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Folding of Gα Subunits: Implications for Disease States
Matthew Najor,† Brian D. Leverson,† Jesse L. Goossens, Saad Kothawala, Kenneth W. Olsen,
and Duarte Mota de Freitas*

Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, Illinois 60660, United
States

ABSTRACT: G-proteins play a central role in signal transduction by fluctuating between “on” and “off” phases that are
determined by a conformational change. cAMP is a secondary messenger whose formation is inhibited or stimulated by
activated Giα1 or Gsα subunit. We used tryptophan fluorescence, UV/vis spectrophotometry, and circular dichroism to probe
distinct structural features within active and inactive conformations from wild-type and tryptophan mutants of Giα1 and Gsα. For
all proteins studied, we found that the active conformations were more stable than the inactive conformations, and upon
refolding from higher temperatures, activated wild-type subunits recovered significantly more native structure. We also observed
that the wild-type subunits partially regained the ability to bind nucleotide. The increased compactness observed upon
activation was consistent with the calculated decrease in solvent accessible surface area for wild-type Giα1. We found that as the
temperature increased, Gα subunits, which are known to be rich in α-helices, converted to proteins with increased content of β-
sheets and random coil. For active conformations from wild-type and tryptophan mutants of Giα1, melting temperatures
indicated that denaturation starts around hydrophobic tryptophan microenvironments and then radiates toward tyrosine
residues at the surface, followed by alteration of the secondary structure. For Gsα, however, disruption of secondary structure
preceded unfolding around tyrosine residues. In the active conformations, a π-cation interaction between essential arginine and
tryptophan residues, which was characterized by a fluorescence-measured red shift and modeled by molecular dynamics, was
also shown to be a contributor to the stability of Gα subunits. The folding properties of Gα subunits reported here are discussed
in the context of diseases associated to G-proteins.

1. INTRODUCTION

Guanine nucleotide-binding proteins (G-proteins) represent a
family of proteins involved in intricate networks of intercellular
signaling. Heterotrimeric G-proteins are comprised of α, β, and
γ subunits that interact with transmembrane G-protein-
coupled receptors (GPCRs). Upon activation of a receptor
by an extracellular stimulus, the α-subunit undergoes a
conformational change that allows exchange of guanine
diphosphate (GDP) for guanine triphosphate (GTP) with
concurrent dissociation from the βγ-dimer and GPCR, and a
further relay of a signal via an interaction with an intracellular
effector. The signal terminates following hydrolysis of the
bound GTP, thereby returning the α-subunit back to its
inactive state and its reassociation with the βγ heterodimer and
the GPCR.1−3 Although there are four families of Gα proteins,
we limited this study to Giα1 and Gsα, which stimulate or
inhibit the production of cAMP by regulating the activity of
adenylyl cyclase (AC).
The crystal structures from Giα1 in the inactive GDP-bound

conformation, as well as from the active states of both Giα1 and

Gsα using GTPγS, a nonhydrolyzable GTP analog, have been
solved.4−6 The crystal structure of Gsα complexed with the
target AC is also known.6 Gα is composed of two domains: the
α-helical domain and the GTPase domain. The α-helical
domain consists of six α-helices that form a lid over the
guanine nucleotide-binding site of the GTPase domain. The
GTPase domain is composed of six-stranded β-sheets
surrounded by five α-helices and in addition to the
nucleotide-binding site, the GTPase domain also contains
binding sites for the Gβγ dimer and the GPCR. Also, in the
GTPase domain are the switch regions known as switches I−
III that are located near the nucleotide-binding site. The switch
regions undergo a drastic structural change when going from
the inactive GDP-bound conformation to the active GTP-
bound conformation.7 In GDP-bound Giα1, switch II and
switch III are disordered in the X-ray structure, but upon
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activation, they become ordered around the γ-phosphate of
GTP.4,5,8

Protein folding is a complicated and yet a surprisingly
efficient event that is critical for protein viability. Protein
folding is driven primarily by noncovalent interactions and
proceeds through an energy landscape from its unfolded state
to its native conformation.9−12 The free energy of the native
state is lower than that of the unfolded protein, which is in
equilibrium with molten globules that have a native-like
structure. When a protein denatures, it does not go directly to
a random coil, but rather to one of these molten globule states,
which resembles the native state and may be able to bind a
ligand and retain some activity.13−15 Improper folding of the
molten globules can have devastating consequences and is the
cause of many diseases.16

Hydrophobic interactions contribute the most toward
protein stability, but other interactions, such as hydrogen
bonding and electrostatic interactions, are important as well.6

Tryptophan (W) residues are uncommon and play a key role
in protein stability via hydrophobic interactions at the core of
the protein. Giα1 contains three W residues, whereas Gsα has
four. The W residues in Giα1 are W131, W211, and W258
(depicted in cyan in Figure 1), which respectively correspond

to W154, W234, and W277 in Gsα. There is an additional W
residue in Gsα, W281, that has no corresponding equivalent in
Giα1. Gilman and co-workers reported that intrinsic W

fluorescence could be used to investigate conformational
changes in Gα proteins that occur during activation because the
fluorescence intensity increases when individual W residues
move toward a more hydrophobic environment.17,18 Najor et
al. built upon this property to quantify the contribution of each
W residue toward the overall fluorescence by using phenyl-
alanine (F) mutants of Giα1.

19 We explored this feature to
determine the stability at the core of the protein by
determining melting temperatures (Tm) from wild-type
(WT) and W mutants of Giα1 and Gsα. In addition, a π-cation
interaction between W211 and R208 (W234 and R231 in Gsα)
is present in the active conformations of WT Gα proteins,
which can be detected by red shifts in their fluorescence
emission spectra. Disrupting the π-cation interaction may also
have consequences for stability.20

Both Giα1 and Gsα have an abundance of tyrosine (Y)
residues (13 for Giα1 and 14 in Gsα) (Figure 1) from which we
can take advantage of the UV absorbance to determine the Tm
values at the surface of the protein for WT and W mutants.
Although Y as well as W residues absorb light at 280 nm, in
both Gα proteins Y residues far outnumber W amino acids
resulting in absorbance changes that are dependent on Y and
W residues. To obtain a more detailed picture of protein
unfolding, we also used circular dichroism (CD) to monitor
the secondary structure of the proteins.
Protein stability is an important characteristic of protein

function. G-protein signaling must be tightly regulated to
ensure appropriate responses to extracellular stimuli. Improp-
erly functioning Gα proteins have been implicated in many
disease states, including McCune-Albright syndrome, bipolar
disorder, and cancer.21−24 The focus of this study was to
compare the stability of WT Giα1 and WT Gsα from different
vantage points: from the inside core of the protein to its
surface of the protein and from an overview of the overall
secondary structure. Second, we investigated the contribution
of each W residue individually and probed the interaction
between one of them and the nearby arginine (R) and its effect
on protein stability. To elucidate putative folding mechanisms
in disease states, we utilized several biophysical techniques to
probe the contributions of noncovalent interactions toward the
stability of Gα proteins. Computational methods were also
used to model the interactions.

2. RESULTS
2.1. Fluorescence Emission Spectra of Gα Subunits.

To calculate melting temperatures in both the active and

Figure 1. WT Giα1·GTPγS displaying its 3 tryptophan residues
(cyan), 13 tyrosine residues (purple), R208 (green), GTPγS-bound
nucleotide (orange), and Mg2+ (green sphere).

Figure 2. Intrinsic W florescence of WT Giα1 proteins. Emission spectra of 0.4 μMWT Giα1·Mg2+ at 20 °C (blue) and 50 °C (red) in the (A) GDP
or (B) GTPγS conformations. Spectra shown were normalized to fluorescence intensities at 450 nm.
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inactive conformations of the WT proteins, we measured the
changes in fluorescence intensity, resulting from increases in
the solvent exposure of W residues. The amino acid F was
chosen as a replacement for W because of its similar structure
and size characteristics as well as low quantum yield and
distinct λmax values.

19,25

The fluorescence intensity of WT Giα1·GDP at 50 °C
decreased by 53% when compared to that observed at 20 °C
(Figure 2A), and continued declining until 70 °C, at which
point there was no change in intensity and the protein was fully
unfolded. A transition midpoint (Tm) of 39 °C was calculated
for WT Giα1·GDP, and the W mutants in the same
conformation were not significantly different from the WT
protein (Table 1). For Gsα in the GDP conformation, the Tm
values for the WT protein were also not significantly different
from all W mutants (Table 2).

For WT Giα1·GTPγS, the fluorescence intensity at 50 °C was
33% of that observed at 20 °C, indicating that the active

conformation is more stable than the GDP-bound structure
(Figure 2B). Apart from the W211F mutant, the Tm values for
the other W Giα1 mutants in the Giα1·GTPγS conformation
were also significantly higher than in the GDP conformation
(Table 1). Interestingly, the WT Giα1·GTPγS showed only a 10
°C increase, whereas the W131F and W258 mutants in the
GTPγS conformation were approximately 14 and 17 °C higher
than in their respective GDP conformations. The behavior of
WT Gsα·GTPγS and its activated mutants was the opposite of
Giα1 proteins in the GTPγS conformation. Alignment of the
protein sequences indicates that W234F in Gsα and W211F in
Giα1 are both located in the switch II region. The W234F
mutant was unique because its Tm value in the GTPγS
conformation (33 °C) was significantly lower than in the GDP
conformation (40 °C) (Table 2), and the analogous mutation
in Giα (W211F) has essentially the same Tm in both the GDP-
and GTP-bound forms (Table 1). The Tm values for WT Gsα
and its W154F, W277F, and W281F mutants in the Gsα·
GTPγS conformation were not significantly different from their
GDP counterparts.

2.2. π-Cation Interactions in Gα Subunits. To gain
insight into the stability of the switch II region in WT Giα1,
which co-ordinates with Mg2+ and the nucleotide-binding
pocket, we monitored the π-cation interaction between R208
and W211 that occurs upon activation from the GDP-bound to
the GTPγS conformation. At 20 °C, the λmax position exhibited
a red shift of 3.5 nm (Figure 3A), which gradually decreased
until 70 °C, at which point the instability of the GDP
conformation prevented further measurements (Figure 3B).
Similar changes in the value of the λmax position were observed
for the WT Gsα protein until around 53 °C, where it switched
from a red to a blue shift (data not shown).

2.3. UV/Vis Absorption Spectra of Gα Subunits. A
useful property of Gα proteins is that W residues move to the
hydrophobic core of the protein upon activation.8 Thus, the
spectroscopic and thermal properties of these sites allow for
probing the interior of Gα subunits by using fluorescence
emission spectroscopy. By contrast, Y residues are predom-
inantly located at the surface of the Gα protein and are
therefore useful for determining information on structural
changes at or near the exterior of the protein.8 As the protein
unfolds, Y and W residues begin to contribute toward the
absorbance. Because W has an absorptivity that is 4 times
larger than Y at 280 nm, W would contribute significantly
toward the Δabs as a result of the relative number of Y vs W

Table 1. Estimated Melting Temperature (°C) for Giα1
Proteins Using Three Spectroscopic Methodsa

fluorescence UV/vis CD

Giα1 variant GDP GTPγS GDP GTPγS GDP GTPγS

WT 39 49b 48 67b 44 71b

W211F 35 37c 47 52c 54c 57c

W131F 38 52b 50 54c 44 71b

W258F 42 59b,c 46 63b,c 50c 68b

an ≥ 3; S.E.M. ≤ 3, for all measurements. bp ≤ 0.05 vs GDP-bound
conformation. cp ≤ 0.05 vs WT in the same conformation.

Table 2. Estimated Melting Temperature (°C) for Gsα
Proteins Using Three Spectroscopic Methodsa

fluorescence UV/vis CD

Gsα variant GDP GTPγS GDP GTPγS GDP GTPγS

WT 41 39 54 64b 52 57b

W154F 45 41 53 60b 50 57b

W234F 40 33c,b 53 57c 51 53c

W277F 45 46c 51 60b 51c 58b

W281F 41 40 53 62b 54 56b

an ≥ 3; S.E.M. ≤ 3, for all measurements. bp ≤ 0.05 vs GDP-bound
conformation. cp ≤ 0.05 vs WT in the same conformation.

Figure 3. (A) Emission spectra of WT Giα1·GDP·Mg2+ before (blue) and after (red) activation with GTPγS at 20 °C; (B) temperature variation of
the difference between the λmax values of the GTPγS and GDP conformations.
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residues in Giα1 (3 vs 13) and in Gsα (4 vs 14). In contrast, F
absorptivity is approximately 30-fold lower than that of Tyr
and the λmax is 257 nm, resulting in a negligible contribution
toward absorbance at 280 nm.
An increase in absorbance intensity at 280 nm, which was

associated to Y and W residues becoming more solvent
exposed, was observed at temperatures above 44 °C for WT
Giα1·GDP. The melting curve for Giα1 in the GTPγS form was
shifted to the right of the GDP conformation (Figure 4a). A
Tm value of 48 °C was calculated for WT Giα1·GDP and 54 °C
for WT Gsα·GDP, and for the W mutants, the Tm values were
not significantly different from their WT GDP counterparts
(Tables 1 and 2). For the GTPγS conformations, the Tm values
for WT Giα1 and WT Gsα were significantly higher than for the
GDP counterparts, but were not significantly different for
proteins, in which the W residue involved in a π-cation
interaction was mutated to F, i.e., W211F for Giα1 and W234F
for Gsα (Tables 1 and 2).
2.4. Temperature Dependence of the Secondary

Structure of Gα Subunits. At 20 °C, the CD spectra of
WT Giα1·GDP (Table 3) and of WT Gsα·GDP (Table 4) were

indicative of proteins that have secondary structures rich in α-
helix (40 and 36%, respectively). The percent of α-helix that
we observed for WT Giα1·GDP was in agreement to that also
reported by others using CD (43%), which is less than in the
reported structure deposited in the PDB (47%).8,26 As the
temperature increased, the CD absorbance intensity at 190 nm
decreased, whereas the minima at 205 nm and 222 nm, which

are signatures of α-helix, converged to a new minimum at 215
nm (Figure 4B).
The data in Table 3 indicated that regardless of the

conformation, WT Giα1 initially was predominantly α-helical,
but at higher temperatures, it became increasingly dominated
by β-strands and to a lesser extent by random coil. By
comparison, WT Gsα in both conformations had less α-helical
and turn content, but more random coil and had a less
dramatic α/β temperature-induced conversion (Table 4). A
CD-determined Tm value of 44 °C was calculated for WT Giα1·
GDP, while the W211F mutant afforded the highest Tm value
(Table 1). Experiments with WT Giα1·GDP at temperatures
greater than 64 °C did not exhibit significant changes in the
CD spectra, with the protein eventually precipitating out of
solution at 84 °C. Apart from the W211F mutant, WT and W
mutants of Giα1 in the GTPγS conformation withstood
temperatures near 100 °C without precipitation.
At 80 °C, the secondary structure of WT Giα1 protein in the

active conformation had at least an additional 5% of α-helix
content compared to the GDP conformation (Table 3). Except
for the Gsα W234F and W211F Giα1 mutants, the Tm values for
the active conformations of WT Gsα and the remaining W
mutants are significantly higher than for the inactive forms.
The CD-determined Tm values for the inactive and active
conformations of W234F Gsα and W211F Giα1 are not
significantly different, and the Tm values for the active
conformations are significantly lower when compared to the
WT proteins (Table 2).

2.5. Refolding. We have also investigated the ability of Gα

subunits to refold after completion of the denaturation process.
A decrease in temperature was accompanied by an increase in

Figure 4. Temperature dependence of the (A) absorption spectra of 2.5 μM WT Giα1·Mg2+ in the GDP (blue) and GTPγS (red) conformations
and of the (B) CD spectra of 1.0 μM WT Giα1·GDP·Mg2+.

Table 3. Composition of WT Giα1 Secondary Structure at
Various Temperaturesa,b,c

GDP GTPγS

T (°C) α β RCd Td α β RCd Td

20 40 19 26 17 44 12 26 18
40 35 24 24 17 42 14 24 20
52 27 25 27 20 42 13 25 20
64 22 29 29 21 39 16 24 21
80 18 32 28 21 23 26 26 24
92 22 36 51 21

an ≥ 3; S.E.M ≤ 3. bAll numbers reported as percentages. cHyphens
denote temperatures at which proteins denatured. dRC and T stand
for random coil and turns.

Table 4. Composition of WT Gsα Secondary Structure at
Various Temperaturesa,b,c

GDP GTPγS

T (°C) α β RCd Td α β RCd Td

20 36 18 33 13 37 16 33 13
40 30 22 34 14 33 20 34 13
52 29 24 34 13 31 20 35 14
64 28 25 34 13 26 24 36 14
80 25 27 35 13 20 27 39 14

an ≥ 3; S.E.M ≤ 3 for all measurements. bAll numbers reported as
percentages. cHyphens denote temperatures at which proteins
denatured. dRC and T stand for random coil and turns.
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fluorescence intensity indicating that the W residues were
refolding into hydrophobic environments, as demonstrated for
WT Giα1·GTPγS (Figure 5A). Refolding WT Giα1·GDP from
96 to 4 °C exhibited no significant increase in fluorescence,
however, upon renaturation from 48 °C, the observed increase

in the fluorescence intensity indicated a refolding recovery of
21% (Figure 5B). When refolding from 32 °C, which is less
than the fluorescence-determined Tm value of 39 °C (Table 1),
WT Giα1·GDP exhibited the largest recovery (72%). Unlike
WT Giα1·GDP, the GTPγS conformation experienced increases
in fluorescence intensity even when refolding was initiated
from 96 °C, i.e., at temperatures larger than the Tm (Figure 5B
and Table 1). These observations demonstrate that the ability
of Gα subunits to refold is conformation-dependent. Although
this is the case for both Gα proteins, WT Giα1 was able to
recover the most folded structure compared to WT Gsα
(spectra not shown). Such traits were drawn out by
fluorescence spectra of WT Giα1·GTPγS that revealed a 76%
recovery after denaturation at temperatures up to 70 °C. By
contrast, we found that WT Gsα·GTPγS only recovered 30% of
its folded structure after denaturation at temperatures ≤ 84 °C.
In addition, WT Gsα·GDP precipitated at temperatures less
than 80 °C during renaturation.
CD was also used to monitor the reversibility of protein

unfolding. As shown in Figure 5C, when WT Giα1·GDP was
cooled from 76 to 20 °C, there was a concomitant increase in
the spectral intensity at 190 nm and a decrease at 222 nm.
Spectral deconvolution showed that at 80 °C, WT Giα1·GDP
consisted primarily of 18% α-helices and 32% β-sheets (Table
3), but protein refolding back to 20 °C increased the α-helical
content to 31%, whereas the percentage of β-sheets decreased
to 18%. Terminating the denaturation process at 52 °C rather
than at 76 °C resulted in recovery of 88% of the original α-
helical structure. Similar effects were observed with WT Giα1·
GTPγS. Although this conformation was more resistant to
unfolding as evidenced by an initial 44% α-helical content at 20
°C (Table 3), 93% of which was recovered when refolding
from 76 to 20 °C.
To ascertain whether the partial recovery of structural

refolding described above translated into a gain in protein
activity, we investigated the kinetics of GTPγS binding at
several temperatures (Figure 6). Because of differences in
protein stability, the decrease in fluorescence intensity for the
protein in the inactive conformation is larger than in the active

Figure 5. (A) Refolding of WT Giα1·GTPγS as monitored via
emission spectroscopy. Spectra shown were scaled to fluorescence
intensities at 450 nm. (B) Percent fluorescence recovered after
refolding of WT Giα1. Temperatures denote the maximum temper-
atures to which protein solutions were exposed before cooling. (C)
Probing of denaturation and refolding of WT Giα1·GDP by circular
dichroism. R represents refolded Giα1.

Figure 6. Temperature dependence of GTPγS binding to WT Giα1·
GDP as monitored by time-based tryptophan fluorescence emission
assays. R denotes traces from protein solutions that were heated to the
higher temperature shown and then cooled to 20 °C. % fluorescence
= ((Fo − Fi)/Fi) × 100, where Fi and Fo are the fluorescence
intensities in arbitrary units at the start of GTPγS activation and at
time t °C.
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conformation (Figure 2). Consequently, normalizing the initial
fluorescence intensities of WT Giα1 in the GDP conformation
at 40 and 30 °C to the same value accounts for the maximal
fluorescence intensity observed upon GTPγS binding being the
largest at 40 °C (Figure 6). Heating WT Giα1 to 30 °C
followed by cooling to 20 °C resulted in approximately 45%
recovery of GTPγS binding, but when the protein was heated
to 40 °C and then cooled to 20 °C, no GTPγS binding was
found. As shown in Table 1, the melting temperature of WT
Giα1 in the GDP conformation as measured by fluorescence is
39 °C, indicating that WT Giα1·GDP is unstable at 40 °C for
GDP→ GTPγS exchange to occur. In summary, these findings
indicate that Gα subunits have the ability to partially regain
GTPγS binding activity (Figure 6) and that to some extent,
refold the structure as demonstrated by our data obtained with
two independent spectroscopic methods (fluorescence and
circular dichroism; Figure 5). To the best of our knowledge,
this is the first time that a regain of function after refolding was
reported for Gα subunits.

3. DISCUSSION

Protein stability is critical for biological function. Our study
focused on characterizing the noncovalent interactions that
contribute to the stability of Gα proteins and to the
reformation of the protein structure after unfolding. Surpris-
ingly, given the importance of Gα proteins, there have been few
studies of their stabilities.27−29 In vivo, chaperones contribute
toward protein stability. With respect to Gα subunits, the Ric-
8A and Ric-8B chaperones play a part in the folding of nascent
Giα1 and Gsα.

30

A comparison of the WT Giα1 crystal structures in the GDP
and GTPγS conformations reveals that the GDP-bound
structure has a larger surface area than the active GTPγS
conformation.5,8 One would predict that compared to the
GDP form, a denser folding profile for the GTPγS
conformation of WT Giα1 would result in a more stable
structure, as evidenced by the higher Tm values calculated from
fluorescence emission, combined Y and W absorption, and CD
spectra as well as from the larger interaction energies calculated
for the GTP-bound protein (Tables 1 and 5). This conclusion
is also supported by solvent accessible surface area (SASA)
calculations for WT Giα1 indicating that protein activation
resulted in a 2.6% decrease in overall solvent exposure (19 520
Å2 for GDP-bound protein vs 19 010 Å2 for the active
conformation). Therefore, WT Giα1·GTPγS is more stable,
thus requiring more energy to unfold.
Utilizing W → F single-point mutations, we followed the

unfolding by measuring the temperature dependence of the
fluorescence emission spectra of nine Gα proteins (WT and
three W mutants of Giα1 and WT and four W mutants of Gsα)
in the inactive GDP and active GTPγS conformations. Because
burial of W residues in hydrophobic pockets is known to result
in an increase in ΔFmax, protein unfolding is accompanied by a

decrease in fluorescence intensity.31 In the GDP forms (Table
1), the fluorescence-measured Tm values for WT Giα1 were not
significantly different (p < 0.1) from its W mutants. Except for
the W211F mutant, the Tm values were, however, significantly
smaller than for the active WT Giα1, W131F, and W258F
proteins (p < 0.01). The GTPγS conformation of the W211F
mutant proved to be the least stable of all of the active Giα1
proteins and displayed a fluorescence-derived Tm value similar
to its GDP conformation (Table 1), which is the opposite of
the general trend of higher melting temperatures observed for
the GTPγS conformations. The difference in the interaction
energies for the GDP and GTP found during the molecular
dynamics simulations was smaller for the W211F variant than
for the WT, which might contribute to the active conformation
of this mutant being less stable.
Unlike WT Giα1, for which crystal structures are known for

the inactive and active conformations, only the structure of
WT Gsα·GTPγS has been published, precluding an explanation
of protein stability based on compactness or differences in
GTP and GDP interaction energies with the protein.5,8,32 The
fluorescence-derived data in Table 2 indicate that WT Gsα and
its mutants do not follow the same folding pattern as for Giα1.
For Tm values calculated from fluorescence spectra, there is no
significant difference between the active and inactive
conformations of WT Gsα and of its W154F, W277F, and
W281F mutants suggesting that with the exception of W234F
Gsα, stability of the protein structure around the W residues in
Gsα is different from Giα1. Figure 7 shows that at room
temperature, the ΔFmax values were significantly lower for WT
Gsα relative to WT Giα1. Since ΔFmax is a result of W
movement, this trend suggests that after activation a smaller
displacement of the W residues occurs in Gsα compared to
Giα1. Therefore, unlike WT Giα1, the W residues in the GDP
conformation of WT Gsα are relatively protected in hydro-
phobic environments, presumably accounting for the insignif-
icant difference between the Tm values from WT Gsα·GTPγS
and WT Gsα·GDP (Table 2). The insignificant differences
between the Tm values from the active and inactive
conformations of the W154F, W277F, and W281F mutants
of Gsα are likely to have the same origin.
The W211F mutant of Giα1 and the W234F mutant of Gsα

do not show detectable changes in ΔFmax (Figure 7, panels A
and B). The W211 residue in WT Giα1 has been shown to have
the largest difference in solvent accessibility between the
inactive and active conformations and therefore contributes the
most toward ΔFmax.

19 Not surprisingly, for the W211F mutant
of Giα1, no ΔFmax is observed (Figure 7B). Similarly, the W234
residue in Gsα likely undergoes a similar large decrease in
solvent accessibility during the course of the conformational
change, as evidenced by the negligible ΔFmax observed in the
W234F mutant (Figure 7A). The fluorescence-derived Tm
values for the W211F mutant of Giα1 are not statistically
different in the two conformations (Table 1) presumably
because of the absence of the W211-R208 cation−π

Table 5. Interaction Energies between R208 and W211 for Giα1 WTa,b

GDP GTP Δ (GTP-GDP)

temperature electrostatic vdW electrostatic vdW electrostatic vdW

37 °C −0.96 −3.38 −2.85 −4.38 −1.89 −1.00
50 °C 0.33 −2.16 −1.38 −4.61 −1.71 −2.45
Δ (50−37 °C) 1.29 1.22 1.47 −0.23 0.18 −1.45

aS.E.M. ≤ 3.0. bValues are in kcal/mol.
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interaction. Interestingly, the Tm value for the W234F mutant
is significantly lower than for WT Gsα (Table 2).
The secondary structure of WT Giα1 proved to be the most

stable in its GTPγS form relative to the GDP conformation
(Table 1). At 20 °C and upon binding of GTPγS, we identified
a 4% increase in the α-helical content of WT Giα1 (Table 3),
but not for WT Gsα (Table 4). Activation of WT Giα1 creates a
hydrophobic pocket via folding of the switch regions, resulting
in a protein that has an ordered secondary structure with an
increased α-helical content.4,8 The smaller ΔFmax observed for
activation of WT Gsα relative to WT Giα1 (Figure 7) may be
related to a smaller change in the secondary structure of WT
Gsα. In either conformation, as the temperature increased, the
α-helical content of both WT Gα proteins was reduced and the
subunits became richer in β-sheet while the random coil and
turn structures were not altered significantly from the native
form. We have done molecular dynamics simulations of the
thermal unfolding of the monomeric Gα proteins and have not
observed an increase in β-sheet, although the amount of α-
helix decreased. These simulations may indicate that the β-
sheet increase is due to aggregation.
A shift in secondary structure from primarily α-helices to β-

sheets poses an increased risk for protein aggregation that may
lead to amyloidogenesis.16 Amyloid fibril formation occurs

when unfolded, native-like proteins aggregate into long
filaments of packed β-sheets.33−35 Many debilitating neuro-
degenerative diseases, such as Parkinson’s, Creutzfeldt-Jakob’s,
and Alzheimer’s, have been proposed to arise from the
accumulation of amyloid fibrils in the brain or in the central
nervous system.16 In vitro studies have shown that it is not
uncommon for proteins to form amyloid fibrils under
denaturing conditions.36,37 Furthermore, fibril formation has
been shown to inhibit refolding into the native conformation.38

The absorbance assays helped visualize the global unfolding
of Gα subunits from another perspective. The Tm values for
WT Giα1 that were calculated from the absorbance of Y and W
residues correlate to the unfolding process (Figure 4A). UV/
vis experiments with Giα1 showed that the protein surface in
the GTPγS conformation to be significantly more stable than
the W microenvironments, whereas the CD-determined values
indicated that the surface unfolded before the secondary
structure (Table 1). In the case of WT Gsα·GTPγS, the UV/
vis-calculated Tm value was the highest compared to those
derived from the other measurements, indicating that the
surface of the WT Gsα is the last to unfold (Table 2). In the
W211F mutant of Giα1 and in the W234F mutant of Gsα, no
significant difference between the Tm values was observed
upon activation. One possibility is that π−cation interactions,
involving W211 in Giα1 and W234 in Gsα, affect unfolding
proximal to Y and W residues. π−cation interactions are found
in many proteins.39,40 They are known to contribute
significantly to thermal stability.41,42 The average energy for
W−cation interactions is −2.9 ± 1.4 kcal/mol.41,42 For the
W154F, W277F, and W281F mutants of Gsα, the UV/vis-
determined Tm values were significantly higher for the active
conformations. For Giα1, however, only the W258F mutant was
stabilized, suggesting a distinct folding pattern for the two Gα

subunits in each conformation.
We have examined the thermal denaturation of the Gα

proteins using three different optical probes: absorbance,
fluorescence, and CD. These probes primarily measure
changes in the environments of Y residues or W residues or
the secondary structure, respectively. Since they give different
Tm values for the same protein (Tables 1 and 2), the
denaturation of both Gα proteins appears to be multistate
rather than two state.43 The differences in Tm values in Gα that
were observed by different methods may be rationalized via an
analysis of the hydrophobic interactions, which are funda-
mental folding determinants for all proteins. Noncovalent
interactions underpin the driving forces in protein folding. The
observed Tm values suggest that denaturation of the active
conformation of Giα1 starts near W131 and W258 micro-
environments, and then propagates outward through the
protein surface where the Y residue proximal to W258 is
located, and at this point of unfolding leaving the secondary
structure intact. Additional heating results in the conversion of
α-helixes into β-sheets and random coil, possibly involving
aggregation until precipitation occurs. In contrast, denaturation
of the active conformation of Gsα initiates equally around all W
residues, continuing to the secondary structure and is
completed near the Y residues.
The robustness and resistance of a protein to misfolding

minimize the chances for disease. The reversibility of folding
observed with WT Giα1 via fluorescence emission and CD
(Figure 5a,c) can therefore shed important light on the
misfolding of Gα subunits. During the course of denaturation, a
protein may develop multiple intermediate conformations, or

Figure 7. Time-based emission assay monitoring percent change in
intrinsic tryptophan fluorescence of (A) WT Gsα and (B) WT Giα1
and their respective Trp mutants after the addition of GTPγS. %
fluorescence was calculated in the same manner as for Figure 6.
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molten globule states, which are reflected by the different Tm
values obtained by the three techniques.44 The fluorescence
spectra monitored, to a significant degree, the polarity changes
surrounding the W sites. Oscillations of the nonpolar side
chains at these sites would generate molten globules with
relatively low thermal energies. These movements would
account for the lower Tm values calculated from fluorescence
measurements, compared to those obtained with the other two
spectroscopic probes. Multiple Y residues, which may be
involved in hydrogen bonding, are distributed throughout Gα.
Once protein unfolding is initiated, molten globule states that
are populated will exhibit diminished secondary structure,
which is determined by hydrogen bonding. The additional
contribution of hydrogen bonding associated with Y micro-
environments and secondary structure relative to primarily
hydrophobic interactions present in the vicinities of W residues
may explain the higher Tm values measured from Y absorption
and CD spectra.
Previous work by Najor et al. and Hamm and co-workers

showed that W211 forms a π−cation interaction with R208 in
WT Giα1·GTPγS, as evidenced by a red shift of 2.5 nm in the
λmax value (Figure 3a).19,20 Molecular dynamic simulations
predict that the conformational change from the inactive to the
active conformation results in an increase in the electrostatic
interaction between W211 and R208 from −0.96 to −2.85
kcal/mol, which is consistent to the higher stability seen in the
active conformation (Table 5). Thus, stronger ligand−protein
interactions would help stabilize the GTPγS-bound structure.
Molecular dynamics studies showed that the interaction energy
between GTP and Giα1 at 323 K (−621.7 kcal/mol) indicated
that GTP binds more tightly than GDP (−494.4 kcal/mol).
This binding energy partially may explain why the GTP-bound
structure refolds better.
An increase in temperature at which the simulation was

conducted (37 → 50 °C) resulted in weakening of the W211-
R208 π−cation interaction, which is supported by the observed
decrease in the Δλmax (Figure 3b). The increased van der
Waals interactions calculated at higher temperatures may be
associated with these residues swinging into more hydrophilic
environments upon unfolding. This conclusion is supported by
a blue (rather than red) shift observed upon the GTPγS
activation of Gsα at temperatures higher than 53 °C. For the
W211F mutant of Giα1, there was no significant difference
between the Tm values from the active and inactive
conformations further suggesting that the π−cation interaction
is important for the structural integrity of Giα1.
This study underscores the importance of π−cation

interactions toward protein stability. The disruption of these
noncovalent interactions may lead to significant decreases in
the stabilities for the active conformations of Gα subunits and
could promote improper folding. Mutations of the arginine
residue involved in the π−cation interaction have been
identified in the R208Q Giα1 and in the R231H Gsα oncogenes
and are thought to have similar characteristics as the W
mutants.23 The loss of the π−cation interaction could translate
into changes in structure−function relationships by disrupting
the signaling cascade for cAMP. Future studies will focus on
the effect of these mutations on the structure and function of
oncogenic Gα subunits.

4. EXPERIMENTAL SECTION
4.1. Expression and Protein Purification. Gαi1 and Gsα

were obtained and purified as previously described.45 Single-

point W mutants of Gαi1 and Gsα were prepared by site-
directed mutagenesis using a kit provided by Stratagene (La
Jolla, CA). After purification on a Ni2+ affinity column followed
by a Superdex 200 pg size exclusion column, the purity of
GDP-bound Gα proteins was found to be greater than 95% as
estimated by sodium dodecyl sulfate−polyacrylamide gel
electrophoresis. Protein was stored at −80 °C in 20 mM
Tris, pH 8.0 buffer containing 10% (v/v) glycerol, and 1 mM
dithiothreitol (DTT).

4.2. Fluorescence Measurements of Protein Activa-
tion. Experiments were performed with a PTI QuantaMaster
fluorimeter (Photon Technologies, Inc., Mirmingham, NJ).
Indirect activity assays were conducted with excitation and
emission wavelengths set at 280 and 340 nm, respectively.
Assays were initiated after 60 s by addition of 20 μM of GTPγS
to preincubated 400 nM Gα·GDP protein samples in buffer
containing 50 mM N-(2-hydroxyethyl)piperazine-N′-ethane-
sulfonic acid, pH 7.5, 2 mM MgSO4, and 1 mM DTT, and was
monitored for 3 h at 25 °C. The GDP- and GTPγS-bound
proteins that were characterized by the activity assays were
used in the following denaturation studies.

4.3. Fluorescence-Measured Protein Denaturation.
Emission spectra for both GDP- and GTPγS-bound proteins
were recorded over the wavelength range of 300−400 nm with
the excitation wavelength set at 280 nm. Signal integration
time was 0.2 s with the bandpass for excitation and for
emission set at 5 nm. The denaturation experiments started at
a temperature of 4 °C followed by 4 °C increments and
concluding at the highest temperature before precipitation
occurred. There was a 2 min equilibration period at each set
temperature. All Tm values were calculated from fluorescence
intensities at the spectral λmax positions for the selected
temperatures, using methods adapted from those previously
described.46

4.4. UV/Vis-Measured Protein Denaturation. The
environments of Y (and to a lesser extent W) residues in Gα

proteins were monitored on a Hewlett Packard UV/vis
spectrophotometer. All samples contained 50 mM Tris, pH
7.5, 1 μM Gα·GDP protein, 1 mM DTT, and 2 mM MgSO4.
Prior to initiating the experiments, samples were incubated
with their respective nucleotide, 2.5 μM Gα·GDP or 20 μM
GTPγS, at room temperature for 1 h. The temperature was
increased from 20 to 80 °C, at 0.3 °C/min over 180 min. For
each temperature studied, samples were equilibrated for 1 min,
and the absorbance was monitored in the wavelength range of
220−300 nm. All melting temperatures were calculated from
the absorbance values at 280 nm for the different temperatures,
using methods previously described.47

4.5. CD-Measured Protein Denaturation. Experiments
were performed using an Olis DSM 20 circular dichroism
spectrophotometer. All samples were measured in a cylindrical
quartz cuvette with a 1 mm pathlength and contained either 3
μM Gα·GDP or 24 μM Gα·GTPγS, in 10 mM phosphate, pH
7.5 buffer, 1 mM DTT, and 2 mMMgSO4. Data were collected
at 150 V every 1 nm in the wavelength range of 190−260 nm.
The temperature was increased from 20 to 100 °C at 4 °C
increments with an incubation time of 3 min at each
temperature studied. The CONTIN LL algorithm was used
to deconvolute the spectra using reference sets with denatured
proteins to calculate the percent of each type of secondary
structure and Tm values for each protein studied.48−50

4.6. Refolding of Gα Subunits. To test whether unfolding
of Gα proteins was reversible, fluorescence emission scans and
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CD spectrophotometry were used. Once spectra from the final
temperature of an unfolding experiment were obtained, Gα

samples were cooled down in 8 °C increments and incubation
times remained the same as indicated above for each respective
technique. Final temperatures varied depending on aggregation
and ability to refold. All renaturation experiments were
stopped at 4 °C for fluorescence measurements and at 20 °C
for CD experiments.
4.7. Molecular Modeling. The co-ordinates of GDP

(1BOF8) and GTPγS (1GIA5) derivatives of Giα1 and GTPγS
of Gsα (1AZT32) were downloaded from the Protein Data
Bank (PDB51). Missing loops in the Giα1 structures were
modeled using Swiss Model52 and the corresponding trans-
ducin structures (1TAG,53 1TAD,54 and 1TND55). The
simulations were done using procedures previously de-
scribed.19 Unrestrained dynamics was run for 14 ns before
the data were acquired for an additional 1 ns. The simulations
were done at 37 °C (310 K) and 50 °C (328 K). These data
were then used in the analyses. The initial W point mutation
models were generated using VMD56 and then subjected to the
same equilibration procedure as the wild-type structures. All
molecular graphic diagrams were generated using VMD.56

Pairwise van der Waals and electrostatic interaction energies
were calculated using NAMD.57 The solvent accessible surface
area (SASA) was measured with the SASA routine in VMD.56

The SASA values and the van der Waals and electrostatic
energy values presented in Table 5 were calculated for the final
1 ns in each simulation and then averaged.
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