with the statistical uncertainty σidata of each data point.
Then, using the calculated χ2 and the number of degrees of
freedom ndof , the p value is calculated from the cumulative
distribution function of the appropriate χ2-distribution.
Here, the number of degrees of freedom corresponds to
the number of data points, ndof ¼ 7. As in [16,25], the
significance S is then calculated as

S ¼
ffiffiffi
2

p
erf−1ð1 − pÞ; ð23Þ

with the inverse error function erf−1.
In Table IV, the reduced χ2, p value, significance S of a

χ2 test of the observed moon and Sun shadows, and the
expectation from the lunar and solar disk are given. With a
p value of 32%, the moon shadow shows reasonable
agreement with the expectation from the lunar disk. The
Sun shadow, on the other hand, is incompatible with the
expectation from the solar disk with a statistical signifi-
cance of about 7 standard deviations.

TABLE III. Relative deficit (RD) and Li-Ma significance S (cf. Section IV E) for the moon and Sun shadows.

2010=2011 2011=2012 2012=2013 2013=2014 2014=2015 2015=2016 2016=2017
IC79 IC86-1 IC86-2 IC86-3 IC86-4 IC86-5 IC86-6

Moon
RD in % 4.0� 0.4 5.0� 0.4 4.5� 0.4 5.6� 0.5 5.3� 0.6 4.9� 0.6 3.7� 0.5
S in σ 11.2 14.2 12.1 10.0 9.4 9.5 7.5

Sun
RD in % 5.1� 0.4 3.3� 0.3 4.1� 0.3 3.1� 0.3 2.8� 0.3 3.5� 0.3 5.2� 0.3
S in σ 14.0 11.4 13.0 9.5 10.1 12.1 16.9

FIG. 8. Comparison of measured relative deficit due to the
moon shadow (black circles) and relative deficit expected from
shadowing by the lunar disk (red squares).

FIG. 9. Comparison of measured relative deficit due to the Sun
shadow and relative deficit expected from shadowing by the
solar disk.

TABLE IV. Reduced χ2, p value, and significance of the
comparison to the lunar and solar disk.

χ2=ndof p S in σ

Moon 8.2=7 ≈ 1.2 0.32 1.0
Sun 72.9=7 ≈ 10.4 3.9 × 10−13 7.3
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C. Comparison to solar cycle

As a first observational test of a connection between
magnetic solar activity and the Sun shadow, the temporal
variation of the cosmic-ray Sun shadow is compared to
the average International Sunspot Number obtained from
[59]. A similar comparison has already been performed
in [16] for five years of data, and a correlation has been
found to be likely. In Figure 10, the relative deficit due
to the Sun shadow is shown together with the sunspot
number (averaged over the relevant months) between
November 2010 and February 2017.
In order to quantify the correlation between Sun shadow

and solar activity, which is shown in Figure 11, two
correlation tests are performed. The results of these tests
are summarized in Table V. While a Spearman’s rank
correlation test yields a correlation coefficient of 0.86 and
ap value of 1.4% for a correlation by chance, a Kendall-τ test
yields a correlation coefficient of 0.71 and a p value of 3.0%.
We also quantify the deviation from a constant function

by fitting a linear function and a constant one. We calculate

the difference in the χ2 and number of degrees of freedom,
Δχ2 and Δndof , respectively. Based on these values, the p
value is calculated from the cumulative distribution func-
tion of the appropriate χ2 distribution. While we find
χ=ndof ¼ 13.23=5 for the linear model, the constant model
yields χ=ndof ¼ 53.67=6. The difference in these two
models therefore can be quantified to

Δχ2

Δndof
¼ 40.44

1
¼ 40.44: ð24Þ

This results in a p value of p ¼ 2.0 × 10−10, corresponding
to a significance of 6.4σ that the linear fit is preferred over a
constant one.
Finally, we also show the moon shadow normalized to

the simulated shadow from geometrical shadowing as a
function of the average sunspot number in Fig. 12. The
result can be fitted by a constant with a χ2=ndof ¼ 1.286.
This confirms that the moon is well-described by geomet-
rical shadowing.

D. Comparison to solar magnetic field models

Finally, we modeled cosmic-ray propagation in the solar
magnetic field to obtain predictions for the Sun shadow as
expected from different coronal magnetic field models.
Figure 13 shows the results in terms of the observed relative
deficit due to the Sun shadow and the expected relative
deficit based on the PFSS and CSSS models in combination
with the Parker spiral model introduced in Section V E.

FIG. 11. Correlation of measured relative deficit due to the Sun
shadow and average sunspot number. A correlation of the two
quantities is found to be likely.

TABLE V. Correlation coefficient and p value of the two
performed correlation tests.

Correlation test Correlation coefficient p in %

Spearman’s ρ 0.86 1.4
Kendall’s τ 0.71 3.0

FIG. 10. Comparison of measured relative deficit due to the Sun
shadow and average sunspot number as a tracer for solar activity.

FIG. 12. Normalized moon shadow deficit versus sunspot
number.
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Both models reproduce the observed weakening of the
shadow in times of high solar activity. The PFSS model
predicts a more pronounced weakening of the shadow than
the CSSS model in all years that are studied. In 2010=2011,
as well as in 2016=2017, the relative deficit observed in the
data is slightly stronger than the prediction from both
models but also stronger than the expectation from the solar
disk. In addition to a χ2 test taking into account the
statistical uncertainties of the data points, a modified χ2

test, which also takes into account the statistical uncer-
tainties of the simulations and an estimate of the systematic
uncertainty, is performed:

χ2 ¼
X
i

ðxidata − xisimÞ2
ðσidataÞ2 þ ðσisimÞ2 þ σ2sys

: ð25Þ

As in [8], the systematic uncertainty is estimated from
comparing the observed and expected relative deficit due to
the moon shadow and is found to amount to about 0.3%.
While the standard χ2 test yields tensions between the

data and the models on the order of 3 standard deviations,
the modified test yields reasonable agreement with p values
of 13% and 17% for the PFSS and CSSS model, respec-
tively. All values are given in Table VI. These results can
be compared to the findings of Tibet AS-γ in [8], who
performed a similar study for the previous solar cycle
(1996–2009) at lower energies of ∼10 TeV. In [8], it is
discussed that the simulations with the CSSS model

produce results that are consistent with the data. At these
energies, the discrepancy with the PFSS model is larger
(p value of 4.9 × 10−5). In this paper, the CSSS model also
fits somewhat better than the PFSS model, but these
differences are not significant. This is the statement we
can make within the present statistical uncertainties. Given
the fact that Tibet’s results show potential tensions on a
similar significance level, we are quite confident that this
is most likely not due to systematic uncertainties. In order
to fully rule this out, it will be useful to compare more
observations from different detectors and the same solar
cycles in the future. One reason could be that the magnetic
activity in Solar Cycle 24, which is investigated in this
paper, is much less pronounced compared to Solar Cycle
23, which was investigated with Tibet AS-γ data. In
addition, effects should be amplified at lower energies as
lower-energy particles have smaller gyro radii and therefore
react stronger to the magnetic field. As can also be seen in
Fig. 13, our data and its analysis indicate the shadow’s
tendency to be weaker (stronger) than the geometrical limit
during phases of high (low) solar activity, consistent with
what was previously found by, e.g., the Tibet group [8].
One might speculate that this behavior is possibly caused
by the stronger maximum field being able to deflect
particles away from Earth more efficiently. However, since
the same effect would also cause more particles to be
deflected towards the observer and make them appear to
originate from the solar disk, the net effect on the shadow
as a whole seems inconclusive at this point. Indeed, it
seems well conceivable that the solar cycle influences the
shadow deficit not so much through variations in absolute
field strength but rather through the transition from the
large-scale symmetric dipolar field at solar minimum to
the more irregular small-scale field prevailing at times of
solar maximum. Another effect that could contribute to
this tension would be the change of intensity by taking
into account a gradual change in the density rather than
treating the Sun as a perfect absorber. Finally, in this
paper, we investigate seven years, while Tibet AS-γ could
make use of 14 years of data.

E. Energy dependence

In this section, we discuss the energy dependence of the
Sun shadow. In Figure 14, the relative deficit, normalized
to the expectation from the solar disk, is shown for the
low-energy (median energy: ∼40 TeV) and high-energy

FIG. 13. Comparison of measured relative deficit due to the Sun
shadow and relative deficit expected from different models of the
solar magnetic field.

TABLE VI. Reduced χ2, p value, and significance of the comparison between the measured Sun shadows and the
two different models. Both models were provided with SOLIS magnetogram data [51]. Values in parentheses are
based on the modified χ2 given in equation (25).

Magnetogram Coronal model χ2=ndof p S in σ

SOLIS PFSS 3.1 (1.6) 0.0027 (0.13) 3.0 (1.5)
SOLIS CSSS 2.9 (1.5) 0.0052 (0.17) 2.8 (1.4)
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(median energy: ∼100 TeV) subsamples during the obser-
vation period from November 2010 through February
2017. Normalizing to the solar disk is necessary as the
PSF is energy dependent, causing the solar-disk shadow to
be stronger for higher energies.
For years with rather high solar activity (2011=2012–

2015=2016), there is a clear indication for shadow strength
increasing with energy. For the two low-solar-activity years
(2010=2011 and 2016=2017), no conclusions can be drawn.
In general, these results are consistent with what is expected
from theory [15], where it is shown that the shadow should
decrease in strength for years of high level of solar activity
and that it should be increasing for low-activity years.
Furthermore, simulations using a pure dipole field found
the shadow depth to depend nonmonotonously on rigidity,
with high (low) rigidities causing shadow deficits above
(below) thegeometrical limit [15].However, to confirm such
trends, a better energy resolution and a larger data set are
necessary; therefore, we refer to future work to investigate
this question in more detail.

VII. CONCLUSION

In this paper, the time-dependent cosmic-ray moon and
Sun shadows were studied using seven years of IceCube
data taken between May 2010 and May 2017. Both, moon
and Sun shadows are observed with high statistical sig-
nificance in all seven years of data. While the moon shadow
is described reasonably well by the lunar-disk model
(p ¼ 0.32), the Sun shadow is statistically incompatible
with geometrical shadowing only due to the solar
disk (7.3σ).
We compared the temporal variation of the measured

relative deficit of the Sun shadow to the change in the

International Sunspot Number as a tracer for solar magnetic
activity. We find the probability to observe the measured
correlation by chance to be 3.0% (Kendall’s τ test) or 1.4%
(Spearman’s rank test), respectively. A linear relationship
between shadow strength and solar activity is preferred
over a constant one with 6.4σ.
We test two coronal magnetic field models, the PFSS and

CSSS models, together with a Parker spiral beyond 2.5
solar radii. Taking into account only statistical uncertain-
ties, we find tensions between data and models on the order
of ∼3σ. Including an estimate of the systematic uncertainty
based on the observed moon shadow, however, we compute
reasonable p values of 13% and 17% for the two models,
respectively.
In times of high solar activity, the measured Sun shadow

seems to increase with energy (1.8σ indication). In times of
low solar activity, more data and an improved energy
estimation will be necessary. Due to the long solar mini-
mum of Cycle 24, the upcoming years of IceCube data will
shed more light on this state in the future.
Future possibilities furthermore include testing different

coronal magnetic field models like more general force-free
or MHD models, studying the influence of CMEs on the
Sun shadow or implementing different models of the
heliospheric magnetic field and/or the radial wind velocity
profile. Further, in the future, energy dependence can help
to understand the strength of the field in particular when
studying years of low solar activity. Here, an approximation
by a Parker spiral is motivated by theory [15,60]. A dipole-
type field shows an increase of the shadow depth up to
a certain maximum, which has a larger shadowing effect
than the geometrical shadow. The predicted behavior of the
Sun shadow during low solar activity with increasing
energy is a monotonous increase of the shadow, converging
toward the geometrical shadow, thus, for all energies below
convergence showing a shadow that is weaker than the
geometrical one. Thus, for low activity years in particular,
the observed peak energy can reveal the true normalization
of the dipole, while the high activity years can help to
disentangle the role of the small-scale component of
the field.
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