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Abstract 

Aerosol, trace gas, and meteorological data were collected in Chicago, Illinois during 

2010–2012 summer air studies. Ozone, nitrogen oxides, acetate, formate, chloride, nitrate, 

sulfate, and oxalate concentrations as well as temperature, wind speed, wind direction, and 

humidity data were explored by both principal component analysis (PCA) and canonical 

correlation analysis (CCA). Multivariate statistical techniques were applied to uncover existing 

relationships between meteorology and air pollutant concentrations and also reduce data 

dimensions. 

In PCA, principal components (PC) revealed a relationship of ozone and nitrate 

concentrations with respect to temperature and humidity, coupled with transport of species from 

the south in relation to the sampling site (PC1). PC2 was a measure of secondary aerosols but 

also suggested acetate and formate presence was a result of primary emissions or transport. Both 

PC3 and PC4 contained residual information with the former representing days of lower 

pollution and the latter representing northerly wind transport of chloride, nitrate, and ozone to the 

sampling site. 

In CCA, three canonical functions were statistically significant. The first indicated high 

temperature and low wind speed had a strong linear relationship ozone, oxalate, and nitrogen 

oxides concentrations whereas the second function showed a strong influence of wind direction 

on acetate, formate, and chloride concentrations. Residuals of temperature, wind speed, trace 

gases, and oxalate also were in the second function. The only new information in the third 

function was humidity. Overall, PCA and CCA bring forth multi-variable relationships, not 

represented in descriptive statistics, useful in understanding pollution variability. 

 

Keywords: Air quality, canonical correlation analysis, multivariate statistics, principal  

      component analysis, urban air pollution 

 

1. Introduction 

 A large amount of data accumulates during extensive air pollution studies. As pollution 

signatures are region specific due to differences in natural and anthropogenic sources as well as 

weather patterns, a multitude of pollution monitoring campaigns have been completed across the 

world (Chan and Yao 2008; Chow et al. 2006; Deshmukh et al. 2013; Gianini et al. 2012; Molina 

et al. 2010; Samek et al. 2017; Vasconcellos et al. 2007). Air pollution in Chicago has been 

studied (Cooke and Wadden 1981; Fosco and Schmeling 2006, 2007; Hu et al. 2008; Lee et al. 

1993; Scheff et al. 1984; Simcik et al. 1999) but few have analyzed data beyond descriptive 

statistics. With a resident count of approximately 2.7 million, Chicago, Illinois is considered the 

third-largest city in the United States (City of Chicago 2013) and has had a long history of 

industrial presence. With these characteristics and Chicago’s unique geographical location on the 

southwestern end of Lake Michigan, pollution in this major urban city is important to study.  

 Multivariate statistical techniques are used to discover underlying relationships buried in 

large data sets that are not found using traditional descriptive methods. Redundant information is 

eliminated, making the data more manageable for interpretation. Relationships between 

meteorology and air pollutants are important as both emission sources and weather regimes 

influence air quality episodes via transport and transformation of air pollutants across regions. 

Both principal component analysis (PCA) and canonical correlation analysis (CCA) have been 
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applied to air pollution data collected from various locations (Binaku et al. 2013; Binaku 2014; 

Braga et al. 2005; Liu et al. 2016; Statheropoulos et al. 1998; Vasconcellos et al. 2007; Yu and 

Chang 2006).  

 Principal component analysis is a multivariate technique used to reduce data dimensions 

and determine relationships across one dataset (Wilks 2011). PCA is applied to the covariance or 

the correlation matrix of data, of which the latter is preferred when original variables are 

measured on different scales (Wilks 2011). In PCA, existing variables are transformed into a new 

set of variables, which are linear combinations of the original variables. Linear combinations, or 

principal components (PCs), capture the maximum variance within original data without 

repeating information, resulting in a fewer number of new variables explaining original data 

variability (Wilks 2011). Derived coefficients called loadings are used to interpret the influence 

of original variables in a linear combination (Wilks 2011). The first derived principal component 

(PC1) contains the maximum variability of the original data. The second component (PC2) 

describes variability not already extracted by PC1. All PCs are orthogonal and uncorrelated to 

one another (Wilks 2011). An eigenvalue for each PC is used to determine PCs to retain for in-

depth interpretation (Wilks 2011). Kaiser’s Rule states to retain all PCs whose eigenvalues are 

greater than one. Additionally, a Scree plot shows eigenvalue versus corresponding principal 

component number; a change in slope between points on the plot determines the cut-off range for 

interpreting PCs (Wilks 2011). Score plots are visualizations of original data observations in new 

variables’ space and can be used to identify patterns and clusters (Johnson and Wichern 1998; 

Wilks 2011). Extensive information on PCA can be found in both Wilks (2011) and Johnson and 

Wichern (1998). 

 Canonical correlation analysis derives linear relationships that exist between two 

datasets, each containing multiple variables (Wilks 2011). One set contains variables classified 

as predictor or independent variables, while the other dataset of variables are the response or 

dependent variables (Hair et al. 1992). Similar to PCA, new variables in the form of linear 

combinations (also called canonical variates) are derived. Canonical weights derived for each 

original variable expose the maximum correlation present between linear combinations of the 

predictor and response variables. The larger a canonical weight, the more influential the 

associated original variable. Each pair of linear combinations is called a canonical function or 

canonical variate pair (Hair et al. 1992). The first canonical variate pair encompasses the 

maximum correlation found in the original data (Hair et al. 1992). Each successive canonical 

variate pair represents maximum correlation between variables without repeating information 

explained in preceding variate pairs. This results in uncorrelated, orthogonal canonical variate 

pairs. Plots projecting new variables’ scores are used to identify outliers or groups (Hair et al. 

1992). More details on CCA can be found in Johnson and Wichern (1998). 

 

 Equation (1) represents the general structure of a linear combination, for CCA or PCA:  

 

(1)  Linear combinationx = b1,xC1 + b2,xC2 + b3,xC3 + …bn,xCn 

 

The symbols C1, C2, C3…Cn represent each original variable; b denotes the derived weight 

assigned to each original variable while subscript “n” signifies that a canonical weight value is 

different for each variable. The subscript “x” symbolizes which successive linear combination is 

derived (1st, 2nd, 3rd, etc.) and that weights are different in each linear combination. 
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 In this study, Chicago, Illinois air pollutant and meteorological data collected during the 

summers of 2010, 2011, and 2012 was analyzed using both PCA and CCA. The purpose of data 

analysis was to reduce data dimensions and identify the presence of both pollutant-pollutant and 

pollutant-meteorological variable relationships. These results then would be compared to PCA, 

CCA results from a summer 2002–2004 air pollutant and meteorological dataset. The summer 

2010–2012 air pollution studies complimented a previous study completed at the same site 

during summers 2002–2004, of which aerosol, trace gas, and meteorological data were collected 

to assess air pollution and the local lake breeze as well as method development of aerosol 

analysis (Fosco and Schmeling 2006, 2007). Having completed multivariate analysis on the 

2002–2004 summer data (Binaku et al. 2013), PCA and CCA relationships between those data 

and the summer 2010-2012 data were assessed to identify similarities and differences in 

pollutant-pollutant or pollutant-meteorological variable relationships. 

 

2. Experimental Details 

2.1 Description of data collection 

 Aerosol, trace gas, and meteorological data were collected July–August during the 

summers of 2010, 2011, and 2012. Instrumentation was located at Loyola University Chicago’s 

Air Station (LUCAS), atop a 60-meter tall on-campus building. The university is situated in a 

residential area in the Rogers Park neighborhood of Chicago, Illinois. The sampling site is 200 

meters west of Lake Michigan shoreline and approximately 13 kilometers north of Chicago’s 

downtown center, shown in Figure 1. 

 

 
Fig. 1  Map of Chicago, surrounding suburbs, and the northwest Indiana region. The air sampling station (yellow 

pin, LUCAS) and its relation to Chicago’s downtown area (black square) is depicted. Several industry point source 

pollutant locations in the vicinity are also shown. (Google 2013) 
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 Pollution studies were completed on weekdays during the summer season, as Chicago is 

most susceptible to lake breezes and secondary pollution is expected to be its highest during this 

period. Mixing ratios of ozone (O3) and nitrogen oxides (NO-NO2-NOx) were measured with 1-

minute resolution using Thermo 49C and 42C Analyzers, respectively (Thermo Environmental 

Instruments, Inc., Franklin, MA). Meteorological parameters were recorded with 15-minute 

resolution using a Vantage ProTM Weather Station (Davis Instruments, Hayward, CA). Both trace 

gas and weather instrumentation were online 24-hours each day. Pre-cleaned 47mm quartz fiber 

filters held in a Teflon filter holder attached to a vacuum pump were used in aerosol collections. 

Two aerosol samples were collected per day. The first aerosol sampling segment, defined as A, 

was from 0700 to 1000h local time (LT). Segment B, the second aerosol sampling, was from 

1100 to 1300h local time. Aerosol collections were designed to capture short-term pollution 

development, pollutants on non-lake breeze days, and pollutant concentrations before and during 

a local lake breeze. It was previously observed in summer 2002–2004 studies at the same 

location that a lake breeze began most frequently between 1000–1100h (Fosco and Schmeling 

2006, 2007). Therefore, a 1-hour gap between segments A and B was inserted so segment B 

collections could reflect aerosol concentrations during or after a lake breeze. New quartz fiber 

filters were used in each sampling segment. After collection, filters were stored in individual 

petri dishes and frozen. Prior to analysis, filters were equilibrated to room temperature. Then 

each filter was submerged in 4mL of Nanopure H2O and sonicated for 20 minutes. The aqueous 

filter extract was analyzed for both cations and anions using a Metrohm 761 Compact Ion 

Chromatograph (IC) with conductivity detection (Metrohm USA, Inc., Riverview, FL). 

 

2.2 Raw data and treatment 

 Sixty-six weekdays of air pollution and meteorological data was collected over all three 

summers. Temperature (degrees Celsius, °C), wind direction (degrees, °), wind speed (meters per 

second, m s-1), and relative humidity (percent, %) were included in statistical analyses along with 

water-soluble anions quantified (microgram per cubic meter, µg m-3) in aerosol samples. These 

included acetate (CH3COO-), formate (CHOO-), chloride (Cl-), nitrate (NO3
-), sulfate (SO4

2-), 

and oxalate (C2O4
2-). Both trace gases were also included, forming a dataset of 132 observations 

for 8 air pollutant variables and 4 meteorological variables. Aerosol, trace gases, and 

meteorology data had different resolution due to respective instrument sampling frequency. 

Trace gas mixing ratios and meteorology data were averaged to match the period of segment A 

(0700–1000h) and B (1100–1300h) aerosol collections.  

 All variables were standardized by calculating z-scores, subtracting a variable’s average 

from respective variable observations and dividing the resulting value by standard deviation. 

Ions’ observations mostly below detection limit were not included in this statistical study. An 

entire day’s pollution and meteorology observation is removed in statistical programs if one 

variable’s value is missing for that particular day. Matrix sample size drastically decreases if 

many observations are below detection limit. Other studies substituted “missing” data by 

inserting a method or instrumentation detection limit or variable’s average value as an 

“observed” value (Statheropoulos et al. 1998; Yu and Chang 2006; Zhou et al. 2007). This was 

not done in our study, as derived relationships may be skewed as a result. Out of 132 total 

observations, 44 were omitted due to missing values. Meteorology were independent (predictor) 

variables whereas air pollutants were the dependent (response) variables. The computer program 

used to apply PCA and CCA was SAS® 9.3 Software (SAS Institute Inc 2010). Minitab® 16 

Statistical Software (Minitab 2010) was used to generate score plots of PCA and CCA results. 
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3. Results 

 

3.1 Principal component analysis 

 

 PCA was applied using the correlation matrix of data described in section 2.2. The first 

four principal components (PCs 1–4) were retained according to Kaiser’s Rule. A scree plot 

shown in Figure 2 validates interpreting PCs 1–3. However, the slope between PC3 and PC4 

suggests PC4 is not important. Because a scree plot is subjective, PC4 was retained. All four PCs 

accounted for roughly 70% of original data variance. Principal component loading values are 

shown in Table 1. Eigenvalue and cumulative percent variance explained by each PC is also 

presented. Only loading values + 0.300 or greater were interpreted. 
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Fig. 2  Plot of eigenvalue versus corresponding principal component (PC) number, referred to as a scree plot 

 
 PC1 PC2 PC3 PC4 

Acetate   0.006   0.402   0.408 - 0.003 

Formate - 0.063   0.411   0.476 - 0.016 

Chloride - 0.006   0.379 - 0.275   0.310 

Nitrate   0.418 - 0.020 - 0.276   0.317 

Sulfate   0.184   0.360 - 0.351   0.133 

Oxalate   0.197   0.391   0.186   0.260 

Ozone   0.351 - 0.318   0.113   0.426 

Nitrogen oxides   0.157   0.248 - 0.430 - 0.517 

Wind speed   0.092 - 0.234   0.188 - 0.235 

Wind direction   0.407   0.125   0.041 - 0.448 

Temperature   0.507 - 0.070   0.184 - 0.076 

Humidity - 0.411   0.076 - 0.168   0.082 

     

Eigenvalue 2.853 2.716 1.411 1.382 

     

Cumulative Variance 23.8% 46.4% 58.2% 69.7% 

 

Table 1  Principal component (PC) loading values, corresponding eigenvalues, and cumulative percentage of 

original data variance explained in the PCs 
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 The first principal component (PC1) explains 23.8% of original data variability. This PC 

is a measure of nitrate (0.418), ozone (0.351), temperature (0.507), wind direction (0.407), and 

humidity (– 0.411), as these variables have the largest loading values. The sign of loading values 

indicate similarity in behavior of all positively loaded variables but an inverse relationship 

between humidity and the other variables. Both nitrate and ozone are secondary in nature, 

produced in the atmosphere by chemical reactions. The main pathway for tropospheric ozone 

production is nitrogen dioxide (NO2) photolysis; nitrate ions are mainly a result of the daytime 

reaction of hydroxyl radicals and NO2, forming gaseous nitric acid which can then undergo dry 

or wet deposition. Neutralization by ammonia, NH3 (g), and deposition in the form of ammonium 

nitrate, NH4NO3 (s, aq), is another pathway for nitrate aerosol production (Finlayson-Pitts and Pitts 

2000). PC1 is a measure of processed air, late morning or early afternoon, after rush hour 

emissions have decreased. At this time of day, local temperatures rise (large positive weight), 

aiding in secondary aerosol production. Winds originating from a large degree (135°, SE; 180°, 

S; 225°, SW) or southerly direction contribute to the measured pollutants via transport. The 

weight of nitrate and ozone suggests dependence of concentrations with respect to originating 

wind direction. 

Contrary to literature, PC1 suggests nitrate aerosol increases with high temperatures and 

low humidity. According to Finlayson-Pitts and Pitts (2000), volatility of ammonium nitrate 

increases when humidity lessens and temperatures rise. Equilibrium is shifted from ammonium 

nitrate to gaseous nitric acid and ammonia in this case (Finlayson-Pitts and Pitts 2000). A similar 

result to PC1 was found when applying multivariate statistics to summer 2002–2004 data taken 

at the same location (Binaku et al. 2013). Binaku et al. (2013) suggested that organonitrate 

compounds play a role in the atmospheric signature of nitrate in Chicago. Many urban studies 

have measured organonitrate compounds in the organic aerosol fraction. The formation of 

organonitrates occurs both day and night, the product of peroxy radical (RO2) and nitric oxide 

(NO) or nitrate radical and alkene reactions, respectively (Finlayson-Pitts and Pitts 2000). The 

results of our recent study suggest that the nitrate signature has not changed in Chicago since 

summers 2002–2004. 

 Principal component 2 has an eigenvalue of 2.716 and explains 22.6% of original data 

variance. PC2 is a measure of acetate (0.402), formate (0.411), chloride (0.379), sulfate (0.360), 

and oxalate (0.391). Ozone residuals (– 0.318) not expressed in PC1 are negatively weighted in 

principal component 2. All measured organic acid anions and two inorganic ions have similar 

behavior in PC2. There is evidence that formate and acetate both originate in the atmosphere due 

to direct emissions or secondary formation, sources of which are location dependent (Finlayson-

Pitts and Pitts 2000). If Pearson correlations between formate, acetate, and ozone exist, it is 

indicative that photochemistry is favored over direct emissions (Finlayson-Pitts and Pitts 2000; 

Khwaja 1995; Souza et al. 1999). PC2 suggests photochemical formation is not the main source 

of formate and acetate ions in the Chicago region, as the negative sign of ozone’s loading value 

suggests low ozone mixing ratios are present in cases of moderate to high formate and acetate 

concentrations. Sulfate, which is primarily formed via aqueous oxidation of sulfur dioxide, has a 

loading value similar to oxalate, suggesting local oxalate originates due to cloud, fog aqueous 

reactions. However, sulfate is also produced via gas-phase sulfur dioxide oxidation; it is possible 

that the organic acid anion species similarly originate in the gas phase, through oxidation of 

volatile organic compounds (Finlayson-Pitts and Pitts 2000). The commonality of organic acid 

anions and sulfate loading values also indicate transport of species from other regions is 

important. Earlier studies found that long-range transport of sulfate affects the Midwest region 
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(Cooke and Wadden 1981; Lee and Hopke 2006; Scheff et al. 1984). This could also be true for 

sulfate and chloride aerosol in this study. 

The only new information derived in PC3 is the loading of nitrogen oxides (– 0.430). The 

pollutant was not highly weighted in the earlier principal components. Residual loadings of 

acetate (0.408), formate (0.476), and sulfate (– 0.351) not expressed in PC1 or PC2 are weighted 

in PC3. The associated eigenvalue is 1.411 and PC3 explains 11.8% of variance in the original 

data. PC3 is a measure of moderate acetate, formate concentrations and low sulfate, nitrogen 

oxide concentrations. Formate and acetate loadings were discussed in PC2 and the residual 

information in PC3 shows similar relationship between the two pollutant species. With 

meteorology not loaded in PC3, there is no distinction of weather conditions or their potential 

role on weighted pollutant information for this component. 

PC4 consists of residual information. PC4 expresses 11.5% of original data variance and 

has an eigenvalue of 1.382. Residuals of chloride (0.310), nitrate (0.317), ozone (0.426), nitrogen 

oxides (– 0.517), and wind direction (– 0.448) play a large role in PC4. Loading values suggest 

PC4 is a measure of moderate concentrations of secondary pollutants transported by winds 

originating from a small degree (0°, N; 45°, NE; 90°, E) or northerly direction. 

 Score plots are shown in Figure 3. Observations (scores) are distinguished by sample 

year. Collections in 2010, 2011, and 2012 are represented by a circle (blue), square (orange), and 

diamond (black), respectively. In the top plot of Figure 3, PC2 versus PC1, there are two main 

clusters of points. Scores highly positive on PC1 (cluster no. 1) are influenced by high 

temperature and low humidity, in addition to high ozone and nitrate concentrations and large 

degree with respect to wind direction. These scores are from segment B collections in 2011 and 

2012. For example, no. 119 and 123 were very warm days (34.1 and 32.7°C, respectively) with 

high ozone mixing ratios (77.51 and 93.37 ppb, respectively) and low relative humidity (45%), 

combined with westerly (270°) winds. Conversely, cluster no. 2 at the negative end of PC1 

encompasses scores from 2011 and 2012 segment A collections and several from 2011 segment 

B samples. Scores 41, 56, 65, and 89 correspond to observations of low nitrate (0.315–1.108 µg 

m-3) and temperature (18.9–23.5°C), low ozone (26.72–36.02 ppb), high humidity (70–90%), 

and winds originating from a small degree (northerly to easterly, 0–135°). This resulted in 

humidity dominantly affecting the location of scores. Along the vertical axis (PC2), summer 

2012 observations are all weighted negatively, while both summers 2010 and 2011 scores are 

scattered about the axis. There are two outliers with large positive scores along PC2, no. 10 and 

11, corresponding to summer 2010 measurements. Low ozone mixing ratios combined with high 

sulfate and above average chloride, acetate, and formate ion concentrations resulted in a high 

overall score on PC2, as all of the variables listed have positive loading values with the 

exception of ozone. 

 In the score plot of PC3 versus PC1 (middle graph, Figure 3), interpreting PC3 is 

emphasized as PC1 was already discussed. Along PC3, acetate, formate, sulfate, and nitrogen 

oxides influence score location. Scores with high sulfate and nitrogen oxides but low acetate and 

formate concentrations are on the negative end of PC3. Generally, the opposite is true for scores 

located on the positive end of PC3. To illustrate, no. 44 and 46 are at the opposite ends of PC3. 

Both observations are from 2011 segment A collections. The main influence on no. 44 is low 

mixing ratios of nitrogen oxides (16.85 ppb), combined with high formate (5.379 µg m-3) and 

acetate (2.879 µg m-3) concentrations. On the contrary, the negative location of no. 46 is a result 

of high nitrogen oxides (54.33 ppb), above average sulfate (11.974 µg m-3) and low formate 

(0.079 µg m-3) and acetate (0.521 µg m-3) concentrations.  
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PC4 is the vertical axis in the bottom graph of Figure 3. Points are scattered along the 

axis but there are two sets of score extremes. Scores 46, 49, and 88 are weighted highly negative 

on PC4, while scores 10, 45, 59, 108, and 117 are highly positive on PC4 and far removed from 

the majority of the scores. A combination of wind direction, trace gas mixing ratios, and the 

concentrations of both nitrate and chloride recorded on sampling days affect score location along 

PC4. Large positive scores have lower nitrogen oxides and higher ozone than the highly negative 

scores. Wind direction for no. 10, 59, 108 and 117 were easterly, southeasterly in contrast to 

westerly winds for no. 46 and 88 and northerly winds for no. 45 and 49. There was no pattern for 

chloride and nitrate; their small loading values in comparison to ozone and nitrogen oxides show 

their influence is not as significant. Overall, clusters and outliers identified in score plots 

contributed to a better understanding of similarity in the behavior of local pollution and 

meteorology. 
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Fig. 3  Score plots projecting original data in derived principal component space. Observations are distinguished by 

both color, shape of plotting symbol and labeled with row numbers to identify sample dates and segments 
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3.2 Canonical correlation analysis 

 

 3.2.1 Canonical functions 

 

 The first three canonical functions in CCA are explained herein, as the fourth canonical 

function is not statistically significant at the 0.05 level. AP1, AP2, and AP3 refer to the canonical 

variates (linear combinations) derived for air pollution variables. Symbols M1, M2, and M3 

represent meteorological parameter canonical variates. Canonical functions, canonical 

correlations, and canonical weights are reported in Table 2.  

 
Canonical Function M1, AP1 M2, AP2 M3, AP3 

Canonical correlation 0.769 0.623 0.395 

    

Wind speed - 0.241 - 0.389 0.292 

Temperature   0.925 - 0.784 0.279 

Wind direction   0.039   1.016 0.641 

Humidity - 0.141 - 0.229 1.002 

    

Acetate   0.214   0.347 - 0.336 

Formate   0.011 - 0.502   0.978 

Chloride - 0.109 - 0.300 - 0.060 

Nitrate - 0.207   0.154   0.028 

Sulfate - 0.042 - 0.097   0.387 

Oxalate   0.349   0.622 - 0.727 

Ozone   1.142 - 0.643   0.128 

Nitrogen oxides   0.723   0.457   0.501 

Table 2 CCA results including each canonical function and corresponding canonical correlation. Canonical weights 

for air pollution (AP1, AP2, and AP3) and meteorology (M1, M2, and M3) linear combinations are also shown 

 

 The correlation between M1 and AP1, the first canonical variate pair, is high (0.769). 

Additionally, M1 explains roughly 60.3% of the variance in AP1. The most influential variable 

in M1 is temperature, with a canonical weight of 0.925. Wind speed is less influential with a 

smaller weight, – 0.241. Wind direction and humidity canonical weights are near zero, indicating 

they are negligible in M1. Overall, M1 is a measure of high temperatures and low wind speeds. 

Ozone, nitrogen oxides, and oxalate have large weights in AP1: 1.142, 0.723, and 0.349, 

respectively. This canonical function (M1, AP2) shows both temperature and wind speed affect 

the concentrations of oxalate, ozone, and, nitrogen oxides. High temperatures influence 

photochemical reactions such as in the production of ozone. In contrast, nitrogen oxides are 

primarily emitted due to fossil fuel combustion. It is unclear why nitrogen oxides’ positive 

correlation with ozone and oxalate was derived, as it is known the trace gases are anti-correlated. 

Lack of air mass mixing and transport due to low winds is one possible explanation. A score plot 

generated by this canonical function is shown in the top graph of Figure 4. The large, positive 

correlation between M1 and AP1 canonical variates is clear. No trends or clusters are present and 

there are only a few points that deviate from the majority, namely 117 and 123. Both scores are 

largely positive on AP1. Observation no. 117 corresponds to July 13, 2012 segment B 

measurement of which the highest average ozone mixing ratio over all three summers was 

recorded, 94.43 ppb. Nitrogen oxides (11.46 ppb) and oxalate (0.254 µg m-3) concentrations for 

the same period were average in comparison to cumulative three-summer data. Score no. 123 

corresponds to July 23, 2012 segment B measurement. On this day the second-highest ozone 
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mixing ratio over all three summers was recorded, 93.37 ppb. Both nitrogen oxides and oxalate 

concentrations were similar to those observed for no. 117, 11.59 ppb NOx and 0.277 µg m-3 

oxalate. As ozone has the strong influence on score location along AP1, the above average 

mixing ratios for no. 117 and 123 directly contributed to their outlying position on the score plot. 

 The second derived canonical variate pair (M2, AP2) has a moderate canonical 

correlation (0.623). The amount of AP2 variance explained by M2 is 26.5%. Both acetate (0.347) 

and formate (– 0.502) are significantly weighted in AP2. The negative sign indicates an inverse 

relationship between species. Residual influence of ozone (– 0.643), nitrogen oxides (0.457), and 

oxalate (0.622) not explained by AP1 are present in this function. Overall, AP2 is a measure of 

high acetate, oxalate, and nitrogen oxides along with low formate and ozone concentrations. 

With respect to M2, wind direction has a canonical weight of 1.016. Temperature (– 0.784) and 

wind speed (– 0.389) residuals not explained in M1 are weighted in M2. This canonical function 

distinguishes different directions of wind and the effect on air pollutants. In cases of a large wind 

direction, the concentrations of acetate, oxalate, and nitrogen oxides are high while ozone and 

formate concentrations are low. To the west and south of the sampling site, there are major 

roadways, an airport, and suburban, agricultural activity while to the north is residential which 

may explain wind direction, pollution variability. Low wind speed also contributes to 

accumulation of local pollutants in the atmosphere.  

The middle graph in Figure 4 shows the score plot of AP2 versus M2. Several scores in 

this function deviate from the majority (no. 11, 17, 18, 39, 49, and 88). Scores 17 and 88 are 

highly positive on M2 and AP2 and correspond to segment A measurements on August 6, 2010 

and July 9, 2012, respectively. Northwesterly winds resulted in a large, positive score along M2, 

due to wind direction’s canonical weight. Wind speed and temperature minimally influenced the 

overall calculated score. Two observations (no. 18 and 39) along the positive end of M2 are 

weighted negative on AP2. Similar to no. 17 and 88, large wind direction, high temperature, and 

low wind speed contributed to the scores’ positive location on M2. High formate and average 

ozone concentrations influenced no. 18 and 39 the most along AP2. Score 11 corresponds to 

segment A measurements taken on July 27, 2010. Along M2, no. 11 is near zero while its 

location along AP2 is distinctly positive. A combination of above average nitrogen oxides, 

acetate, and oxalate concentrations contributed to the high positive score of no. 11 along AP2. 

Observation 49, an outlier, is negative along M2 due to a major influence of observed low 

temperature and high wind speed. With respect to AP2, the observed July 25, 2011 segment A 

measurement (no. 49) had low ozone and high nitrogen oxides mixing ratios in addition to 

average oxalate and acetate concentrations. 

 The third statistically significant canonical function has a low canonical correlation of 

0.395. Roughly 7.7% of the variance in AP3 is explained by M3. The only new information in 

AP3 is sulfate’s canonical weight (0.387). Acetate, formate, oxalate, and nitrogen oxide residual 

correlations not expressed earlier are weighted in AP3. In M3, humidity has a large positive 

canonical weight (1.002) as well as wind direction residuals (0.641). This function measures the 

direct relationship between formate, sulfate, nitrogen oxides, wind direction, and humidity, in 

addition to an inverse relationship between mentioned meteorology with acetate and oxalate. The 

bottom graph in Figure 4 shows the third canonical function. The location of several outliers (no. 

10, 14, 34, 44, and 68) along M3 is dependent on humidity observed during sampling. Recorded 

humidity for no. 34 and 14 was low (30% and 58%), compared to observations 44 and 68 (77% 

and 70%, respectively). No. 44 and 68 had the first and second highest observed formate 
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concentration in the entire study, respectively, affecting their location along AP3 as formate is 

the most influential canonical weight. 

 

 
Fig. 4  Score plots of canonical functions. In each graph, score symbols are differentiated by year of collection 

(different shape, color of plotting symbol) and also labeled with the observation row number used to identify 

collection samples and dates 
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 3.2.2 Canonical loading values 

 

 Canonical loadings reveal information masked by canonical weights due to 

multicollinearity between original variables (Hair et al 1992). Loading values + 0.400 or greater 

were interpreted and are displayed in Table 3. AP1 is a measure of high ozone and nitrate 

concentrations. M1 is a measure of high temperatures and low humidity, as well as, wind 

directions with moderately large degree or southerly direction (135°, SE; 180°, S; 225°, SW), 

shown through the canonical loading values (T: 0.960, H: – 0.656, and D: 0.600). This was 

identified in PCA as well, with temperature, nitrate, and ozone inversely related to humidity. 

Wind direction and humidity were partialled out in the canonical weights. 

 Canonical loadings in AP2 indicate that nitrogen oxides (0.674) and oxalate (0.430) have 

a positive correlation with AP2 while ozone has a strong, negative correlation (– 0.608). Both 

wind speed and wind direction are correlated with M2, – 0.472 and 0.618, respectively. The air 

pollutant canonical loadings confirm the known anti-correlation between nitrogen oxides and 

ozone. The inverse relationship expressed between ozone and oxalate suggests photochemistry is 

not the main pathway for this organic acid anion. In other studies, oxalate was measured in the 

exhaust of automobiles (Kawamura and Kaplan 1987) and its relationship to nitrogen oxides and 

AP2 in this study is suggestive of auto exhaust origins as well. Furthermore, the canonical 

loading correlations within AP2 and M2 suggest morning conditions of low wind speed 

originating from the west affect loaded pollutant species.  

 Canonical loadings of formate, sulfate, and nitrogen oxides indicate correlation with AP3. 

This is similar to information found in the canonical weights in AP3. Wind direction and wind 

speed are similarly influential in M3, 0.415 and 0.400, respectively. Humidity is also positively 

correlated with M3. These canonical loadings confirm relationships found in the canonical 

weights of the third canonical function. 

 
 AP1 AP2 AP3 

Acetate   0.125   0.342   0.084 

Formate - 0.031   0.074   0.470 

Chloride - 0.061   0.071   0.060 

Nitrate   0.596 - 0.011 - 0.002 

Sulfate   0.147   0.258   0.363 

Oxalate   0.303   0.430 - 0.264 

Ozone   0.710 - 0.608 - 0.269 

Nitrogen oxides   0.249   0.674   0.549 

    

 M1 M2 M3 

Wind speed   0.017 - 0.472 0.400 

Temperature   0.960 - 0.180 0.173 

Wind direction   0.600   0.618 0.415 

Humidity - 0.656 - 0.208 0.568 

Table 3  Canonical loading values, the correlation between original observed variables and respective canonical 

variates. Values are presented for original air pollutant variables and canonical variates AP1-AP3 as well as 

meteorological parameters with corresponding variates M1-M3 
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4. Discussion 

 

 Data collected during the summer months of 2010–2012 of which CCA and PCA were 

applied to represents an extension to initial measurements of air pollutants and meteorology 

completed in summers 2002–2004 at the same location. Multivariate statistics applied to the first 

study’s data validated the robustness of CCA and PCA (Binaku et al. 2013). Differences between 

data matrices of both studies were inclusion of acetate, formate, and chloride along with the 

absence of ammonium and calcium data for summers 2010–2012 as well as an increase in the 

number of measurement days. Several relationships between variables derived in both three-year 

summer studies’ data indicate consistency in certain local pollutant concentrations and weather. 

 With respect to PCA, PC1 identified relationships between nitrate, ozone, and 

temperature in both three-summer studies. PC2, PC3, and PC4 represented different relationships 

in both 3-summer studies. In 2002–2004, insight on meteorological relationships was revealed in 

PC2 and PC3 (Binaku et al. 2013) while in 2010–2012 only pollutants’ relationships were 

derived. In CCA, strong linear relationships between temperature, ozone, and oxalate identified 

in canonical weights along with the influence of nitrate on the first air pollutant linear 

combination were derived in both three-year studies. Temperature and humidity canonical 

loadings for the first meteorological linear combination were also consistent in both studies. 

However, 2002–2004 relationships showing moderate wind speed, humidity, and temperature 

residuals’ inverse relationship with ozone and nitrogen oxides in the second canonical function 

(Binaku et al. 2013) differed from (M2, AP2) in 2010–2012. In 2002–2004, moderate 

temperature, wind direction, and humidity along with low wind speed were linearly correlated 

with high ammonium, nitrate, and oxalate with low sulfate and ozone concentrations (Binaku et 

al. 2013) but the exact relationships were not derived in the recent study. Similarities in the third 

canonical function of both studies include residuals of humidity, wind speed, and wind direction 

influencing both oxalate and sulfate concentrations. Other residual pollutant information present 

was exclusive to the former or latter study, not both. Variability between both studies is mainly 

due to different weather conditions and pollutants, as pollutant-pollutant relationships affect 

derived components. Analyzing statistical results of both studies shows that local relationships 

are not consistent and change over time. This highlights the importance of completing long-term 

pollution studies as emission sources, regulations, and pollutants change over time. 

  

5. Conclusion 

 

 Underlying information between air pollutants and meteorology in Chicago, Illinois was 

explored using both PCA and CCA, which proved to be effective in reducing data dimensions 

and uncovering relationships between variables. In PCA, the first four principal components 

were significant, accounting for roughly 70% of original data variance. PC1 is a measure of local 

processed air masses from late morning, early afternoon hours with winds originating from the 

southerly direction. PC2 is a measure of both inorganic and organic ions and their inverse 

relationship with ozone residuals. PC3 and PC4 contain an abundance of residual information. 

Loadings in PC3 are indicative of morning or afternoons with low pollutant concentrations, 

whereas PC4 suggests several secondary pollutants are transported via northerly winds.  

In CCA, three statistically significant canonical functions were derived. Through 

interpreting canonical weights it was found that temperature, oxalate, nitrogen oxides, and ozone 

have moderately strong, positive linear correlations. Low wind speed also influenced these 
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variables. The second canonical function describes the influence of wind direction and low wind 

speed on both acetate and formate, as well as pollutant residuals. AP3 and M3 were a measure of 

residual pollutant information and the positive, linear relationship with humidity and wind 

direction residuals. Overall, several underlying relationships between meteorology and pollutant 

concentrations were found which are useful in establishing local air pollution trends over time 

and use meteorological relationships in a preliminary predictive manner for pollution variability. 
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