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ARTICLE

Exploring the phenotypic consequences of tissue
specific gene expression variation inferred from
GWAS summary statistics
Alvaro N. Barbeira 1, Scott P. Dickinson1, Rodrigo Bonazzola1, Jiamao Zheng1, Heather E. Wheeler 2,3,

Jason M. Torres4, Eric S. Torstenson5, Kaanan P. Shah1, Tzintzuni Garcia6, Todd L. Edwards 7, Eli A. Stahl8,9,

Laura M. Huckins8,9, GTEx Consortium, Dan L. Nicolae1, Nancy J. Cox5 & Hae Kyung Im 1

Scalable, integrative methods to understand mechanisms that link genetic variants with

phenotypes are needed. Here we derive a mathematical expression to compute PrediXcan (a

gene mapping approach) results using summary data (S-PrediXcan) and show its accuracy

and general robustness to misspecified reference sets. We apply this framework to 44 GTEx

tissues and 100+ phenotypes from GWAS and meta-analysis studies, creating a growing

public catalog of associations that seeks to capture the effects of gene expression variation

on human phenotypes. Replication in an independent cohort is shown. Most of the asso-

ciations are tissue specific, suggesting context specificity of the trait etiology. Colocalized

significant associations in unexpected tissues underscore the need for an agnostic scanning

of multiple contexts to improve our ability to detect causal regulatory mechanisms. Mono-

genic disease genes are enriched among significant associations for related traits, suggesting

that smaller alterations of these genes may cause a spectrum of milder phenotypes.
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Over the last decade, GWAS have been successful in
robustly associating genetic loci to human complex traits.
However, the mechanistic understanding of these dis-

coveries is still limited, hampering the translation of the asso-
ciations into actionable targets. Studies of enrichment of
expression quantitative trait loci (eQTLs) among trait-associated
variants1–3 show the importance of gene expression regulation.
Functional class quantification showed that 80% of the common
variant contribution to phenotype variability in 12 diseases can be
attributed to DNAase I hypersensitivity sites, further highlighting
the importance of transcript regulation in determining
phenotypes4.

Many transcriptome studies have been conducted where gen-
otypes and expression levels are assayed for a large number of
individuals5–8. The most comprehensive transcriptome dataset, in
terms of examined tissues, is the Genotype-Tissue Expression
Project (GTEx): a large-scale effort where DNA and RNA were
collected from multiple tissue samples from nearly 1000 indivi-
duals and sequenced to high coverage9,10. This remarkable
resource provides a comprehensive cross-tissue survey of the
functional consequences of genetic variation at the transcript level.

To integrate knowledge generated from these large-scale
transcriptome studies and shed light on disease biology, we
developed PrediXcan11, a gene-level association approach that
tests the mediating effects of gene expression levels on pheno-
types. PrediXcan is implemented on GWAS or sequencing studies
(i.e., studies with genome-wide interrogation of DNA variation
and phenotypes). It imputes transcriptome levels with models
trained in measured transcriptome datasets (e.g., GTEx). These
predicted expression levels are then correlated with the phenotype
in a gene association test that addresses some of the key limita-
tions of GWAS11.

Meta-analysis efforts that aggregate results from multiple
GWAS have been able to identify an increasing number of
associations that were not detected with smaller sample sizes12–14.
We will refer to these results as Genome-wide association meta-
analysis (GWAMA) results. In order to harness the power of
these increased sample sizes while keeping the computational
burden manageable, methods that use summary level data rather
than individual level data are needed.

Methods similar to PrediXcan that estimate the association
between intermediate gene expression levels and phenotypes, but
use summary statistics have been reported: TWAS (summary
version)15 and Summary Mendelian Randomization (SMR)16.
Another class of methods that integrate eQTL information with
GWAS results are based on colocalization of eQTL and GWAS
signals. Colocalized signals provide evidence of possible causal
relationship between the target gene of an eQTL and the complex
trait. These include RTC1, Sherlock17, COLOC18, and more
recently eCAVIAR19 and ENLOC20.

Here we derive a mathematical expression that allows us to
compute the results of PrediXcan without the need to use
individual-level data, greatly expanding its applicability. We
compare with existing methods and outline a best practices fra-
mework to perform integrative gene mapping studies, which we
term MetaXcan.

We apply the MetaXcan framework by first training over one
million elastic net prediction models of gene expression traits,
covering protein coding genes across 44 human tissues from
GTEx, and then performing gene-level association tests over 100
phenotypes from 40 large meta-analysis consortia and dbGaP.

Results
Computing PrediXcan results using summary statistics. We
have derived an analytic expression to compute the outcome of

PrediXcan using only summary statistics from genetic association
studies. Details of the derivation are shown in the Methods sec-
tion. In Fig. 1a we illustrate the mechanics of Summary-
PrediXcan (S-PrediXcan) in relation to traditional GWAS and
the individual-level PrediXcan method11.

We find high concordance between PrediXcan and S-
PrediXcan results indicating that in most cases, we can use the
summary version without loss of power to detect associations.
Figure 2 shows the comparison of PrediXcan and S-PrediXcan Z-
scores for a simulated phenotype (under the null hypothesis), a
cellular growth phenotype and two disease phenotypes: type 1
diabetes and bipolar disorder from the WTCCC Consortium21;
see Supplementary Notes 1, 2 and 3 for details. For the simulated
phenotype, the study sets (in which GWAS is performed) and the
reference set (in which LD between SNPs is computed) were
African, East Asian, and European subsets from 1000 Genomes.
The training set (in which prediction models are trained) was
European (DGN Cohort5) in all cases. The high correlation
between PrediXcan and S-PrediXcan demonstrates the robustness
of our method to mismatches between reference and study sets.
Despite the generally good concordance between the summary
and individual level methods, there were a handful of false
positive results with S-PrediXcan much more significant than
PrediXcan. This underscores the need to use closely matched LD
information whenever possible. Supplementary Fig. 11 shows S-
PrediXcan’s performance on a phenotype simulated under the
alternative hypothesis.

Notice that we are not testing here whether PrediXcan itself is
robust to population differences between training and study sets.
Robustness of the prediction across populations has been
previously reported22. We further corroborated this in Supple-
mentary Fig. 10.

Next we compare with other summary result-based methods
such as S-TWAS, SMR, and COLOC.

Colocalization estimates complement PrediXcan results. One
class of methods seeks to determine whether eQTL and GWAS
signals are colocalized or are distinct although linked by LD. This
class includes COLOC18, Sherlock17, and RTC1, and more
recently eCAVIAR19, and ENLOC20. Thorough comparison
between these methods can be found in refs. 18,19. HEIDI, the
post filtering step in SMR that estimates heterogeneity of GWAS
and eQTL signals, can be included in this class. We focus here on
COLOC, whose quantification of the probability of five config-
urations complements well with S-PrediXcan results.

COLOC provides the probability of five hypotheses: H0
corresponds to no eQTL and no GWAS association, H1 and
H2 correspond to association with eQTL but no GWAS
association or vice-versa, H3 corresponds to eQTL and GWAS
association but independent signals, and finally H4 corresponds
to shared eQTL and GWAS association. P0, P1, P2, P3, and P4
are the corresponding probabilities for each configuration. The
sum of the five probabilities is 1. The authors18 recommend to
interpret H0, H1, and H2 as limited power; for convenience we
will aggregate these three hypotheses into one event with
probability 1-P3-P4.

Figure 3 shows ternary plots23 with P3, P4, and 1-P3-P4 as
vertices. The blue region, top subtriangle, corresponds to high
probability of colocalized eQTL and GWAS signals (P4). The
orange region at bottom left corresponds to high probability of
distinct eQTL and GWAS signals (P3). The gray region at center
and bottom right corresponds to low probability of both
colocalization and independent signals.

Figure 3b shows association results for all gene-tissue pairs
with the height phenotype. We find that most associations fall in
the gray, “undetermined,” region. When we restrict the plot to S-
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PrediXcan Bonferroni-significant genes (Fig. 3c), three distinct
peaks emerge in the high P4 region (P4 > 0.5, “colocalized
signals”), high P3 region (P3 > 0.5, “independent signals” or
“non-colocalized signals”), and “undetermined” region. More-
over, when genes with low prediction performance are excluded
(Supplementary Fig. 6d) the “undetermined” peak significantly
diminishes.

These clusters provide a natural way to classify significant
genes and complement S-PrediXcan results. Depending on false
positive/false negative trade-off choices, genes in the “indepen-
dent signals” or both “independent signals” and “undetermined”
can be filtered out. The proportion of colocalized associations
(P4 > 0.5) ranged from 5 to 100% depending on phenotype with
a median of 27.6%. The proportion of “non-colocalized”

a

b
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associations ranged from 0 to 77% with a median of 27.0%.
Supplementary Table 1 summarizes the percentages of significant
associations that fall into the different colocalization regions.

This post-filtering idea was first implemented in the SMR
approach using HEIDI. Comparison of COLOC results with
HEIDI is shown in Supplementary Fig. 6e to 6h.

Comparison of S-PrediXcan to S-TWAS. Gusev et al. have
proposed Transcriptome-Wide Association Study based on
summary statistics (STWAS), which imputes the SNP level Z-
scores into gene level Z-scores. This is not the same as computing
the results of individual level TWAS. We show (in Methods
section) that the difference between the individual level and

summary level TWAS is given by the factor

ffiffiffiffiffiffiffiffi
1�R2

l
1�R2

g

r
, where Rl is

the proportion of variance in the phenotype explained by a SNP’s
allelic dosage, and Rg is the proportion explained by gene
expression (see Methods section). For most practical purposes we
have found that this factor is very close to 1 so that if the same
prediction models were used, no substantial difference between S-
TWAS and S-PrediXcan should be expected.

Figure 4a shows a diagram of S-PrediXcan and S-TWAS. Both
use SNP to phenotype associations results (ZX,Y) and prediction
weights (wX,Tg) to infer the association between the gene
expression level (Tg) and phenotype (Y).

Figure 4b compares S-TWAS significance (as reported in ref. 24)
to S-PrediXcan significance. The difference between the two
approaches is mostly driven by the different prediction models:
TWAS uses BSLMM25 whereas PrediXcan uses elastic net26.
BSLMM allows two components: one sparse (small set of large
effect predictors) and one polygenic (all variants contribute some
marginal effect to the prediction). For PrediXcan we have chosen
to use a sparse model (elastic net) based on the finding that the
genetic component of gene expression levels is mostly sparse27.

Figure 4c shows that the COLOC-estimated proportion of non-
colocalized (independent) GWAS and eQTL signals is larger
among TWAS significant genes than among S-PrediXcan
significant ones. We believe this is due to the polygenic
component of BSLMM models, a wider set of SNPs increasing
the chances of COLOC yielding a non-colocalized result.
Figure 4d shows that, for most traits, the COLOC-estimated
proportion of colocalized signals is larger among S-PrediXcan
significant genes than S-TWAS significant genes.

Comparison of S-PrediXcan to SMR. Zhu et al. have proposed
Summary Mendelian Randomization (SMR)16, a summary data
based Mendelian randomization that integrates eQTL results to
determine target genes of complex trait-associated GWAS loci.
They derive an approximate χ21 -statistic (Eq 5 in ref. 16) for the
mediating effect of the target gene expression on the phenotype.
Figure 5a depicts this mechanism.

Unfortunately, the derived statistic is not well calibrated. A QQ
plot comparing the SMR statistic (under the null hypothesis of
genome-wide significant eQTL signal and no GWAS association)
shows deflation. The sample mean of the statistic is ≈0.93 instead
of 1, the expected value for the mean of a χ21 random variable (see
Fig. 5e, f and Methods section for details). The χ2 approximation
is only valid in two extreme cases: when the eQTL association is
much stronger than the GWAS association or vice versa, when
the GWAS association is much stronger than the eQTL
association (see Methods section for details).

One limitation is that the significance of the SMR statistic is the
lower of the top eQTL association (genotype to expression) or the
GWAS association (genotype to phenotype) as shown in Fig. 5e, f.
Given the much larger sample sizes of GWAS studies, for most
genes, the combined significance will be determined by the eQTL
association. The combined statistic forces us to apply multiple
testing correction for all genes, even those that are distant to
GWAS associated loci, which is unnecessarily conservative. Keep
in mind that currently both SMR and PrediXcan only use cis
associations. An example may clarify this further. Let us suppose
that for a given phenotype there is only one causal SNP and that
the GWAS yielded a highly significant p-value, say 10−50. Let us
also suppose that there is only one gene (gene A) in the vicinity
(we are only using cis predictors) associated with the causal SNP
with p= 10−5. SMR would compute the p-values of all genes and
yield a p-value ≈ 10−5 for gene A (the less significant p-value).
However, after multiple correction this gene would not be
significantly associated with the phenotype. Here it is clear that
we should not be adjusting for testing of all genes when we know
a priori that only one is likely to produce a gene level association.
In contrast, the PrediXcan p-value would be ≈10−50 for gene A
and would be distributed uniformly from 0 to 1 for the remaining
genes. Most likely only gene A (or perhaps a handful of genes, just
by chance) would be significant after Bonferroni correction. If we
further correct for prediction uncertainty (here= eQTL associa-
tion), a p-value of ≈10−5 would remain significant since we only
need to correct for the (at most) handful of genes that were
Bonferroni significant for the PrediXcan p-value.

Another potential disadvantage of this method is that only top-
eQTLs are used for testing the gene level association. This does not
allow to aggregate the effect on the gene across multiple variants.

Figure 5b compares S-PrediXcan (elastic net) and SMR
association results. As expected, SMR p-values tend to be less
significant than S-PrediXcan’s in large part due to the additional
adjustment for the uncertainty in the eQTL association. Figure 5c,
d show that the SMR significance is bounded by the eQTL and
GWAS association strengths of the top eQTL. Figure 5g shows a
comparison between SMR’s and S-PrediXcan’s proportion of
non-colocalization, while Fig. 5h compares proportion of
colocalization, as estimated by COLOC. SMR shows a higher
proportion of colocalized and independent signals. This is
expected since SMR uses a more stringent eQTL association

Fig. 1 Comparison between GWAS, PrediXcan, and S-PrediXcan. a Compares GWAS, PrediXcan, and Summary-PrediXcan. Both GWAS and PrediXcan take
genotype and phenotype data as input. GWAS computes the regression coefficients of Y on Xl using the model Y ¼ aþ Xlbþ ϵ, where Y is the phenotype
and Xl the individual SNP dosage. The output is a table of SNP-level results. PrediXcan, in contrast, starts first by predicting/imputing the transcriptome.
Then it calculates the regression coefficients of the phenotype Y on each gene’s predicted expression Tg. The output is a table of gene-level results.
Summary-PrediXcan directly computes the gene-level association results using the output from GWAS. b Shows the components of the formula to
calculate PrediXcan gene-level association results using summary statistics. The different sets involved as input data are shown. The regression coefficient
between the phenotype and the genotype is obtained from the study set. The training set is the reference transcriptome dataset where the prediction
models of gene expression levels are trained. The reference set (1000G, or training set having some advantages) is used to compute the variances and
covariances (LD structure) of the markers used in the predicted expression levels. Both the reference set and training set values are precomputed and
provided to the user so that only the study set results need to be provided to the software. The crossed out term was set to 1 as an approximation. We
found this approximation to have negligible impact on the results
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criterion so that there are few significant genes in the
undetermined region.

SMR introduces a post filtering step via an approach called
HEIDI, which is compared to COLOC in Fig. 3e and
Supplementary Fig. 6.

MetaXcan framework. Building on S-PrediXcan and existing
approaches, we define a general framework (MetaXcan) to inte-
grate eQTL information with GWAS results and map disease-
associated genes. This evolving framework can incorporate
models and methods to increase the power to detect causal genes
and filter out false positives. Existing methods fit within this
general framework as instances or components (Fig. 6a).

The framework starts with the training of prediction models
for gene expression traits followed by a selection of high-
performing models. Next, a mathematical operation is performed
to compute the association between each gene and the down-
stream complex trait. Additional adjustment for the uncertainty
in the prediction model can be added. To avoid capturing LD-
contaminated associations, which can occur when expression
predictor SNPs and phenotype causal SNPs are different but in
LD, we use colocalization methods that estimate the probability of
shared or independent signals.

PrediXcan implementations use elastic net models motivated
by our observation that gene expression variation is mostly driven
by sparse components27. TWAS implementations have used
Bayesian Sparse Linear Mixed Models25 (BSLMM). SMR fits into
this scheme with prediction models consisting solely of the top
eQTL for each gene (weights are not necessary here since only
one SNP is used at a time).

For the last step, we chose COLOC to estimate the probability
of colocalization of GWAS and eQTL signals. COLOC prob-
abilities cluster more distinctly into different classes and thus,
unlike other methods, suggests a natural cut off threshold at P=
0.5. Another advantage of COLOC is that for genes with low
probability of colocalization, it further distinguishes distinct

GWAS and eQTL signals from low power. This is a useful feature
that future development of colocalization methods should also
offer. SMR, on the other hand, uses its own estimate of
“heterogeneity” of signals calculated by HEIDI.

Suggested association analysis pipeline.

1. Perform PrediXcan or S-PrediXcan using all tissues. Use
Bonferroni correction for all gene-tissue pairs: keep p < 0.05/
number of gene-tissue pairs tested.

2. Keep associations with significant prediction performance
adjusting for number of PrediXcan significant gene-tissue
pairs: keep prediction performance p-values < 0.05/(number
of significant associations from previous step).

3. Filter out LD-contaminated associations, i.e., gene-tissue
pairs in the “independent signal” (=”non-colocalized”)
region of the ternary plot (See Fig. 3a): keep COLOC P3 <
0.5 (Blue and gray regions in Fig. 3a).

4. If further reduction of number of genes to be taken to
replication or validation is desired, keep only hits with
explicit evidence of colocalization: P4 > 0.5 (Blue region in
Fig. 3a).

Any choice of thresholds has some level of arbitrariness.
Depending on the false positive and negative trade off, these
numbers may be changed.

Gene expression variation is associated to diverse traits. We
downloaded summary statistics from meta analyses of over 100
phenotypes from 40 consortia. The full list of consortia and
phenotypes is shown in Supplementary Data 2. We tested asso-
ciation between these phenotypes and the predicted expression
levels using elastic net models in 44 human tissues from GTEx as
described in the Methods section, and a whole blood model from
the DGN cohort presented in ref. 11. We illustrate this application
in Fig. 6b.
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Fig. 2 Comparison of PrediXcan and S-PrediXcan results in real and simulated traits. This figure shows a comparison of PrediXcan vs. S-PrediXcan for a a
simulated phenotype under null hypothesis of no genetic component; b a cellular phenotype (=intrinsic growth); and c bipolar disorder and type 1 diabetes
studies from Wellcome Trust Case Control Consortium (WTCCC). Gene expression prediction models were based on the DGN cohort presented in ref. 11.
For the simulated phenotype, study sets (GWAS set) and reference sets (LD calculation set) consisted of African (661), East Asian (504), and European
(503) individuals from the 1000 Genomes Project. When the same study set is used as reference set, we obtained a high correlation (coefficient of
determination): r2 > 0.99999. For the intrinsic growth phenotype, study sets were a subset of 140 individuals from each of the African, Asian, and European
groups from 1000 Genomes Project. The reference set was the same as for the simulated phenotype. For the disease phenotypes, the study set consisted
of British individuals, and the LD calculation set was the European population subset of the 1000 Genomes Project
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S-PrediXcan’s results tend to be more significant as the genetic
component of gene expression increases (larger cross-validated
prediction performance R2). Similarly, S-PrediXcan associations
tend to be more significant when prediction is more reliable
(p-values of association between predicted and observed expres-
sion levels are more significant, i.e., when prediction performance
p-value is smaller). The trend is seen both when results are
averaged across all tissues for a given phenotype or across all
phenotypes for a given tissue, as displayed in Supplementary
Figs. 1-4. This trend was also robust across different monotonic
functions of the Z-scores.

We used a Bonferroni threshold accounting for all the gene-
tissue pairs that were tested (0.05/total number of gene-tissue
pairs ≈2.5e-7). This approach is conservative because the
correlation between tissues would make the total number of
independent tests smaller than the total number of gene-tissue
pairs. Height had the largest number of significantly associated
unique genes at 1686 (based on a GWAMA of 250 K individuals).
Other polygenic diseases with a large number of associations
include schizophrenia with 305 unique significant genes (n=
150 K individuals), low-density lipoprotein cholesterol (LDL-C)
levels with 296 unique significant genes (n= 188 K), other lipid
levels, glycemic traits, and immune/inflammatory disorders such
as rheumatoid arthritis and inflammatory bowel disease. For
other psychiatric phenotypes, a much smaller number of

significant associations was found, with eight significant genes
for bipolar disorder (n= 16,731) and one for major depressive
disorder (n= 18,759), probably due to smaller sample sizes, but
also smaller effect sizes.

When step 2 from the suggested pipeline is applied, keeping
only reliably predicted genes, we are left with 739 genes for
height, 150 for schizophrenia, 117 for LDL-C levels.

After step 3, which keeps genes that are without strong
evidence of LD-contamination, these numbers dropped to 264 for
height, 58 for schizophrenia, and 60 for LDL-C levels. After step
4, which keeps only genes with strong evidence of colocalization,
we find 215 genes for height, 49 for schizophrenia, and 35 for
LDL-C. The counts for the full set of phenotypes can be found in
Supplementary Data 2.

Mostly, genome-wide significant genes tend to cluster around
known SNP-level genome-wide significant loci or sub-genome-
wide significant loci. Regions with sub-genome-wide significant
SNPs can yield genome-wide significant results in S-PrediXcan,
because of the reduction in multiple testing and the increase in
power arising from the combined effects of multiple variants.
Supplementary Table 2 lists a few examples where this occurs.

The proportion of colocalized associations (P4 > 0.5) ranged
from 5 to 100% depending on phenotype with a median of 27.6%.
The proportion of “non colocalized” associations ranged from 0
to 77% with a median of 27.0%.

P4   = P(colocalized signals)

Colocalized
signals
region

Undetermined
region

Independent
signals
region

P3 = P(independent signals) 1 – P3 – P4

GWAS significant GWAS not significant eQTL significant eQTL not significant

All results

S-PrediXcan
Bonferroni significant

HEIDI<0.05

S-PrediXcan
Bonferroni significant

HEIDI>0.37

S-PrediXcan
Bonferroni significant

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75

1

1

P3

P
4

P0+P1+P2

1

0.75

0.5

0.25

0

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75

1

1

P3

P
4

P0+P1+P2

1

0.75

0.5

0.25

0

0

0.25
0.5

0.75

0

0.
25 0.
5

0.
75

1

1

P3

P
4

P0+P1+P2

1

0.75

0.5

0.25

0

0

0.25

0.5

0.75

0

0.
25 0.
5

0.
75

1

1

P3

P
4

P0+P1+P2

1

0.75

0.5

0.25

0

a b c

d e

Fig. 3 Colocalization status of S-PrediXcan results. a Shows a ternary plot that represents the probabilities of various configurations from COLOC. This plot
conveniently constrains the values such that the sum of the probabilities is 1. All points in a horizontal line have the same probability of “colocalized”
GWAS and eQTL signals (P4), points on a line parallel to the right side of the triangle (NW to SE) have the same probability of “Independent signals” (P3),
and lines parallel to the left side of the triangle (NE to SW) correspond to constant P0+P1+P2. Top sub-triangle in blue corresponds to high probability of
colocalization (P4 > 0.5), lower left sub-triangle in orange corresponds to probability of independent signals (P3 > 0.5), and lower right parallelogram
corresponds to genes without enough power to determine or reject colocalization. The following panels present ternary plots of COLOC probabilities with a
density overlay for S-PrediXcan results of the Height phenotype. b Shows the colocalization probabilities for all gene-tissue pairs. Most results fall into the
“undetermined” region. c Shows that if we keep only Bonferroni-significant S-PrediXcan results, associations tend to cluster into three distinct regions:
“independent signals,” “colocalized,” and “undertermined.” d Shows that HEIDI significant genes (to be interpreted as high heterogeneity between GWAS
and eQTL signals, i.e., distinct signals) tightly cluster in the “independent signal” region, in concordance with COLOC. A few genes fall in the “colocalized”
region, in disagreement with COLOC classification. Unlike COLOC results, HEIDI does not partition the genes into distinct clusters and an arbitrary cutoff
p-value has to be chosen. e Shows genes with large HEIDI p-value (no evidence of heterogeneity) which fall in large part in the “colocalized” region.
However a substantial number fall in “independent signal” region, disagreeing with COLOC’s classification
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See full set of results in our online catalog (gene2pheno.org).
Significant gene-tissue pairs are included in Supplementary
Data 3. To facilitate comparison, the catalog contains all SMR
results we generated and the S-TWAS results reported by ref. 24

for 30 GWAS traits and GTEx BSLMM models. Note that SMR
application to 28 phenotypes was reported by ref. 28 using whole
blood eQTL results from ref. 29.

Small gene expression changes associated to mild phenotypes.
We reasoned that if complete knock out of monogenic disease
genes cause severe forms of the disease, more moderate altera-
tions of gene expression levels (as affected by regulatory variation
in the population) could cause more moderate forms of the dis-
ease. Thus moderate alterations in expression levels of monogenic
disease genes (such as those driven by eQTLs) may have an effect
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on related complex traits, and this effect could be captured by S-
PrediXcan association statistics. To test this hypothesis, we
obtained genes listed in the ClinVar database30 for obesity,
rheumatoid arthritis, diabetes, Alzheimer’s, Crohn’s disease,
ulcerative colitis, age-related macular degeneration, schizo-
phrenia, and autism. Figure 7 displays the QQ plot for all asso-
ciations and compares to those in ClinVar database. As
postulated, we found enrichment of significant S-PrediXcan
associations for ClinVar genes for all tested phenotypes except for
autism and schizophrenia. The lack of significance for autism is
probably due to insufficient power: the distribution of p-values is
close to the null distribution. In contrast, for schizophrenia, many
genes were found to be significant in the S-PrediXcan analysis.
There are several reasons that may explain this lack of enrich-
ment: genes identified with GWAS and subsequently with S-
PrediXcan have rather small effect sizes, so that it would not be
surprising that they were missed until very large sample sizes
were aggregated; ClinVar genes may originate from rare muta-
tions that are not well covered by our prediction models, which
are based on common variation (due to limited sample sizes of
eQTL studies and the minor allele frequency –MAF filter used in
GWAS studies); or the mechanism of action of the schizophrenia
linked ClinVar genes may be different than the alteration of
expression levels. Also, the pathogenicity of some of the ClinVar

entries has been questioned31. The list of diseases in ClinVar used
to generate the enrichment figures can be found in Supplemen-
tary Data 1, along with the corresponding association results.

Agnostic scanning across GTEx tissues improves discovery.
Most genes were found to be significantly associated in a handful
of tissues as illustrated in Fig. 8b. For example, for LDL-C levels,
liver was the most enriched tissue in significant associations as
expected given known biology of this trait (See Supplementary
Fig. 5). This prominent role of liver was apparent despite the
smaller sample size available for building liver models (n= 97),
which was less than a third of the numbers available for muscle
(n= 361) or lung (n= 278).

However, in general, tissues expected to stand out as more
enriched for diseases given currently known biology did not
consistently do so when we looked at the average across all
(significant) genes, using various measures of enrichment. For
example, the enrichment in liver was less apparent for high-
density lipoprotein cholesterol (HDL-C) or triglyceride levels. We
find for many significant associations that the evidence is present
across multiple tissues. This may be caused by a combination of
context specificity and sharing of regulatory mechanism across
tissues.
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Next, we illustrate the challenges of identifying disease relevant
tissues based on eQTL information using three genes with well
established biology: C4A for schizophrenia32 and SORT133 and
PCSK9 both for LDL-C and cardiovascular disease. S-PrediXcan
results for these genes and traits, and regulatory activity by tissue
(as measured by the proportion of expression explained by the
genetic component), are shown in Fig. 8a. Representative results
are shown in Supplementary Tables 3, 4 and 5. Supplementary
Data 4 contains the full set of MetaXcan results (i.e., association,
colocalization, and HEIDI) for these genes.

SORT1 is a gene with strong evidence for a causal role in LDL-C
levels, and as a consequence, is likely to affect risk for
cardiovascular disease33. This gene is most actively regulated in
liver (close to 50% of the expression level of this gene is determined
by the genetic component) with the most significant S-PrediXcan
association in liver (p-value ≈ 0, Z=−28.8), consistent with our
prior knowledge of lipid metabolism. In this example, tissue
specific results suggest a causal role of SORT1 in liver.

However, in the following example, association results
across multiple tissues do not allow us to discriminate the tissue
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of action. C4A is a gene with strong evidence of causal effect
on schizophrenia risk via excessive synaptic pruning in the
brain during development32. Our results show that C4A is
associated with schizophrenia risk in all tissues (p < 2.5 × 10−7 in
36 tissue models and p < 0.05 for the remaining four tissue
models).

PCSK9 is a target of several LDL-C lowering drugs currently
under trial to reduce cardiovascular events34. The STARNET
study35 profiled gene expression levels in cardiometabolic disease
patients and showed tag SNP rs12740374 to be a strong eQTL for
PCSK9 in visceral fat but not in liver. Consistent with this, our
S-PrediXcan results also show a highly significant association
between PCSK9 and LDL-C (p ≈ 10−13) in visceral fat and not in
liver (our training algorithm did not yield a prediction model for
PCSK9, i.e., there was no evidence of regulatory activity). In our
results, however, the statistical evidence is much stronger in tibial
nerve (p ≈ 10−27). Accordingly, in our training set (GTEx), there
is much stronger evidence of regulation of this gene in tibial nerve
compared to visceral fat.

Most associations highlighted here have high colocalization
probabilities. See Supplementary Tables 3, 4, and 5. However,
visceral fat association shows evidence of non colocalization
(probability of independent signals P3= 0.69 in LDL-C). It is
possible that the relevant regulatory activity in visceral adipose
tissue was not detected in the GTEx samples for various reasons
but it was detected in tibial nerve. Thus by looking into all tissues’
results we increase the window of opportunities where we can
detect the association.

PCSK9 yields colocalized signals for LDL-C levels in Tibial
Nerve, Lung, and Whole blood. SORT1 shows colocalization with
LDL-C in liver (P4 ≈ 1) and pancreas (P4= 0.90). C4A is
colocalized with schizophrenia risk for the majority of the tissues
(29/40) with a median colocalization probability of 0.82.

These examples demonstrate the power of studying regulation
in a broad set of tissues and contexts and emphasize the
challenges of determining causal tissues of complex traits based
on in-silico analysis alone. Based on these results, we recommend
to scan all tissues’ models to increase the chances to detect the
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relevant regulatory mechanism that mediates the phenotypic
association. False positives can be controlled by Bonferroni
correcting for the additional tests.

Replication in an independent cohort. We used data from the
Resource for Genetic Epidemiology Research on Adult Health
and Aging study (GERA, phs000674.v1.p1)36,37. This is a study
led by the Kaiser Permanente Research Program on Genes,
Environment, and Health (RPGEH) and the UCSF Institute for
Human Genetics with over 100,000 participants. We downloaded
the data from dbGaP and performed GWAS followed by S-
PrediXcan analysis of 22 conditions available in the European
subset of the cohort.

For replication, we chose Coronary Artery Disease (CAD),
LDL cholesterol levels, Triglyceride levels, and schizophrenia,
which had closely related phenotypes in the GERA study and had
a sufficiently large number of Bonferroni significant associations
in the discovery set. Analysis and replication of the type 2
diabetes phenotype can be found in ref. 38. Coronary artery
disease hits were compared with “Any cardiac event,” LDL
cholesterol and triglyceride level signals were compared with
“Dyslipidemia,” and schizophrenia was compared to “Any
psychiatric event” in GERA.

High concordance between discovery and replication is shown
in Fig. 9 where dyslipidemia association Z-scores are compared to
LDL cholesterol Z-scores. The majority of gene-tissue pairs (92%,
among the ones with Z-score magnitude greater than 2 in both
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Fig. 8 S-PrediXcan associations in different tissues. a Displays associations for PCSK9, SORT1, and C4A on relevant traits by tissue. This figure shows the
association strength between three well studied genes and corresponding phenotypes. C4A associations with schizophrenia (SCZ) are significant across
most tissues. SORT1 associations with LDL-C, coronary artery disease (CAD), and myocardial infarction (MI) are most significant in liver. PCSK9
associations with LDL-C, coronary artery disease (CAD), and myocardial infarction (MI) are most significant in tibial nerve. The size of the points represent
the significance of the association between predicted expression and the traits indicated on the top labels. Red indicates negative correlation whereas blue
indicates positive correlation. R2pred is a performance measure computed as the correlation squared between observed and predicted expression, cross
validated in the training set. Darker points indicate larger genetic component and consequently more active regulation in the tissue. b Displays a histogram
of the number of tissues for which a gene is significantly associated with height (other phenotypes show a similar pattern). Tissue abbreviations: ADPSBQ
Adipose-Subcutaneous, ADPVSC Adipose-Visceral(Omentum), ADRNLG Adrenal Gland, ARTAORT Artery-Aorta, ARTCRN Artery-Coronary, ARTTBL
Artery-Tibial, BLDDER Bladder, BRNAMY Brain-Amygdala, BRNACC Brain-Anterior cingulate cortex (BA24), BRNCDT Brain-Caudate(basal ganglia),
BRNCHB Brain-Cerebellar Hemisphere, BRNCHA Brain-Cerebellum, BRNCTXA Brain-Cortex, BRNCTXB Brain-Frontal Cortex (BA9), BRNHPP Brain-
Hippocampus, BRNHPT Brain-Hypothalamus, BRNNCC Brain Nucleus accumbens(basal ganglia), BRNPTM Brain-Putamen (basal ganglia), BRNSPC Brain-
Spinal cord(cervical c-1), BRNSNG Brain-Substantia nigra, BREAST Breast-Mammary Tissue, LCL Cells-EBV-transformed lymphocytes, FIBRBLS Cells-
Transformed fibroblasts, CVXECT Cervix-Ectocervix, CVSEND Cervix-Endocervix, CLNSGM Colon-Sigmoid, CLNTRN Colon-Transverse, ESPGEJ
Esophagus-Gastroesophageal Junction, ESPMCS Esophagus-Mucosa, ESPMSL Esophagus-Muscularis, FLLPNT Fallopian Tube, HRTAA Heart-Atrial
Appendage, HRTLV Heart-Left Ventricle, KDNCTX Kidney-Cortex, LIVER Liver, LUNG Lung, SLVRYG Minor Salivary Gland, MSCLSK Muscle-Skeletal,
NERVET Nerve-Tibial, OVARY Ovary, PNCREAS Pancreas, PTTARY Pituitary, PRSTTE Prostate, SKINNS Skin-Not Sun Exposed (Suprapubic), SKINS Skin-
Sun Exposed (Lower leg), SNTTRM Small Intestine-Terminal Ileum, SPLEEN Spleen, STMACH Stomach, TESTIS Testis, THYROID Thyroid, UTERUS Uterus,
VAGINA Vagina, WHLBLD Whole Blood
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sets) have concordant direction of effects in the discovery and
replication sets. The high level of concordance is supportive of an
omnigenic trait architecture39.

Following standard practice in meta-analysis, we consider a
gene to be replicated when the following three conditions are met:
the p-value in the replication set is <0.05, the direction of
discovery and replication effects are the same, and the meta
analyzed p-value is Bonferroni significant with the discovery
threshold.

We display summary statistics for this replication analysis in
Table 1. Among the 56 genes significantly associated with CAD in
the discovery set, 6 (11%) were significantly associated with “Any
cardiac event” in GERA. Using “Dyslipidemia” as the closest
matching phenotype, 78.5% and 43.5% of LDL and triglyceride
genes replicated, respectively. Among the 285 genes associated
with schizophrenia in the discovery set, 51 (21%) replicated. The
low replication rate for CAD and Schizophrenia is likely due to
the broad phenotype definitions in the replication.

We found no consistent replication pattern difference between
colocalized and non-colocalized genes.

This is not unexpected if the LD pattern is similar between
discovery and replication sets.

The full list of significant genes can be queried in gene2pheno.
org.

Discussion
Here we derive a mathematical expression to compute PrediXcan
results without using individual level data, which greatly expands
its applicability and is robust to study and reference set mis-
matches. This has not been done before. TWAS, which for the
individual level approach only differs from PrediXcan on the
prediction model used in the implementation, has been extended
to use summary level data. When Gaussian imputation is used,
the relationship between individual level and summary versions
of TWAS is clear. This is not the case when extended to general
weights (such as BSLMM). Our mathematical derivation shows
the analytic difference between them explicitly.

We also add a post filtering step, to mitigate issues with LD-
contamination. Based on consistency with PrediXcan and inter-
pretability of results, we have chosen to use COLOC for filtering.
COLOC has the limitation of assuming a single causal variant,
and has reduced power in the presence of multiple causal var-
iants. However, colocalization estimation is an active area of
research and improved versions or methods will be adopted in the
future. We find that BSLMM-based TWAS results have a larger
proportion of non-colocalized genes as estimated by COLOC.
This could be due to the single variant assumption in COLOC but
we believe this is rather a consequence of the polygenic compo-
nent of BSLMM predictors. Given the predominantly sparse
architecture of gene expression traits27, we believe that adding a
polygenic component unnecessarily increases the exposure to LD-
contamination.

Despite the generally good concordance between the summary
and individual level methods, there were a handful of false
positive results with S-PrediXcan much more significant than
PrediXcan. This underscores the need to use closely matched LD
information whenever possible.

We applied our framework to over 100 phenotypes using
transcriptome prediction models trained in 44 tissues from the
GTEx Consortium and generated a catalog of downstream phe-
notypic association results of gene expression variation, a growing
resource for the community.

The enrichment of monogenic disease genes among related
phenotype associations suggests that moderate alteration of
expression levels as affected by common genetic variation may
cause a continuum of phenotypic changes. Alternatively, a more
complex interplay between common and rare variation could be
taking place such as higher tolerance to loss of function mutations
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Fig. 9 Discovery and replication Z-scores for lipid trait. This figure shows
the Z-scores of the association between dyslipidemia (GERA) and predicted
gene expression levels on the vertical axis and the Z-scores for LDL
cholesterol on the horizontal axis. To facilitate visualization, very large Z-
scores where thresholded to 10. Proportions in each quadrant were
computed excluding Z-scores with magnitude smaller than 2 to filter out
noise

Table 1 Replication of results in GERA

Discovery phenotype Replication phenotype # Signif genes
in disc set

# Replicated
genes

π1(all)
in repl

π1(sig)
in repl

% Replicated
genes

# Replicated coloc
or undeterm

Coronary artery disease Any cardiac event 56 6 0.4% 49.1% 10.7% 6
LDL cholesterol Dyslipidemia 282 219 5.8% 90.8% 78.5% 184
Triglycerides Dyslipidemia 233 100 5.8% 73.1% 43.5% 69
Schizophrenia Any psychiatric event 285 60 1.2% 47.6% 21.1% 51

Significant genes/tissue pairs were replicated using a closely matched phenotype in an independent dataset from the GERA cohort36. The criteria consisted in significance threshold for replication at p <
0.05, concordant directions of effect, and meta analysis p-value less than the Bonferroni threshold in the discovery set. π1 is an estimate of proportion of true positives in the replication set. π1(all) uses all
gene–tissue pairs whereas π1(sig) is computed using only gene-tissue pairs that were significant in the discovery set. The column ‘# replicated genes coloc or undeterm’ is the number of replicated genes
excluding the ones for which there was strong evidence of independent GWAS and eQTL signals
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in lower expressing haplotypes which could induce association
with predicted expression40.

We are finding that most trait associations are tissue specific;
i.e., they are detected in a handful of tissues. However, we also
find that expected tissues given known biology do not necessarily
rank among the top enriched tissues. This suggests context spe-
cificity of the pathogenic mechanism; specific developmental
stage or environmental conditions may be necessary to detect the
regulatory event. On the other hand, we are detecting associations
in unexpected tissues which suggests a sharing of regulation
across multiple tissues/contexts or perhaps novel biology that
takes place in these tissues. In either case, agnostic scanning of a
broad set of tissues is necessary to discover these mechanisms.

Methods
Summary-PrediXcan formula. Figure 1b shows the main analytic expression used
by Summary-PrediXcan for the Z-score (Wald statistic) of the association between
predicted gene expression and a phenotype. The input variables are the weights
used to predict the expression of a given gene, the variance and covariances of the
markers included in the prediction, and the GWAS coefficient for each marker.
The last factor in the formula can be computed exactly in principle, but we would
need additional information that is unavailable in typical GWAS summary sta-
tistics output such as phenotype variance and sample size. Dropping this factor
from the formula does not affect the accuracy of the results as demonstrated in the
close to perfect concordance between PrediXcan and Summary-PrediXcan results
on the diagonal of Fig. 2a.

The approximate formula we use is:

Zg �
X

l2Modelg
wlg

bσ lbσg bβl
seðβ̂lÞ;

ð1Þ

where wlg is the weight of SNP l in the prediction of the expression of gene g; β̂l is
the GWAS regression coefficients for SNP l; se(β̂l) is standard error of β̂, σ̂l is the
estimated variance of SNP l, and σ̂g is the estimated variance of the predicted
expression of gene g; and dosage and alternate allele are assumed to be the same.

The inputs are based, in general, on data from three different sources: study set
(e.g., GWAS study set), expression training set (e.g., GTEx, DGN), population
reference set (e.g., the training set or 1000 Genomes).

The study set is the main dataset of interest from which the genotype and
phenotypes of interest are gathered. The regression coefficients and standard errors
are computed based on individual-level data from the study set or a SNP-level
meta-analysis of multiple GWAS. Training sets are the reference transcriptome
datasets used for the training of the prediction models (GTEx, DGN, Framingham,
etc.) thus the weights wlg are computed from this set. Training sets can also be used
to generate variance and covariances of genetic markers, which will usually be
different from the study sets. When individual level data are not available from the
training set we use population reference sets such as 1000 Genomes data. In the
most common use scenario, users will need to provide only GWAS results using
their study set. The remaining parameters are pre-computed, and published in
PredictDB.

Association enrichment. We display the enrichment for selected phenotypes in
Supplementary Fig. 5, measured as mean(Z2). For visualization purposes, we
selected 25 phenotypes from different categories such as anthropometric traits,
cardiometabolic traits, autoimmune diseases, and psychiatric conditions (please see
figure caption for the list of selected phenotypes). The simple mean of Z2 for all
gene-tissue pairs in a phenotype was taken.

Derivation of summary-PrediXcan formula. The goal of summary-PrediXcan is
to infer the results of PrediXcan using only GWAS summary statistics. Individual
level data are not needed for this algorithm. We will introduce some notations for
the derivation of the analytic expressions of S-PrediXcan.

Notation and preliminaries. Y is the n-dimensional vector of phenotype for
individuals i= 1, n. Xl is the allelic dosage for SNP l. Tg is the predicted expression
(or estimated GREx, genetically regulated expression). wlg are weights to predict
expression Tg ¼

P
l2Model g wlgXl , derived from an independent training set.

We model the phenotype as linear functions of Xl and Tg

Y ¼ α1 þ Xlβl þ η

Y ¼ α2 þ Tgγg þ ϵ

where α1 and α2 are intercepts, η and ϵ error terms independent of Xl and Tg,
respectively. Let γ̂g and β̂l be the estimated regression coefficients of Y regressed on

Tg and Xl, respectively. γ̂g is the result (effect size for gene g) we get from PrediXcan
whereas β̂l is the result from a GWAS for SNP l.

We will denote asdVar and dCov the operators that compute the sample variance
and covariance, i.e.,: dVarðYÞ ¼ σ̂2Y ¼Pi¼1;n Yi � Y

� �2
=ðn� 1Þ with

Y ¼Pi¼1;n Yi=n. Let σ̂2l ¼dVarðXlÞ, σ̂2g ¼dVar Tg
� �

and Γg ¼ ðX � XÞ′ðX � XÞ=n,
where X′ is the p × n matrix of SNP data and X is a n × p matrix where column l
has the column mean of Xl (p being the number of SNPs in the model for gene g,
typically p≪ n).

With this notation, our goal is to infer PrediXcan results (γ̂g and its standard
error) using only GWAS results (β̂l and their standard error), estimated variances
of SNPs (σ̂2l ), estimated covariances between SNPs in each gene model (Γg), and
prediction model weights wlg.

Input: β̂l , se(β̂l), σ̂
2
l , Γg , wlg. Output: γ̂g /se(γ̂g ).

Next we list the properties and definitions used in the derivation

γ̂g ¼
dCovðTg ; YÞdVarðTgÞ

¼
dCovðTg ; YÞ

σ̂2g
ð2Þ

and

bβl ¼ dCovðXl; YÞdVarðXlÞ
¼
dCovðXl ; YÞ

σ̂2l
ð3Þ

The proportion of variance explained by the covariate (Tg or Xl) can be
expressed as

R2
g ¼ γ̂2g

σ̂2g
σ̂2Y

R2
l ¼ γ̂2l

σ̂2l
σ̂2Y

By definition

Tg ¼
X

l2Modelg
wlgXl

Thus dVar Tg
� � ¼ σ̂2g can be computed as

σ̂2g ¼ dVar Pl2Modelg
wlgXl

� �
¼ dVar WgXg

� �
¼ W′

g
dVar Xg
� �

Wg

where Wg is the vector of wlg for SNPs in the model of g. By definition, Γg isdVarðXgÞ, the sample covariance of Xg, so that we arrive to

σ̂2g ¼ W′
gΓWg ð4Þ

Calculation of regression coefficient γ̂g
γ̂g can be expressed as

γ̂g ¼ cCov Tg ;Yð Þ
σ̂2g

¼
cCov P

l2Modelg
wlg Xl ;Y

� �
σ̂2g

¼ P
l2Modelg

wlgcCov Xl ;Yð Þ
σ̂2g

where we used the linearity of dCov in the last step. Using Eq. (3), we arrive to

γ̂g ¼
X

l2Modelg

wlg β̂l σ̂
2
l

σ̂2g
ð5Þ

Calculation of standard error of γ̂g
Also from the properties of linear regression we know that

se2 γ̂g

� �
¼ Var γ̂g

� �
¼ σ̂2ϵ

nσ̂2g
¼ σ̂2Y ð1� R2

gÞ
n σ̂2g

ð6Þ
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In this equation, σ̂2Y=n is not necessarily known but can be estimated using the
equation analogous to (6) for βl

se2 β̂l

� �
¼ σ̂2Y ð1� R2

l Þ
n σ̂2l

ð7Þ

Thus:

σ̂2Y
n

¼
se2 β̂l

� �
σ̂2l

ð1� R2
l Þ

ð8Þ

Notice that the right hand side of (8) is dependent on the SNP l while the left
hand side is not. This equality will hold only approximately in our implementation
since we will be using approximate values for σ̂2l , i.e., from reference population,
not the actual study population.

Calculation of Z-score. To assess the significance of the association, we need to
compute the ratio of the estimated effect size γ̂g and standard error se(γ̂g ), or Z-
score,

Zg ¼
γ̂g

seðγ̂gÞ
ð9Þ

with which we can compute the p-value as p = 2Φ(−|Zg|) where Φ(.) is the
normal CDF function. Thus

Zg ¼ γ̂g
se γ̂gð Þ

¼ P
l2Modelg

wlg β̂l σ̂
2
l

σ̂2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
σ̂2Y

σ̂2g
ð1�R2

g Þ

r
¼ P

l2Modelg

wlg β̂l σ̂
2
l

σ̂2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�R2

l Þ
se2 β̂lð Þσ̂2l

σ̂2g
ð1�R2

g Þ

r

where we used Eqs. (5) and (6) in the second line and Eq. (8) in the last step. So

Zg ¼
X

l2Modelg

wlg
σ̂l
σ̂g

β̂l

se β̂l

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

l

� �
1� R2

g

� �vuut ð10Þ

�
X

l2Modelg

wlg
σ̂l
σ̂g

β̂l

se β̂l

� � ð11Þ

Based on results with actual and simulated data for realistic effect size ranges,
we have found that the last approximation does not affect our ability to identify the
association. The approximation becomes inaccurate only when the effect sizes are
very large. But in these cases, the small decrease in statistical efficiency induced by
the approximation is compensated by the large power to detect the larger effect
sizes.

Calculation of σg in reference set. The variance of predicted expression is
computed using Eq. (4) which takes weights for each SNP in the prediction model
and the correlation (LD) between the SNPs. The correlation is computed in a
reference set such as 1000G or in the training set.

Expression model training. To train our prediction models, we obtained genotype
data and normalized gene expression data collected by the GTEx Project. We used
44 different tissues sampled by GTEx and thus generated 44 different tissue-wide
models (dbGaP Accession phs000424.v6.p1). Sample sizes for different tissues
range from 70 (Uterus) to 361 (Muscle—Skeletal). The models referenced in this
paper make use of the GTEx Project’s V6p data, a patch to the version 6 data and
makes use of improved gene-level annotation. We removed ambiguously stranded
SNPs from genotype data, i.e., ref/alt pairs A/T, C/G, T/A, G/C. Genotype data was
filtered to include only SNPs with MAF > 0.01. For each tissue, normalized gene
expression data was adjusted for covariates such as gender, sequencing platform,
the top three principal components from genotype data and top PEER Factors. The
number of PEER Factors used was determined by sample size: 15 for n < 150, 30 for
n between 150 and 250, and 35 for n > 250. Covariate data was provided by GTEx.
For our analysis, we used protein-coding genes only.

For each gene-tissue pair for which we had adjusted expression data, we fit an
Elastic-Net model based on the genotypes of the samples for the SNPs located
within 1Mb upstream of the gene’s transcription start site and 1Mb downstream
of the transcription end site. We used the R package glmnet with mixing parameter
alpha equal to 0.5, and the penalty parameter lambda was chosen through 10-fold

Cross-validation. Once we fit all models, we retained only those with q-value less
than 0.0541 For each tissue examined, we created a sqlite database to store the
weights of the prediction models, as well as other statistics regarding model
training. Supplementary Table 6 contains summary statistics on the models for
each GTEx tissue. These databases have been made available for download at
PredictDB.org.

Online Catalog and SMR, COLOC, TWAS. Supplementary Data 2 shows the list
of GWA/GWAMA studies we considered in this analysis. We applied S-PrediXcan
to these studies using the transcriptome models trained on GTEx studies for
patched version 6. For simplicity, S-PrediXcan only considers those SNPs that have
a matching set of alleles in the prediction model, and adjusts the dosages (2 dosage)
if the alleles are swapped.

To make the results of this study broadly accessible, we built a Postgre SQL
relational database to store S-PrediXcan results, and serve them via a web
application http://gene2pheno.org.

We also applied SMR16 to the same set of GWAMA studies, using the GTEx
eQTL associations. We downloaded version 0.66 of the software from the SMR
website, and ran it using the default parameters. We converted the GWAMA and
GTEx eQTL studies to SMR input formats. In order to have SMR compute the
colocalization test, for those few GWAMA studies where allele frequency was not
reported, we filled in with frequencies from the 1000 Genomes Project42 as an
approximation. We also used the 1000 Genomes genotype data as reference panel
for SMR.

Next we ran COLOC18 (as downloaded from the Comprehensive R Archive
Network) over the same set of GWAMA and eQTL studies. We used the
Approximate Bayes Factor colocalization analysis, with effect sizes, their standard
errors, allele frequencies and sample sizes as arguments. When the frequency
information was missing from the GWAS, we filled in with data from the 1000
Genomes Project.

For comparison purposes, we have also included the results of the application of
Summary-TWAS to 30 traits publicly shared by the authors24.

Comparison with TWAS. Formal similarity with TWAS can be made more
explicit by rewriting S-PrediXcan formula in matrix form. With the following
notation and definitions

~Wg ¼ σ1w1g ; ¼ ; σpwpg
� �′

ZSNPs ¼ Z1; ¼ ;Zp
� �′

¼ β̂1
seðβ̂1Þ

; ¼ ;
β̂p

seðβ̂pÞ

� �
′

and correlation matrix of SNPs in the model for gene g

Σg ¼ diag 1
σ̂1
; ¼ ; 1

σ̂p

� �
� Γg � diag 1

σ̂1
; ¼ ; 1

σ̂p

� �
it is quite straightforward to write the numerator in (1) and (11) as

~Wg � ZSNPs and in the denominator, the variance of the predicted expression
level of gene g, as

~W
′
g � Σg � ~Wg

Thus

Zg ¼
~Wg � ZSNPsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~W

′
g � Σg � ~Wg

q

This equation has the same form as the TWAS expression if we use the scaled
weight vector ~Wg instead of Wg. Summary-TWAS imputes the Z-score for the
gene-level result assuming that under the null hypothesis, the Z-scores are
normally distributed with the same correlation structure as the SNPs; whereas in S-
PrediXcan we compute the results of PrediXcan using summary statistics. Thus, S-
TWAS and S-PrediXcan yield equivalent mathematical expressions (after setting

the factor

ffiffiffiffiffiffiffiffiffiffiffi
ð1�R2

l Þ
ð1�R2

g Þ

r
� 1).

Summary-PrediXcan with only top eQTL as predictor. The S-PrediXcan formula
when only the top eQTL is used to predict the expression level of a gene can be
expressed as

ZS�PrediXcan ¼ P
l2Modelg

wlg
σ̂l
σ̂g

β̂l
se βlð Þ

¼ w1g
σ̂1ffiffiffiffiffiffiffiffiffi
w2
1g σ̂

2
1

p Z1

¼ Z1
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where Z1 is the GWAS Z-score of the top eQTL in the model for gene. Thus

Z2
top eQTL S�PrediXcan ¼ Z2

GWAS ð12Þ

Comparison with SMR. SMR quantifies the strength of the association between
expression levels of a gene and complex traits with TSMR using the following
function of the eQTL and GWAS Z-score statistics

TSMR ¼ Z2
eQTLZ

2
GWAS

Z2
eQTL þ Z2

GWAS
ð13Þ

Here ZeQTL is the Z-score (=effect size/standard error) of the association
between SNP and gene expression, and ZGWAS is the Z-score of the association
between SNP and trait.

This SMR statistic (TSMR) is not a χ21 random variable as assumed in ref. 16. To
prove this, we performed simulations following those described in ref. 16. We
generated 105 pairs of values for Z2

GWAS and Z2
eQTL. Z

2
GWAS was sampled from a χ21

distribution. Z2
eQTL was sampled from a non-central χ21 distribution with parameter

λ= 29 (a value chosen to mimic results from29, see ref. 16). Only pairs with eQTLs
satisfying genome-wide significance (p < 5 × 10−8) were kept. We performed a QQ
plot and observed deflation when comparing to random values sampled from a χ21
distribution (Fig. 5e). This simulation was repeated 1000 times, and we observed a
mean of TSMR close to 0.93 (Fig. 5f).

Only in two extreme cases, the chi-square approximation holds, when ZeQTL �
ZGWAS or ZeQTL � ZGWAS. In these extremes, we can apply Taylor expansions to
find an interpretable form of the SMR statistic.

If ZeQTL � ZGWAS, i.e., the eQTL association is much more significant than the
GWAS association,

TSMR ¼ Z2
GWAS

1þ Z2
GWAS
Z2
eQTL

� Z2
GWAS 1� Z2

GWAS

Z2
eQTL

 !
ð14Þ

so that for large enough Z2
eQTL relative to Z2

GWAS,

TSMR � Z2
GWAS ¼ Z2

top eQTL S�PrediXcan ð15Þ

using Eq. 12. Thus, in this case, the SMR statistic is slightly smaller than the (top
eQTL based) S-PrediXcan χ1-square. This reduced significance is accounting for
the uncertainty in the eQTL association. As the evidence for eQTL association
grows, the denominator Z2

eQTL increases and the difference tends to 0.
On the other extreme when the GWAS association is much stronger than the

eQTLs, ZeQTL � ZGWAS,

TSMR ¼ Z2
eQTL

1þ Z2
eQTL

Z2
GWAS

� Z2
eQTL 1� Z2

eQTL

Z2
GWAS

� �
ð16Þ

so that analogously

TSMR � Z2
eQTL ð17Þ

In both extremes, the SMR statistic significance is approximately equal to the
less significant of the two statistics GWAS or eQTL, albeit strictly smaller.

In between the two extremes, the right distribution must be computed using
numerical methods. When we look at the empirical distribution of the SMR
statistic’s p-value against the GWAS and eQTL (top eQTL for the gene) p-values,
we find the ceiling of the SMR statistic is maintained as shown in Fig. 5e, f.

GERA imputation. Genotype files were obtained from dbGaP, and updated to
release 35 of the probe annotations published by Affymetrix via PLINK43. Probes
were filtered out that had a minor allele frequency of <0.01, were missing in >10%
of subjects, or did not fit Hardy-Weinberg equilibrium. Subjects were dropped that
had an unexpected level of heterozygosity (F>0.05). Finally the HRC-1000G-check-
bim.pl script (http://www.well.ox.ac.uk/~wrayner/tools/) was used to perform some
final filtering and split data by chromosome. Phasing (via eagle v2.344) and
imputation against the HRC r1.1 2016 panel45 (via minimac3) were carried out by
the Michigan Imputation Server46.

GERA GWAS and MetaXcan Application. European samples had been split into
ten groups during imputation to ease the computational burden on the Michigan
server, so after obtaining the imputed .vcf files, we used the software PLINK43 to
convert the genotype files into the PLINK binary file format and merge the ten
groups of samples together, while dropping any variants not found in all sample
groups. For the association analysis, we performed a logistic regression using
PLINK, and following QC practices from ref. 14 we filtered out individuals with

genotype missingness >0.03 and filtered out variants with minor allele frequency
<0.01, missingness >0.05, out of Hardy-Weinberg equilibrium significant at 1e-6,
or had imputation quality <0.8. We used gender and the first ten genetic principal
components as obtained from dbGaP as covariates. Following all filtering, our
analysis included 61,444 European samples with 7,120,064 variants. MetaXcan was
then applied to these GWAS results, using the 45 prediction models (GTEx and
DGN).

Code Availability. We make our software publicly available on a GitHub reposi-
tory: https://github.com/hakyimlab/MetaXcan. A short working example can be
found on the GitHub page; more extensive documentation can be found on the
project’s wiki page.

Data availability. The underlying GWAS results used in this analysis were
downloaded from publicly available resources listed in Supplementary Data 2. The
relevant GTEx gene expression data was obtained from dbGAP using accession
phs000424.v6.p1. The GERA study was downloaded from dbGAP using accession
number phs000674.v2.p2. WTCCC data was downloaded from WTCCC EGA
european genome-phenome archive.

The list of ClinVar genes was downloaded from https://www.ncbi.nlm.nih.gov/
clinvar/. TWAS results published in ref. 24 were used. Prediction model weights
and covariances for different tissues are available from the predictdb.org resource.
The results of MetaXcan applied to the 44 human tissues and a broad set of
phenotypes can be queried in gene2pheno.org, and we make the full data set of
results available via the public GitHub repository https://github.com/hakyimlab/
MetaXcan.
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