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Abstract  
Cells sense mechanical load, which is essential for bone growth and remodeling. In a 

fracture, this mechanism is compromised. Electromagnetic stimulation has been widely used to 
assist in bone healing, but the underlying mechanisms are largely unknown. Recent hypothesis 
suggests that electromagnetic stimulation could influence bone biomechanics, however, a 
detailed quantitative understating of EM-induced biomechanical changes in the bone is 
unavailable. This paper used a muscle/bone model to study the biomechanics of the bone under 
EM exposure. Due to the dielectric properties of the muscle/bone interface, the magnetic field 
generates both compressing and shear stresses on the bone surface, where many mechanical 
sensing cells are available for cellular mechanotransduction. I calculated these stresses under a 
time-varying electromagnetic field. The shear stress is significantly greater than the compressing 
stress, suggesting the physiological effect of EM is probably via the shear stress - related 
mechanism. Detailed parametric analysis suggests that both the compressing and shear stresses 
are dependent on the geometrical and electrical properties of the muscle and the bone. These 
stresses are also functions of the orientation of the coil, and the frequency of the magnetic field. 
Therefore, the biomechanical influence of the EM field on fractured bone can be optimized 
through the fine-tuning of these controllable field parameters.  

Keywords 
Time-varying magnetic field; Bone; Biomechanics; Stress. 

1. Introduction 
Mechanic load plays a pivotal role in bone formation and remodeling [12]. Strain gradients 

are created when bone is subjected to mechanical stress, which results in an interstitial fluid drive 

through the canaliculi and exposes osteocyte membrane to flow-related shear stress, as well as 

to electric potentials subsequent to the streaming process [17]. The mechanical environment 

regulates osteogenesis and enhances bone formation. Modulation of loading can accelerate 

callus formation and remodeling [31]. The mechanical influence on skeletal tissue differentiation 
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is defined by the applied load, local stress, and strain levels in the loaded tissue. Reduction in 

loading on the bone, during long-term immobilization or microgravity, can result in significant bone 

loss [32,33]. When bone is fractured, both the mechanical load to the bone and the distribution of 

electric potentials in the bone are altered.  

The two invariants in mechanical loading are hydrostatic stress and octahedral shear 

stress. The hydrostatic stress is normal to the bone surface. Both the normal, hydrostatic stress 

[5] [8] and the shear stress have been identified as the key stimulating mechanical forces 

[44,29,30] that contribute to tissue differentiation in the healing of fractured bone [18]. 

Compressive hydrostatic stress history guides the formation of cartilaginous matrix constituents, 

and tensile strain history guides connective tissue cells in their production and turnover of fibrous 

matrix constituents [42]. Shear stress, on the other hand, is thought to have a different function. 

Under physiological conditions, the shear stress on the bone surface is primarily caused by friction 

between fluid particles due to fluid viscosity. Flow shear causes an increase in intracellular 

calcium ([Ca2+]i) in osteoblastic cells through the activation of mechanosensitive and voltage-

sensitive Ca2+ channels [47]. Pauwels suggested that cell and extracellular matrix elongation 

associated with distortional shear stress constitutes a specific stimulus for the development of 

collagen fibers [42]. Shear movement at the fracture site has been found to play an important role 

in bone healing of diaphyseal tibial fractures [50].  

Electric stimulation has gained unanimous clinical success in bone healing since the 
pioneer work of Yusuda (1953), who applied a continuous current to a rabbit femur to assist new-
bone formation [9]. Using animal models, Pulsed electromagnetic field stimulation (PEMF) was 
proved to be one of the most efficient method in enhancing new bone formation [61]. Clinically, it 
was found that electric stimulation is effective in fresh fractures and osteotomies, spine fusion, as 
well as nonunion fractures [7]. A variety of instruments have been developed to deliver electric 
currents to the fracture site, including invasive direct-current (DC) stimulators, noninvasive 
capacitive coupling (CC) stimulators, and noninvasive induced coupling (IC) stimulators, which 
produces PEMF. Among these designs, the IC technique is the most popular one. Applied through 
a single or double coil and driven by an external field generator, the treatment effects of the 
stimulation are due to a secondary electrical field produced in the bone. The induced electric field 
intensity in this practice could reach 1-100 mV/cm [1]. However, mechanisms of how the 
exogenously applied, time-varying electromagnetic fields assist in bone healing remain largely 
elusive. It is thought that EM fields assist bone healing through the same principle as mechanical 
stress [17]. It is not known, however, how the electric signal is converted to the mechanic signal 
when the bone is under time-varying EM stimulation.  

To obtain a quantitative estimation of the cellular biomechanics under time-varying EM 
stimulation, I will model a limb as a conductive body, with cylindrical-like bone embedded inside 
the muscle. I will calculate the mechanical stress distribution on the bone surface, including the 
physiologically relevant stress that is normal to the bone surface, as well as the shear stress. The 
EMF is generated by a single coil, which produces a time-varying EM field inside the muscle/bone 
area.  

2. Method 

2.1 Cylindrical bone model in a time-varying magnetic field 
Figure 1A shows the basic geometry for a cylindrical limb under a time-varying magnetic 

field that is generated by a single magnetic coil, such as that used in magnetic biostimulation 
therapy (http://www.innovativetherapycanada.com/show.magnetic-biostimulation.html#). The 

http://www.innovativetherapycanada.com/show.magnetic-biostimulation.html
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field was  generated by a round coil and the limb was positioned perpendicular to the plane of the 
coil. Therefore, the magnetic field generated by the coil was parallel to the limb in the plane 
defined by the coil, and the electric field induced by the magnetic field was transverse to the limb 
(Figure 1B). The model considers three homogenous, isotropic regions: the air (A), the muscle 

(M) and the bone (B). The limb was represented in a cylindrical coordinate system (



r,,z ) 

centered at point



O . The center of the bone overlapped with this point. The dielectric permittivities 

and conductivities in the three regions were 
BMA  ,,  and

BMA  ,, , respectively. The radius 

of the limb was 
MR = 5cm and the radius of the bone was BR  = 2.5 cm (Figure 1C).   

The magnetic field was initially represented in a cylindrical coordinate system ( ',',' zr  ). 

The distance between the center of the bone (



O ) and the center of the round coil (



O' ) was 



C . 
The magnetic field was a sinusoidally alternating field. It was symmetric about the 



O'Z '  axis, in 

the negative 



O'Z '  direction. Mathematically, the magnetic field was represented as



B  Z 'B0e
jt

, where Z ' was the unit vector in the direction of 



O'Z ' , B0 was the field intensity, and  was the 
angular frequency of the magnetic field.    

2.2 Model parameters 
The dielectric properties of the air, muscle and bone were obtained from literature.  

Air: The conductivity of air is mSXA /103 15  to 8 X10-15 S/m at 20 ⁰C [48]. The 

permittivity of air is εA = 8.854 × 10−12 F·m−1 [51].  

Muscle: The conductivity of buck meat is mSM /5.2  [35]. The dielectric constant of the 

muscle is 
AM  51 (at 915 MHz) [41].  

Bone: The resistivity is about 45-48 m in the longitudinal direction, and three to four 
times greater in the radial direction [6]. Therefore, the conductivity of the bone in the radial 

direction is 
B = 1/(4*45)  S/m= 5.6X10-3 S/m. The dielectric permittivity is 100000 (X ε0 = 8.854 

× 10−12 F·m−1 )  for the bone [45].  Therefore, B=8.854 × 10−7 F·m−1.  

The distance between the center of the bone and the center of the coil is C = 10cm = 

0.1m. The induced electric field intensity was chosen to be 100 mV/cm [1]. Since  
2

0CB
jE


  

(Polk 1990), 
2

0 /200 mVB  . The frequency range was determined to be between 2 kHz - 200 

kHz. The upper limit (200 KHz) was determined by calculating the reciprocal value of the rising 
phase of a current pulse during peripheral nerve stimulation [27,46]. Most frequencies used in 
experimental practices have been lower than this value [38]. In addition, the 50 Hz power line 
frequency was given attention, since many magnetic stimulators generate a signal at this 
frequency. 
 

2.3 Governing equations for potentials induced by a time-varying magnetic field 
 The electric field induced by a time-varying magnetic field in biological media was 

 E j A V                                                 (1) 

where A was the magnetic vector potential induced by the current source. The potential 



V was 
the electric scalar potential due to charge accumulation that appeared from the application of a 
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time-varying magnetic field [54]. In cylindrical coordinates (



r,,z ), 



V  (
V

r
,
1

r

V


,
V

z
). For low 

frequency stimulation, we can use quasi-static approximations. Therefore, in charge-free regions, 



V was obtained by solving Laplace’s equation 

           2 0V                                             (2)      

 In cylindrical coordinates



(r,,z) , the solution for Laplace’s equation (2) was written in the 

form 

          



Vn  (
An

r
 Dnr)sin                                                       (3)        

where 



An,Dn
 were unknown coefficients in the three modeled regions ( BMAn ,, ). These 

coefficients were solved in the Appendix.  

2.4. Boundary conditions 

 Four boundary conditions were considered in the derivation of the potential induced by 

the time-varying magnetic field.   

 (A). The potential was continuous across the boundary of two different media.  

 (B). The normal component of the current density was continuous across two different 

media. During time-varying field stimulation, the “complex conductivity”, defined as



S   j , 

was used to account for the dielectric permittivity of the material [43,26,25]. Here, 



  was the 

conductivity of the tissue, 



 was the permittivity, 



  was the angular frequency of the field, and 



j  1 was the imaginary unit. Therefore, on the air/muscle (AM) interface,   

             0 MrMArA ESES                               (4) 

On the muscle/bone (MB) interface,  

                              0 BrBMrM ESES                              (5)  

in which 
BBBMMMAAA jSjSjS   ,,  were the complex conductivities of 

the three media, respectively.  

 (C). The electric field at an infinite distance from the limb was not perturbed by the 

presence of the limb in the magnetic field.  

 (D). The potential inside the limb (



r  0) was finite.  

2.5 Magnetic vector potential 



A  

 At point 



O' , 



B  was in the direction of -Z ' and 

               B A                                                                     (6) 

where vector potential 



A  was in the direction of -



'  (Figure 1). In cylindrical coordinates (



r', ',z'

), the magnetic vector potential was expressed as: 

              



A ' 
r'B0

2
e jt'                                                         (7)   
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 In order to calculate the potential distribution in the modeled limb, an expression for 



A  in 
cylindrical coordinates 



(r,,z)  was necessary. Through coordinate transformation, the magnetic 

vector potential A in cylindrical coordinates



(r,,z)  became 

              



A  r Aor Ao  z Aoz
                                                 (8) 

 The vector potential components in the 



r ,, directions were [57]:                                                            

             



Aor 
B0

2
Csin                                                           (9) 

             



Ao  
B0

2
(r Ccos)                                               (10) 

      



Aoz  0                                            (11) 

 

 2.6 Surface charges and electric stress    
At the boundary between two inhomogeneous media with distinct electrical properties, 

free charges accumulated and caused a discontinuity in the normal components of the 

displacement vector. At the air/muscle interface (r = RM )   

)( AAMMAM EEn


    or 
ArAMrMAM EER  ),,(   (12) 

At the muscle/bone interface (r = RB ) 

)( MMBBMB EEn


   or 
BrBMrMMB EER  ),,(    (13)   

where n


 denoted the outward unit normal vector, 
AM  and sMB

 
denoted the charge densities 

on the two interfaces, respectively. 
The electric stress generated on the membrane was a result of the interaction between 

the free charges and the induced electric field. The stress includes two components: the normal 
stress and the shear stress. The normal stress arises from the force vector component 
perpendicular to the material cross section on which it acts. It equals the product of the charge 
and the average of the electric fields on both sides of the bone surface [15]. At the muscle/bone 
interface (r = RB ),   

MBrMrBrBM EEP )(
2

1
    (14) 

The shear stress, on the other hand, is defined as the component of stress coplanar with 
a material cross section. Shear stress arises from the force vector component parallel to the cross 
section and is tangent to the bone surface. On the muscle/bone interface (r = RB ),  

MBBBM EP      (15)  

 

Results 

3.1 Electric field distribution inside and around the bone 
Electric field inside the muscle/bone structure is generated by electromagnetic induction. 

In addition, the presence of biological tissue, which has inhomogeneous electric properties, 
redistributes the induced current around the bone [60] [34]. It is therefore not a surprise that the 
induced electric fields are dependent on both the properties of the magnetic field and the electric 
properties of the muscle and the bone.  
 In the air surround the limb,  

https://en.wikipedia.org/wiki/Stress_%28mechanics%29
https://en.wikipedia.org/wiki/Perpendicular
https://en.wikipedia.org/wiki/Stress_%28physics%29
https://en.wikipedia.org/wiki/Force_vector
https://en.wikipedia.org/wiki/Parallel_%28geometry%29


 

 pg. 6 November 26, 2016 

 sin}
)])(())(([

)])(())(([
1{

2

1
222

222

0
rSSSSRSSSSR

SSSSRSSSSRR
CjBE

BMMAMBMMAB

BMMAMBMMABM
Ar




   (16-1) 

}cos
)])(())(([

)])(())(([
cos{

2

1
222

222

0 
rSSSSRSSSSR

SSSSRSSSSRCR
CrjBE

BMMAMBMMAB

BMMAMBMMABM
A






 (16-2) 

0AzE          (16-3) 

 

In the muscle:  

 sin
)])(())(([

])()([
222

222

0
rSSSSRSSSSR

rSSSSRSR
CBjE

BMMAMBMMAB

BMBMBAM
Mr




     (17-1) 

]
)])(())(([

cos])()([2
[

2

1
222

222

0
rSSSSRSSSSR

rSSSSRSCR
rBjE

BMMAMBMMAB

BMBMBAM
M









    (17-2)  

0MzE         (17-3) 

 

Inside the bone:  




sin
))(())((

2
22

2

0

BMMAMBMMAB

MAM
Br

SSSSRSSSSR

SSRCjB
E


    (18-1) 

 

]
))(())((

cos4
[

2

1
22

2

0

BMMAMBMMAB

MAM
B

SSSSRSSSSR

SSCR
rjBE





  (18-2) 

0BzE         (18-3) 

 

It is clear that 
 BM EE   at the bone/muscle boundary (r = RB ).  

3.2 Distribution of magnetically-induced surface charges 
Under electromagnetic field stimulation, surface charge accumulated on the interface of 

the two inhomogeneous media. Its distribution depends on the media properties that define the 
interface, and the orientation of the coil to this interface [60]. As calculated from equations (12) 

and (13), the induced surface charge distribution on the air/skin interface was a function of  

 sin)(
))(())((

)()(
)(

22

22

0 AMMA

BMMAMBMMAB

BMMBMB
AM SS

SSSSRSSSSR

SSRSSR
CBj 




  (19) 
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The distribution of the induced surface charges on the muscle/bone interface was also a function 

of  

 sin)(
))(())((

2)(
22

2

0 MBBM

BMMAMBMMAB

AM
MB SS

SSSSRSSSSR

SR
CBj 


   (20) 

Charge densities were most prominent at the point where  equals to 0 or 180. At any 
given instance, the overall pattern of charge distribution on the limb surface and muscle/bone 

interface were the same, owing to the fact that the same sin  term was present in both equations 

(19) and (20). When computed with the chosen parameters and a field frequency of 50 Hz, the 
induced surface charge density was 1.05 × 10−12 C/m2 on the bone/muscle interface. This induced 
surface charge density was significantly smaller than the densities of the intrinsic surface charges 
that were carried by proteins on a cell membrane [37]. At 200 kHz, the induced surface charge 
density was 1.1 × 10−5 C/m2 on the bone/muscle interface, comparable to the physiological value 
or the membrane charges.  
 

3.3 Compressive normal stress on the bone surface  
Interaction between the induced surface charges and the electric field generated stress 

on the bone surface in the radial r


direction.  The stress (force per unit area) generated on an 
interface was equal to the product of the charge and the average of the electrical field on both 

sides of the interface [15,58,59]. Therefore, normal stress ( r


direction) on the air/muscle interface 
(AM) was 


 2

222

222222

0 sin
)])(())(([2

)]()()[)((

BMMAMBMMAB

BMMBMBMAAMMA
rAM

SSSSRSSSSR

SSRSSRSSSSCB
P




   (21)  

Normal stress on the muscle/bone interface (MB) was 


 2

222

24222

0 sin
)])(())(([

))((2

BMMAMBMMAB

BMMBBMAM
rMB

SSSSRSSSSR

SSSSSRCB
P




    (22)  

This stress (Figure 2) compresses the bone on the equator along the direction of the magnetically 

induced electric field (y-axis).  The maximum stress was 1.2 10-21 N/m2 when θ =
π

2
,  = 0 (50 

Hz).  
Orientation of the magnetic coil plays significant roles in electromagnetic stimulation. 

There are two parameters that define the orientation of the coil to the bone. The distance between 
the center of the coil and the bone (C) determined the magnitude of the induced electric current, 
and the normal stress (Figure 3). A larger C value is associated with a greater intensity of the 

induced electric field. The pattern of stress distribution is a function of sin, where  is defined by 
the relative positioning of the bone to the coil.   

Bone size varies among patients of different age, gender, and pathological conditions. 
Figure 4 plots the angular dependency of the normal stress at various bone radii. Larger bone is 
associated with greater normal stress.  

The frequency of the externally-applied magnetic field determines the strength of the 
induced field by the law of electromagnetic induction [54]. Figure 5 illustrates the normal stress 
generated by magnetic fields with 50 Hz, 2K Hz, and 200K Hz, respectively. Higher frequency 
fields generated larger normal stress.  
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3.4 Shear stress on the bone surface  
Shear stress is defined as the component of stress coplanar with a material cross section. 

Shear stress arises from the force vector component parallel to the cross section. On the bone 

surface, the shear stress generated by the time-varying magnetic field is  
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(23) 

Figure 6 plots the shear stress on the bone surface under magnetic field stimulation. The maximal 

shear stress is located at θ =
π

2
,  = 0. Obviously, asymmetric distribution of the induced electric 

field around the bone ensures the shear stress to be non-zero. The shear stress was significantly 
greater than the compressing stress.  The maximally calculated shear stress was 1.2 X 10-11 N/m2. 
This result suggests that shear stress is probably a dominant factor that affects bone 
biomechanics in magnetic stimulation. Magnitude of the shear stress is dependent on the 
orientation of the bone to the coil (Figure 7), bone size (Figure 8) and frequency of the magnetic 
field (Figure 9). An increment in the born-coil center distance, bone size, or field frequency can 
cause greater shear stress on the bone.  

4. Discussion 
This paper performed three-dimensional modeling of bone biomechanics under a time-

varying electromagnetic field. It provided the first analytical expressions for normal stress and 
shear stress generated on the bone surface by the field. Both normal and shear stress depend 
on the geometrical and electric properties of the bone and its surrounding tissue. They are also 
dependent on the properties of the magnetic field and the orientation of the magnetic coil. Shear 
stress is quantitatively greater than the compressive, normal stress. Under low frequency 
stimulation, the stress generated on the bone could be trivial at low field frequency, but significant 
at higher frequencies. Alteration of bone mechanics by the electromagnetic field could provide a 
mechanistic explanation of the biological benefits that an EM field would apply to fractured bones.  

4.1 Impact of coil orientation to the magnetically-generated mechanical stresses 
The normal stress and shear stress are both functions of the magnetic field parameters. 

Previously, there has been mounting evidence that the effects of electromagnetic stimulation 
depend on the orientation of the stimuli to the biological target. This evidence primarily emerged 
in the field of bioelectricity, in which the external field affects cellular or tissue’s intrinsic bi-
potential. For example, at the cellular level, neurons in the motor cortex displayed different 
sensitivities to transcranial magnetic fields with differing coil orientations and shapes 
[10,39,4,28,49,20]. Transmembrane potential in a cell under point electrode stimulation is 
dependent on the electrode-to-cell distance [34]. The threshold for excitation of the retinal 
ganglion cell axons is a function of the orientation of the electric field to the axons [16]. It was then 
proved that the amplitude and pattern of membrane potential within the cell was dependent on its 
orientation to the externally-applied field [23,24]. At gross tissue level, orientation of the electrodes 
plays a significant role in determining the outcome of tumor electrochemotherapy [52]. In the 
clinical practice of transcranial magnetic stimulation (TMS) of the motor cortex, orientation of the 
magnetic coil is a major concern in the outcome [10,20,49].  

Our results, from the biomechanical perspective, provide further evidence that the impact 

of magnetic field on biological tissue is dependent on the coil location, including orientation of the 

bone (Figure 2 and Figure 6) and its distance to the coil (Figure 3 and Figure 7). The difference 

in the bone orientations to the coil determines the pattern of mechanical stress distribution on the 

https://en.wikipedia.org/wiki/Stress_%28physics%29
https://en.wikipedia.org/wiki/Force_vector
https://en.wikipedia.org/wiki/Parallel_%28geometry%29
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bone surface, and the bone-coil distance determines the intensity of the induced electric field, 

surface charge density, and therefore, the normal and shear stresses generated on the bone 

surface. Therefore, this biomechanics work further supports the notion that the efficacy of EM 

stimulation is a consequence of optimization of the stimulation orientation [60]. Care should be 

taken in the design and orientation of the magnetic coil in electromagnetic aided therapy for bone 

fracture patients.  

4.2. Significance of high frequency stimulation 
The easiest way to increase mechanical stress under magnetic stimulation is to increase 

the field frequency via electromagnetic induction, since both the induced electric fields (equation 
16-18) and the surface charges (equations 19 and 20) are proportional to the field frequency. This 
frequency dependency is more predominant in the expression of the normal stress (equation 22) 
and shear stress (equation 23), since both stresses are proportional to the square of the field 
frequency. These results also suggest that if a magnetic stimuli contains many frequency 
components (such as high harmonic frequency contained in square pulses), then the mechanical 
impact could be more likely induced by these high frequency components.   

 

4.3 Impact of tissue properties on magnetically-generated mechanical stresses 
The normal stress and shear stress are also functions of the properties of the targeted 

bone tissue. Although previous work has suggested that tissue properties could play important 
roles in the outcomes of the stimulation [23], much of the evidence that supports this notion, again, 
emerged from the analysis of bioelectricities under EM stimulation. For example, larger cells are 
associated with greater induced transmission potential under magnetic field stimulation  [56], and 
require lower external fields to create permeable cell membranes [13].  

Both the geometrical properties of the bone and its electric properties contribute to the 
mechanical stress. The magnitude of the normal stress (Figure 4) and shear stress (Figure 8) are 
functions of bone size. In addition, electric properties of the bone and the muscle, also affect 
electric field and charge distribution, and ultimately, mechanical stress. Our results further 
extended our understanding of the interaction between the magnetic field and the biological 
tissue, and provide strong biomechanical evidence that tissue properties interact with the external 
field in generating biological effects, a hypothesis that has been elaborated in greater details in 
our recent work [60]. 

The normal stress is significantly smaller in comparison with the shear stress, suggesting 
that EM-aided treatment for fractures could be due to the shear stress imposed on the bone. It 
will be interesting to test this model prediction by adding additional normal mechanical stress on 
the bone, while a magnetic stimulation protocol is implemented. If the model predication is correct, 
then adding such stress would provide minimal benefit to bone recovery. There are some reports 
showing that external application of cyclic tensile strains does not effectively enhance bone 
healing  [3]. 
 

4.4. Possible cellular mechanotransduction in the magnetic field   
The fact that a time-varying magnetic field can impose mechanical stress on the bone 

surface, in normal and shear directions, respectively, indicates that cells that sense mechanical 
load could be activated and respond to the magnetic fields. Bone cells respond directly or 
indirectly to the strains applied on them by external loading, a process called 
mechanotransduction, which translates the physical stimulus into biological responses. 
Mechanotransduction involves numerous signal transduction pathway. Mechanical strain can be 
sensed by the bone lining cells and osteocytes, which act as sensors of local bone strain [36]. 
Bone lining cells that cover the bone surface are capable of regulating adaption as osteocytes. In 



 

 pg. 10 November 26, 2016 

vitro experiments have demonstrated that when cells experience stretching stress, a series of 
responses can be observed. For example, dynamic cell stretching increases human osteoblast 
proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase 
activity [21]. A cell culture experiment demonstrated that dynamic cell stretching stimulated 
human primary osteoblast proliferation [40]. Static mechanical stress on rat osteoblasts seeded 
three-dimensionally in collagen scaffolds promoted the expression of alkaline phosphatase and 
osteocalcin, a marker for osteoblastic differentiation [2]. It should be recognized that even a tiny 
deformation of the cell membrane could impose significant impact on intracellular signaling [14], 
mainly in the mechanotransduction signaling pathways [53]. 

The molecular alteration induced by this magnetically-generated mechanical load is 
unknown, but can be speculated. Previous studies have indicated that mechanical loading could 
lead to direct signal transduction. For example, mechanical loading could lead to the direct 
activation of osteoblasts, which react with an increased expression of matrix proteins [55] and 
growth factors [22]. Integrins are believed to be the mechanoreceptors of the physical stimuli [19]. 
Cadherins, which link cytoskeletons of neighboring cells, are also involved in mechanical signal 
transduction [11]. It will be interesting to investigate if magnetic field-induced mechanical stress 
will affect these proteins.  
 

4.5. Model limits and further work 
This model treats the bone as a homogeneous conductive body with a cylindrical shape. 

Future models shall consider the inhomogeneity of the bone, including its irregular shape and 
conductive properties. For example, the resistivity of bone is three to four times greater in the 
radial direction than for the longitudinal direction [6]. This model does not consider the spatial 
decay of the magnetic field, and assumes it to be homogeneous in the modeled area. Future work 
shall also consider more detailed bone geometry with a numerical approach. Nevertheless, the 
biomechanical analysis performed by this three-dimensional model is valuable, especially as it 
would provide benchmarks for the validation of more general numerical solution to such problems. 

Appendix - Determining unknown coefficients 



Cn,Dn
 in equation (3) using 

boundary conditions (A)-(D) 
 Since 



V  is bounded at 



r  0 and 



r, from equation (3),   

           0AD                    0BA  

Therefore, expressions for the potential distribution in the extracellular media, the membrane, and 
in the cytoplasm are: 

sin
r

A
V A

A     (A-1) 

sin)( rD
r

A
V M

M
M      (A-2) 

sinrDV BB     (A-3) 

Substitution of A r0  (equation 9) and the r  components of 



V  in the three regions into (1) yielded 

the expressions of the normal components of the electric fields in the three regions:  
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 Following boundary condition (A), 



V  is continuous at the air/limb interface (
MRr  ) and 

muscle/bone interface (
BRr  ), 
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        From the boundary condition (B), that the normal components of the current densities are 
continuous between two different media (equation 1 and 2), we can obtain the following equations:  
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 Equations (A-7) through (A-10) yielded the last four unknown coefficients: 
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List of abbreviations 
oB
- Intensity of the time-varying magnetic field (Tesla)  

  - Angular frequency of the time-varying magnetic field (radians/s).  

https://en.wikipedia.org/wiki/Radian
https://en.wikipedia.org/wiki/Second
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AE - Intensity of the electric field induced by the time-varying magnetic field in the air (V/m) 

ME - Intensity of the electric field induced by the time-varying magnetic field in the muscle (V/m) 

BE - Intensity of the electric field induced by the time-varying magnetic field in the bone (V/m) 

AM  - Surface charge density on the air/muscle interface (C/m2) 

MB  - Surface charge density on the muscle/bone interface (C/m2)  

rAMP - Normal stress on the air/muscle interface (N/m2) 

rMBP - Normal stress on the muscle/bone interface (N/m2) 

AMP - Sheer stress on the air/muscle interface (N/m2) 

MBP - Sheer stress on the muscle/bone interface (N/m2) 

MR - Radius of the arm (m) 

BR - Radius of the bone (m) 
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Figure Titles and Legends 
Fig.1. Model setup for limb stimulation by a time-varying EM magnetic field. A. The magnetic coil 
and the limb. B. A co-centric muscle/bone model in the EM field. C. A cylindrical coordinate 
system that defines the orientation of the magnetic field and the limb.  

Fig.2. Compressive stress distribution on the bone under a time-varying magnetic field. The stress 
is normal to the bone surface. Orientation of the muscle/bone and the coil were depicted on the 
right (C=10 cm and RB=2.5 cm).  

Fig.3. Angular distribution of the normal stress, and its dependency on distance C. A. Linear plot. 
B. Log plot. C=2.5 cm (blue); C=10 cm (black); C=20 cm (red).  

Fig.4. Angular distribution of the radial stress and its dependency on bone size (RB). Bone size is 

1.5 cm (blue), 2.5 cm (black) and 4.5 cm (red), respectively. C=10 cm in these plots.  

Fig.5. Angular distribution of the radial stress and its dependency on field frequency (50 Hz-black, 
2 KHz -red, and 200 KHz-green). In this plot, C=10 cm and RB = 2.5 cm.  
 
Fig.6.Shear stress distribution on the born surface under a time-varying magnetic field 
stimulation. The shear stress is calculated when C=10 cm and RB=2.5 cm.  

Fig.7. Angular distribution of the shear stress and its dependency on coil location C. A. Linear 
plot. B. Log plot. C=2.5cm (blue); C=10 cm (black); C=20 cm (red).   

Fig.8. Angular distribution of the shear stress and its dependency on the bone size (RB). Bone 

size is 1.5 cm (blue), 2.5 cm (black) and 4.5 cm (red), respectively. C=10 cm in these plots. 

Fig.9. Angular distribution of the shear stress and its dependency on field frequency (50 Hz-black, 
2 KHz -red, and 200 KHz-green). In this plot, C=10 cm and RB = 2.5 cm.  
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