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1 Introduction

Chaotic systems are characterized by their Lyapunov exponents λL, which give a charac-
teristic inverse time-scale and determine the rate at which nearby trajectories separated
by δz(t) in phase space diverge exponentially from each other,

δz(t) ∼ eλLt δz(0) . (1.1)

At finite temperature T there is a conjectured bound on chaos [1],

λL ≤ 2π T (1.2)

which is saturated by (large-N) field theories dual to Einstein gravity with negative cos-
mological constant. Saturation of the chaos bound (1.2) for a CFT is thus a signal that it
may have an AdS dual.
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What can be said beyond AdS/CFT? It is of general interest to find out which features
observed so far are specific to AdS/CFT and which are universal aspects of holography.
The universality of the chaos bound (1.2) as well as its saturation for holographic systems
could be a helpful piece in this puzzle.

In order to address this question efficiently we need a class of gravity models that is
simultaneously rich enough to allow for a variety of different asymptotics and simple enough
to allow quantitative analysis. Two-dimensional (2d) dilaton gravity seems tailor-made for
this task, for two reasons. First, there is a concrete holographic proposal relating the
quantum mechanical Sachdev-Ye-Kitaev (SYK) model [2–5] with the gravitational Jackiw-
Teitelboim (JT) model [6, 7] where chaos bound saturation was established [8, 9]. Second,
two-dimensional dilaton gravity allows for a variety of models with different asymptotics
that can be treated on equal footing, including asymptotically AdS2, flat space, and other
behavior, see e.g. [10].

We stress that the following universality argument is too naive: all 2d geometries
are locally conformally flat and hence locally conformally AdS2; thus, one should expect
universal features for all 2d gravity theories, their asymptotic symmetries, their boundary
theories and the holographic Lyapunov exponents. A counter example to this argument
is SYK/JT vs. the flat space holographic model studied in [11]: the respective asymptotic
symmetries differ and the boundary theories, described by Schwarzian vs. twisted warped
action, differ as well. Thus, while it still may be true that the holographic Lyapunov
exponents turn out to be universal, this is not a result that should be anticipated based
on the naive argument above.

At a technical level our goal is to generalize the discussion in the first half of [12] to
generic 2d Maxwell-dilaton gravity. Thus, we continue with a brief summary of their work.

The starting point of [12] was quantum mechanics, which is non-universal in the IR,
since every (regular, non-derivative) operator is relevant, but rather universal in the UV as
a consequence of the paucity of irrelevant operators. The IR landscape can be investigated
by integrable deformations of quantum mechanics that deform the action Γ through the
flow equation

∂Γ
∂λ

= F (t, j; λ) (1.3)

where λ is the deformation-parameter (or flow-parameter), t is the stress-scalar (i.e., the
1-dimensional version of the stress tensor), j denotes other physical quantities (e.g. a u(1)
charge) and F is some functional thereof. The particular choice of F made in [12] was in
line with T T̄ -deformations of CFT2 [13–15]. More precisely, this irrelevant deformation
generates on the gravity side a radial cutoff on the asymptotically AdS2 geometry, which
can be understood by dimensionally reducing from three to two dimensions on the gravity
side and from CFT2 to quantum mechanics on the field theory side. The explicit form of
the flow equation (1.3) is

∂Γc
∂λ

= 2
∫

dτ√γ E2
FT − J2

FT

1− 4λEFT
= 2

∫
dτ√γ (T τ τ )2 + T τφ Tτφ

1− 4λT τ τ
(1.4)

where Γc is the on-shell action with finite cutoff surface, λ is the deformation parameter,
τ is the coordinate along the boundary with induced volume form √γ, EFT is the field
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theory energy and JFT is essentially the field theory u(1) charge. By dimensional oxidation
one can interpret these quantities as components of a CFT2 stress tensor, T τ τ = EFT and
T τφ = Tτφ = iJFT, which shows that the deformations induced by (1.4) are a dimensionally
reduced variant of T T̄ -deformations. The effects of chaos were studied for these deformed
theories on the gravity side by adapting the discussion of [16] to finite cutoff. The essence
of that calculation is captured by figure 2 in the body of our paper and will be reviewed
briefly there. Conceptually, one calculates a time delay of an outgoing signal towards the
boundary that is caused by a matter shock wave released from the boundary. Technically,
this boils down to a simple evaluation of lengths of certain geodesics. The outcome is a
time delay formula reminiscent of (1.1) with a Lyapunov exponent satisfying the chaos
bound (1.2). This shows that the result for the Lypunov exponent applies not only to JT
but also deformations thereof.

Our main goal is to generalize the discussion summarized in the paragraph above
to generic 2d Maxwell-dilaton gravity theories, including models that do not asymptote
to AdS2. In particular, we intend to establish some flow equations and calculate on the
gravity side the Lyapunov exponent to check whether or not it obeys or saturates the chaos
bound (1.2).

This paper is organized as follows. In section 2 we review salient features of generic
(Euclidean) 2d Maxwell-dilaton gravity in the presence of an asymptotic boundary or a
finite radial cutoff. In section 3 we apply T T̄ -like deformations to all these models and
derive the flow equations analogous to (1.4). In section 4 we provide a no-go result that
forbids smooth flows from AdS2 to an IR dS2 fixed point, and consider possible loopholes in
our argument. In section 5 we address chaos and calculate on the gravity side the Lyapunov
exponent, establishing saturation of the chaos bound (1.2). In section 6 we conclude.

2 Mini-review of Maxwell-dilaton gravity in two dimensions

In this section we give a brief review of relevant aspects of (Euclidean) 2d Maxwell-dilaton
gravity. In section 2.1 we display the bulk action and generic solutions (in a suitable gauge),
and summarize some of their properties. In section 2.2 we consider boundary issues and
present the full action. In section 2.3 we use the Euclidean action to extract the free energy
and other thermodynamical quantities of interest.

2.1 Bulk action and generic solutions

Maxwell-dilaton gravity in two dimensions with Euclidean signature has a bulk action

I[gµν , Aµ, X] = − 1
2κ2

∫
M
d2x
√
g
(
X R− U(X) (∇X)2 − 2V (X)− 2 f(X)FµνFµν

)
(2.1)

where κ is the gravitational coupling constant, X is the dilaton, gµν is the metric on M ,
and Fµν is the field strength for an Abelian gauge connection Aµ. The kinetic potential U ,
dilaton potential V and dilaton-Maxwell coupling f are arbitrary functions of the dilaton
at this stage.
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Generic solutions of these theories, expressed here in Schwarzschild-like coordinates
and axial gauge

ds2 = ξ dτ2 + 1
ξ

dr2 Aµ dxµ = Aτ dτ (2.2)

obey a generalized Birkhoff theorem, i.e., they have a Killing vector ∂τ whose orbits are
isosurfaces of X. This means ξ and Aτ can be expressed as functions of X, satisfying

ξ(X) = eQ(X)
(
w(X)− 2M + 1

4 q
2H(X)

)
(2.3)

Aτ (X) = −q4
(
H(X)−H(Xh)

)
+Aτ (Xh) (2.4)

∂rX = e−Q(X) (2.5)

where Q, w, and H are integrals of the functions appearing in (2.1)

Q(X) = Q0 +
∫ X

dX̃ U(X̃) (2.6)

w(X) = w0 − 2
∫ X

dX̃ V (X̃) eQ(X̃) (2.7)

H(X) = H0 +
∫ X

dX̃ eQ(X̃)

f(X̃)
. (2.8)

Without loss of generality we set the additive constant w0 to zero by absorbing it into the
constants of motion M and q, which are interpreted as mass and charge parameter, respec-
tively. The constant Q0 is set to zero by a rescaling of the coordinates. The constant H0 is
irrelevant because it appears alongside w0 in (2.3) and drops out of the difference H(X)−
H(Xh) in the abelian connection (2.4), and hence also is set to zero. The only curvature
invariant, the Ricci scalar, depends on the three functions (2.6)–(2.8) and their derivatives,

R = −∂
2ξ

∂r2 = −eQ(X) ∂X

(
w′(X)+ 1

4 q
2H ′(X)+Q′(X)

(
w(X)−2M+ 1

4 q
2H(X)

))
. (2.9)

For some models there is an isolated sector of non-generic solutions, so-called constant
dilaton vacua, where the dilaton X = Xcdv = const. is a solution of the non-differential
equation V (Xcdv) = q2/(8f(Xcdv)) and the Ricci scalar is a constant given by

constant dilaton vacua: R = 2V ′(Xcdv) + q2f ′(Xcdv)
4f2(Xcdv) . (2.10)

These special solutions are not generic geometries, and in the present work they will only
be relevant when discussing properties of IR fixed points of the flows discussed in section 3.

Instead, we consider generic solutions of models where the metric is non-negative on
the semi-infinite interval of positive dilaton values Xh ≤ X < ∞, with Xh given by the
Euclidean horizon condition ξ(Xh) = 0. If ξ(X) = 0 has multiple roots then Xh is taken to
be the largest such solution, and if there are no such roots then the interval is X ∈ (0, ∞).1

1In section 4.3 we will consider an extension of these models that allow the lower end of the interval to
extend to negative values.
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The function eQ(X) is assumed to be non-zero on this interval, so that the location of Xh

is given by the condition
w(Xh) + 1

4 q
2H(Xh) = 2M . (2.11)

Regularity of the solutions at Xh requires that the Euclidean time has periodicity τ ∼ τ+β
given by

β = 4π
∂rξ

∣∣∣
rh

= 4π
w′(Xh) + 1

4 q
2H ′(Xh)

. (2.12)

For the models we are interested in the function w(X) tends to +∞ in the limit X →∞,
and we assume that this behavior, rather than that of H(X), determines the asymptotics
of ξ(X). Thus any dilaton-Maxwell coupling f(X) is allowed as long as H(X) satisfies
H(X)/w(X) → 0 in the limit X → ∞. Under these conditions the X → ∞ behavior of
ξ(X) is dominated by the first term in (2.3), which we denote by

ξ0(X) = eQ(X)w(X) . (2.13)

The function ξ0(X) is equivalent to ξ(X) with both mass M and charge q set to zero, so
the physical state corresponding to this solution is sometimes referred to as “ground state”.

2.2 Boundary issues and full action

For theories on a manifold with boundary, a variational principle with Dirichlet conditions
on the fields requires an additional term in the action. With our parameterization of the
dilaton this Gibbons-Hawking-York boundary term [17] takes the form

IGHY = − 1
κ2

∫
Σ
d1x
√
hX K . (2.14)

But for theories defined on a spacetime with spatial infinity (which in the Lorentzian con-
tinuation could correspond to null or spatial infinity), the construction of the variational
principle is more subtle. In that case we introduce a boundary by cutting off the spacetime
at some large value Xc of the dilaton, and supplement (2.1) and (2.14) with an additional
“boundary counterterm” on the cut-off surface Σ. The appropriate boundary term was con-
structed in [18] for theories with the asymptotics described above and yields the full action

Γ = − 1
2κ2

∫
M
d2x
√
g
(
X R− U(X) (∇X)2 − 2V (X)− 2 f(X)FµνFµν

)
(2.15)

− 1
κ2

∫
Σ
d1x
√
h
(
XK − e−Q(X)√ξ0

)
.

Henceforth we will set κ2 = 8πG2 = 1. The action for the full spacetime is recovered in the
Xc → ∞ limit of (2.15). This construction gives a well-defined variational formulation of
the theory, in the sense that the variation δΓ vanishes on-shell for all field variations with
the same asymptotic fall-off as the sub-leading terms in the solutions (2.3)–(2.5).

The main limitation of the action (2.15) is that we assumed the boundary to be a
dilaton iso-surface. In the present work we focus on applications where the action (2.15)
can be used. We address generalizations in the concluding section 6.
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2.3 Thermodynamics

The Euclidean action (2.15) evaluated on solutions of the form (2.3)–(2.5) describes the
thermodynamics of Maxwell-dilaton gravity in an ensemble that, depending on the bound-
ary conditions, may contain black holes, “hot empty space” solutions, and more exotic field
configurations. The variational principle places Dirichlet conditions on the metric, gauge
field, and dilaton at spatial infinity, which corresponds to a thermodynamic ensemble that
fixes the proper local temperature, proper electrostatic potential, and a conserved dilaton
charge. In general, the thermodynamic ensemble only exists for some values of the cut-off
Xc that defines the surface Σ in (2.15). The surface is regarded as a cavity wall where
the system is coupled to a thermal reservoir which maintains the proper temperature and
electrostatic potential, given by

Tc = βc
−1 = 1√

ξc
β−1 (2.16)

Φc = Aτ (Xc)−Aτ (Xh)√
ξc

. (2.17)

The dilaton charge is given by Dc = D(Xc), where any well-behaved function of the dilaton
D(X) gives such a conserved charge [19]. A simple choice is D(X) = X, but below we
shall make the more convenient choice D(X) = 1/[4w(X)] and hence

Dc = 1
4w(Xc)

. (2.18)

The thermodynamic potential for the ensemble is obtained from the on-shell action Γc by

Γc = βc Yc(Tc,Φc, Dc) (2.19)

with Yc related to the Helmholtz free energy Fc and the internal Energy Ec by appropriate
Legendre transforms

Yc(Tc,Φc, Dc) = Fc(Tc, Dc, q)− qΦc = Ec(S,Dc, q)− Tc S − qΦc . (2.20)

There is always some range of values of the cut-off Xc ∈ (Xh, X
max
c ) for which the specific

heat is positive and the ensemble is well-defined. In some cases Xmax
c = ∞ so that the

ensemble remains well-defined as the system is decoupled from the reservoir. Examples
for such behavior are the exact string black hole [20] and sufficiently large spherically
symmetric AdS black holes in Einstein gravity in dimension D ≥ 3. But for many theories
and boundary conditions Xmax

c is finite so that the specific heat becomes negative when
Xc > Xmax

c and the canonical ensemble is not defined. Examples for such behavior are
so-called Minkowski ground state models, including Schwarzschild-Tangherlini black holes
in D-dimensional spherically symmetric Einstein gravity. See [18] for a discussion of the
thermodynamics of these and other models.

Evaluating the action for solutions (2.3)–(2.5) yields

Γc = βc
(
e−Qc

(√
ξ0 −

√
ξc
)
− 2πXhTc − qΦc

)
(2.21)
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where ξ0, defined in (2.13), is also evaluated at the cut-off. The first law yields an entropy
S = 2πXh, a conserved electric charge given by the parameter q appearing in the gauge
field (2.4), and internal energy

Ec = e−Qc
(√

ξ0 −
√
ξc
)
. (2.22)

This last result agrees with the conserved quantity obtained via both Hamiltonian methods
and the Brown-York quasi-local stress tensor.

3 T T̄ flow equations

In this section we consider flows (1.3) of the action (2.15) as we move the cutoff Xc from
larger to smaller values. The holographic interpretation (if available) is that in the dual
quantum mechanical theory we flow from the UV to the IR. The main result of this section
is that Maxwell-dilaton gravity theories considered in the previous section naturally satisfy
a flow equation like (1.4). This flow can be understood as a consequence of the quasi-local
form of the first law of black hole thermodynamics, with certain thermodynamic variables
held fixed.

In section 3.1 we introduce field theory quantities, some of which are held fixed in
the flows considered in section 3.2, where we derive our main result, the flow equation.
In section 3.3 we discuss some properties of and provide an interpretation for the flow
equation.

3.1 Field theory quantities

To show the main result we switch over to the “field theory variables” employed in [21].
The field theory geometry is described by a one-dimensional metric γ that is related to the
metric on the cut-off surface by scaling out the factor ξ0 that characterizes the asymptotic
behavior

ξc = ξ0 γ . (3.1)

The proper thermodynamic quantities Ec, Tc, and Φc measured by a bulk observer at Xc

are then related to the associated field theory quantities by appropriate factors of
√
ξ0.

EFT =
√
ξ0Ec TFT =

√
ξ0 Tc ΦFT =

√
ξ0 Φc βFT = 1√

ξ0
βc (3.2)

Field theory and cut-off quantities coincide only for “Minkowski ground state models,”
ξ0 = 1. In all other cases (3.2) relates them by cut-off dependent (but state-independent)
factors.

The on-shell action (2.21) expressed in terms of field theory quantities,

Γc = βFT YFT = βFT
(
EFT − S TFT − qΦFT

)
(3.3)

leads to the same thermodynamic interpretation as before, with the entropy S = 2πXh

and conserved electric charge q unchanged. In particular, the field theory thermodynamic

– 7 –
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potential YFT and energy EFT satisfy the appropriate forms of the first law

dYFT = −S dTFT − q dΦFT − ψFT dD (3.4)
dEFT = TFT dS + ΦFT dq − ψFT dD (3.5)

for any choice of dilaton charge D.

3.2 Dilaton cut-off flows

We consider now flows that hold the field theory geometry and electric field fixed, which
in particular means fixing the temperature TFT = 1/βFT and the electrostatic potential
ΦFT. The key quantity that changes along such flows is the cut-off value of the dilaton,
Xc. Since the theories we consider have w(X)→∞ as X →∞, there is always some open
interval [Xmin,∞) on which w(X) is monotonically increasing. In some models the lower
end of this interval may extend to the horizon; otherwise it will occur at a local minimum
of w(X). For X in this interval we define the “universal cut-off” λ via

w(Xc) = 1
4λ (3.6)

and replace dependence on Xc with dependence on λ. Then the field theory metric can be
written as

γ = 1− 8M λ+ q2λH(λ) (3.7)

and the relation (3.2) between Ec and EFT yields

EFT =
1−√γ

4λ = 1−
√

1− 8M λ+ q2λH(λ)
4λ . (3.8)

In [12] this was viewed as a consequence of the flow equation; here it is the result of the
bulk geometry and black hole thermodynamics.2

The flow equation is obtained by considering the response of the on-shell action to a
small change in the universal cut-off λ with βFT = 1/TFT and ΦFT held fixed. Making the
choice (2.18), D = λ, for the dilaton charge, the first law (3.4) implies

∂Γc
∂λ

∣∣∣∣
βFT,ΦFT

= βFT
∂EFT

∂λ

∣∣∣∣
S,q

=
∫

dτ√γ ∂EFT

∂λ

∣∣∣∣
S,q

. (3.9)

In the last step we have expressed βFT as the integral over τ with an appropriate factor
of √γ. The derivative of EFT is taken with the charge q and entropy S held fixed. Since
S = 2πXh and Xh is determined by (2.11), this is equivalent to holding M and q fixed
when taking the derivative. From (3.8) we then have

∂EFT

∂λ

∣∣∣∣
S,q

= 1
1− 4λEFT

(
2E 2

FT −
1
8 q

2 ∂H(λ)
∂λ

)
. (3.10)

2Indeed, this notion of energy was used in eq. (3.24) of [18] when considering how internal energy and
gravitational binding energy are related to the ADM mass.
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The right-hand side of this equation is (minus) the dilaton chemical potential ψFT for
the dilaton charge D = λ. The last term in parentheses can be re-written using the
definitions (2.7)–(2.8) of w and H as

∂H(λ)
∂λ

= 1
8λ2 V (λ) f(λ) . (3.11)

We can then express the derivative of the on-shell action along this flow as

∂Γc
∂λ

∣∣∣∣
βFT,ΦFT

=
∫

dτ√γ 2 (E 2
FT − J 2

FT)
1− 4λEFT

, (3.12)

where JFT is defined as
JFT = q√

128λ2 V (λ) f(λ)
. (3.13)

For the dimensional reduction of the BTZ black hole to a two-dimensional Maxwell-dilaton
gravity, the quantity JFT is the constant angular momentum. This suggests the following
identification with the components of the stress tensor in a three-dimensional theory

T τ τ = EFT T τφ = Tτφ = i JFT . (3.14)

The flow equation then takes the form

∂Γc
∂λ

∣∣∣∣
βFT,ΦFT

= 2
∫

dτ√γ (T τ τ )2 + T τφ Tτφ
1− 4λT τ τ

(3.15)

which coincides precisely with (1.4). Thus, the sort of flow equation satisfied by the JT
model seems to be a universal feature of all the 2d Maxwell-dilaton gravity theories con-
sidered in the previous section.

3.3 Properties and interpretation of the flow equation

The dimensional reduction of the BTZ sector of AdS3 gravity is included in the theories
we consider, as are theories that admit asymptotically AdS2 spacetimes [22]. In the latter
case, the quantity JFT flows from its value at λ = 0 (Xc → ∞) as the cut-off is adjusted.
But in the course of deriving (3.15) we have not assumed the existence of a holographic
dual for the bulk theory. Yet the structure of the flow equation is precisely what one would
expect for the 3→ 2 dimensional reduction of a gravitational theory dual to a T T̄ deformed
CFT. This is perhaps indicative of a more general class of theories with holographic duals
that are not asymptotically AdS2.

From the point of view of black hole thermodynamics, the flow has a straightforward
interpretation. The system is coupled to a thermal reservoir at Xc, and the cavity wall is
moved in while holding the field theory quantities TFT and ΦFT fixed. Thus

dΓc
∣∣∣
TFT,ΦFT

= −βFT ψFT dλ (3.16)

with the dilaton chemical potential playing a role similar to pressure. Since any Maxwell-
dilaton gravity theory subject to our assumptions satisfies a first law (3.4), the flow equa-
tion itself does not provide any further constraints on the functions U , V , and H that
characterize the theory.
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As explained in the introduction, local Weyl-equivalence is not sufficient to render all
2d gravity theories equivalent. However, it is enough to imply that theories with distinct
asymptotics obey the same flow equation. Under a local Weyl-rescaling of the metric,
eQ has conformal weight 2, w and H are invariant, and the proper internal energy Ec
transforms with conformal weight −1. Thus EFT =

√
ξ0Ec, the metric γ = ξc/ξ0, and the

cut-off λ = 1/(4w) are all invariant, and the flow equation (3.10) does not change under a
local Weyl-rescaling of the fields.

An interesting consequence of the flow equation is a rather universal factor 2 between
the field theory energy in the UV and in the IR, which we now derive. Assume that we have
a model where w is strictly monotonic and the cutoff is sent to the asymptotic boundary,
λ → 0, (this is what we refer to as ‘UV’; this assumption includes the JT model and
deformations thereof).3 Taking the limit λ→ 0 in the field theory energy (3.8) yields

EUV
FT = lim

λ→0
EFT = M . (3.17)

This result is to be expected, sinceM is the (appropriately normalized) mass characterizing
our black holes solutions. We turn now to the IR. Assuming there is a horizon, the IR
limit is defined as the cutoff surface approaching the horizon. The locus of the horizon is
at w(Xh) = 2M − 1

4 q
2H(Xh), implying γ → 0 in that limit. Taking the limit γ → 0 in the

field theory energy (3.8) yields

EIR
FT = lim

γ→0
EFT = 2M − 1

4 q
2H(Xh) . (3.18)

Thus, in the limit of vanishing charge we have the universal ratio

EIR
FT

EUV
FT

∣∣∣∣
q=0

= 2 (3.19)

for all 2d dilaton gravity models (subject to the assumptions mentioned).
As shown in section 5, there is another behavior associated with asymptotically AdS2

black holes that generalizes to models with a broader class of boundary conditions. But
first, we consider an interesting application of the flow equation derived above.

4 A no-go result for flows to de Sitter fixed points

In this section we consider an intriguing setup, namely a situation where we flow from
AdS2 in the UV (of the field theory, i.e., for large radii on the gravity side) to a dS2 IR
fixed point (again of the field theory, so for smaller radii on the gravity side) by virtue
of the flow equations derived in the previous section. If such a flow existed it would be a
smooth realization of the setup considered in [23]. We show now that no such flow exists.

To reduce clutter we set f(X) = 0 in this section, but note that our results generalize
trivially to f(X) 6= 0 by replacing V → V − q2/(8f).

In section 4.1 we derive the no-go result. In section 4.2 we consider a particular example
and generic aspects of the no-go result. In section 4.3 we show that, while a true dS2 fixed

3Not all models have black hole solutions with positive specific heat in the limit λ→ 0.
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Figure 1. Random graph as example for w(X) with asymptotic behavior X2. Coming from infinity
the first extremum on the right necessarily is a minimum and thus not a dS2 fixed point.

point is inaccessible, a smooth flow might still approach a ‘quasi-fixed point’ where the
curvature is positive.

4.1 Derivation of no-go result

The main issue is the behavior of the function w(X) defined in (2.7). Asymptoting to AdS2
means that for large values of the dilaton this function has to be quadratic and positive,
w(X) = X2/`2 + . . . . In order to have a fixed point in the IR the flow equation needs to
stop, which happens once an extremum of w(X) is reached.

To show this, reconsider the flow equation as a differential equation with respect to
the radial cutoff rc,

∂Γc
∂rc

= ∂Γc
∂wc

∂wc
∂Xc

∂Xc

∂rc
= −2 ∂Γc

∂wc
V (Xc) (4.1)

where we used the defining relation (2.7) and the solution for the dilaton (2.5). An IR
fixed-point, ∂Γc

∂rc
= 0, arises for finite or vanishing ∂Γc

∂wc
whenever V (Xc) = 0. Assuming eQc

remains finite, this condition is equivalent to w′(Xc) = 0, which is what we wanted to show.
The geometry near the fixed point is well-approximated by a constant dilaton vacuum,

since the condition V (Xc) = 0 is the defining relation of such vacua. The Ricci scalar
according to (2.9) is positive if V ′(Xc) is positive. Thus, in order to get such a fixed point
corresponding to dS2 we need to ensure that w(Xc) has not only an extremum, but rather
a local maximum.

Now we see the incompatibility of the asymptotic AdS2 behavior in the UV with the
dS2 fixed point in the IR: since w(Xc) asymptotically tends to +∞ and is assumed to be
sufficiently smooth (at least twice differentiable), the outermost extremum can only be a
minimum. This means that even if w(Xc) had a shape allowing for a local maximum and
hence a dS2 fixed point, it will never be reached by a smooth flow from the asymptotically
AdS2 region, since the first fixed point to be reached as we flow to the IR is another AdS2
fixed point (or a flat space fixed point if the extremum degenerates into an inflection point).
Figure 1 illustrates this for some smooth random function w(X) that asymptotes to X2.
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4.2 Centaur example and genericity of no-go

The smooth “centaur geometry” example given in section 4 of [23], V (X) = ε−
√
X2 + ε2

with some finite ε, is a special case that flows from AdS2 at X →∞ to flat space at X = 0.
(To see this recall that according to (2.9) the Ricci scalar is given by R = −2X/

√
X2 + ε2.)

The other asymptotic region, X → −∞, corresponds to a dS2 region. But it cannot be
reached by our flow, which necessarily terminates at the IR fixed point X = 0.

The conclusions of this section are rather generic and apply also to any model where
w(X) tends to +∞, regardless of whether asymptotically AdS2 is approached; the same
line of arguments shows that the IR fixed point reached by smooth flows always is well-
approximated by an AdS2 or flat space fixed point and never by a dS2 fixed point. Moreover,
the no-go proof did not require a specific flow like (1.4); instead, any flow associated with
a change of the cutoff surface leads to the starting point (4.1) of our no-go result.

4.3 Evading the no-go?

An immediate concern is whether our no-go result implies that AdS2 in the UV cannot
flow to positive curvature in the IR. As we show below, smooth flows do not reach a dS2
fixed point but they may still enter a region corresponding to positive curvature.

The only way to evade the no-go result we are able to find is if there is no IR fixed point
at finite value of the dilaton, so that effectively the IR region is approached as X → −∞.
This means that w′ must not vanish anywhere and hence V is non-zero everywhere, which
forbids in particular constant dilaton vacua. In that case an asymptotic dS2 fixed point is
possible. An example is provided by a small modification of the “centaur” potential above,

V dS
AdS(X) = −

√
X2 + ε2 (4.2)

which flows to AdS2 for X → ∞ and to dS2 for X → −∞. Then one can choose some
Xh < 0 with |Xh| � ε and construct a flow that moves past X = 0 into the region X < 0
where the Ricci scalar becomes positive.4 Once |Xc| � ε the difference between the Ricci
scalar and its dS2 fixed-point value R = 2 is of order (ε/Xc)2.

However, there are two physical objections to a flow crossing the point X = 0. First,
in the models we study a vanishing dilaton effectively means infinite 2d Newton constant.
And second, for Xh < 0 the entropy S = 2πXh becomes negative. Both problems are
resolved by including a topological term in the action (2.15) of the form

− 1
2

∫
M
d2x
√
g X̄ R−

∫
Σ
d1x
√
h X̄ K = −2πX̄ χ (4.3)

for some positive constant X̄. This topological term for instance appears naturally in the
dimensional reduction of nearly extremal black holes in higher dimensions, see e.g. [24].
The solutions we consider have the topology of a disk (χ = 1), so the effect is a constant
shift of the dilaton X → X + X̄ in our previous results. (The functions Q, w, and H

are unaffected by the addition of this term in the action.) The condition that the 2d
4For this particular example one must choose w0 in (2.7) so that w(Xc) > 0 for Xc > Xh, in order to

ensure reality of the on-shell action (2.21) along the flow.
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Newton constant remains finite is now X̄ + X > 0, which also ensures that the entropy
S = 2π (Xh + X̄) remains non-negative for |Xh| < X̄. This modification allows X to safely
cross into the region Xh < X < 0 as in the example above.

Therefore, our no-go result can be rephrased as the statement that any asymptotically
AdS2 geometry flows in the IR either to a fixed-point with non-positive constant curvature
(AdS2 or flat space), or it has no IR fixed point at all. In the latter case, the flow does not
stop before reaching an endpoint at Xh or moving into the strong coupling region. While we
have not identified any loopholes, it is possible to construct flows that reach a region of pos-
itive scalar curvature. The example above modifies the potential V (X) associated with the
centaur geometry of [23] to eliminate a flat-space fixed point at X = 0. Then the topological
term in the action, which occurs naturally in holographic models and the dimensional reduc-
tion of solutions of string theory [24], shifts the strong coupling region away from X = 0 and
allows the flow to move into the region X < 0 where the curvature is positive and approx-
imately constant. One can construct similar potentials V (X) where the region X < 0 cor-
responds to constant positive curvature, but such flows still do not have an IR fixed point.

5 Chaos

The models described in section 2 exhibit a variety of asymptotics as Xc → ∞, yet they
all satisfy a flow equation with the same general structure that emerges in dimensionally
reduced T T̄ -deformations of AdS3/CFT2. In this section we consider saturation of the
bound (1.2) on the Lyapunov exponent, another well-known feature of AdS/CFT, and ask
whether the same behavior arises in a more general class of models.

In section 5.1 we describe the calculation of the holographic Lyapunov exponent via
the time delay in an outgoing signal due to an infalling shockwave. In section 5.2 we carry
out the calculation for the full class of models described in section 2 and find saturation of
the bound (1.2). This is followed by a brief discussion in 5.3.

5.1 Holographic Lyapunov exponent from time delay

Consider a probe of the region near the horizon of a black hole of mass M that consists
of an infalling, massless particle of energy δM � M . This particle begins far from the
horizon, moves inward along a null geodesic that crosses the surface Xc at time t1, and
eventually falls into the black hole. An outgoing signal that crosses this shockwave at a
point very near the horizon (or originates at that event) would be expected to arrive at Xc

at time t2 in the original spacetime. However, the absorption of the shockwave increases
the mass of the black hole by δM and causes the horizon to grow. This leads to a delay in
the outgoing signal, which arrives at Xc at a later time t̃2. We find that the delay t̃2− t2 at
O(δM/M) grows exponentially with the expected waiting time t2− t1 and is characterized,
for all the models considered in this paper, by the same maximal Lyapunov exponent that
occurs in the asymptotically AdS2 case.

The calculation of the delay in an outgoing signal due to an infalling shockwave closely
follows the analyses in [12, 16]. The primary difference is our addition of a distant dilaton
isosurface at X0 � Xc from which the infalling null matter originates. For models with
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singularity

i0

I+

I−

H̃

H
X = X0
box surface

A

massless
particle

outgoing signal

B B̃

C
C̃

cutoff surfaces

Figure 2. Shockwaves for asymptotically flat dilaton gravity in a box. Spacetime is put in a box at
X = X0. A is the intersection of the box surface with the shockwave generated by a massless particle
of energy δM . The horizon H grows to H̃ after the shock. Extrapolations of spacetime regions
beyond their regime of validity are weakly colored. B (B̃) is the intersection of the shockwave with
the initial (new) cutoff surface at time t1 (t̃1). C (C̃) is the intersection of the outgoing signal with
the initial (new) cutoff surface at time t2 (t̃2). See text for more explanations.

AdS2 asymptotics this surface can be removed to conformal infinity (X0 → ∞) with the
infalling matter crossing Xc after a finite amount of time. In models with different space-
time asymptotics, a finite X0 eliminates the infinite waiting time required for matter to
arrive from spatial infinity along an ingoing null geodesic.

5.2 Calculation for generic Maxwell-dilaton gravity

As in section 4 we set f(X) = 0 to reduce clutter in the following calculation. The
replacement V → V − q2/(8f) (or equivalently, w → w + q2H/4) generalizes our result to
models with f(X) 6= 0.

In the Schwarzschild-like coordinates used in (2.2) the line element takes the form

ds2 = −ξ(X) dt2 + 1
ξ(X) dr2 . (5.1)

Using ∂rX = e−Q, null geodesics are given by

dt = ± dX
w(X)− 2M (5.2)
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where the + and − signs corresponds to outgoing and ingoing rays, respectively. The
coordinate-time separation for two events A and B along a null geodesic is then

tB − tA = ±F (XA, XB) F (XA, XB) =
XB∫
XA

dX ′

w(X ′)− 2M . (5.3)

This quantity is finite for two points with Xh < X < ∞, and exhibits a logarithmic
divergence as one of the points approaches the horizon Xh. For models where w grows
faster than linear as X → ∞, null rays reach or arrive from spatial infinity in finite time.
But we consider a broader class of models, so we enclose the system in a “box” defined by
the surface X = X0 with X0 � Xc. Figure 2 illustrates this construction for asymptotically
flat dilaton gravity.

Now consider an ingoing null ray carrying energy δM that starts at X0 at t = 0. It
crosses Xc at t1 = −F (X0, Xc) and passes through a point Xε = (1 + ε)Xh very near
(0 < ε � 1) the horizon at time tε = −F (X0, Xε) = t1 − F (Xc, Xε). In the spacetime
of a black hole with mass M , an outgoing ray passing through this event would reach Xc

at t2 = tε + F (Xε, Xc). So the expected waiting time between the ingoing and outgoing
signals crossing Xc is

t2 − t1 = 2F (Xε, Xc) . (5.4)

For 0 < ε� 1 this waiting time is dominated by a log ε contribution from the region near
the horizon.

t2 − t1 = 2
wh′

log 1
ε

+ . . . = β

2π log 1
ε

+ . . . (5.5)

The ellipsis indicates terms proportional to non-negative powers of ε. The proper time
interval T2 − T1 measured by an observer at Xc is related to this waiting time by a factor
of
√
ξc, giving

T2 − T1 = βc
2π log 1

ε
+ . . . ⇒ 1

ε
= exp

(2π
βc

(T2 − T1)
)
× (constant) (5.6)

The arrival of the shockwave increases the mass of the black hole to M̃ = M + δM . Null
rays in this spacetime satisfy

t̃B − t̃A = ±F̃ (XA, XB) F̃ (XA, XB) =
XB∫
XA

dX ′

w(X ′)− 2M̃
. (5.7)

We now repeat the calculation above, with the ingoing null geodesic passing through Xε

at time t̃ε and an outgoing ray from that event crossing Xc at time t̃2. There is a shift in
the location of the horizon given by w(Xh + δXh) = 2(M + δM), which to first order in
δM yields

δXh = 2 δM
wh′

. (5.8)

As long as ε > δXh/Xh we may expand F̃ (XA, XB) in (5.7) in powers of δM . The O(δM)
shift in the time at which the outgoing null ray crosses Xc is dominated by a 1/ε term
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when 0 < ε� 1
t̃2 = t2 + 4 δM

(wh′)2Xh

1
ε

+ . . . (5.9)

where the ellipsis again denotes terms proportional to non-negative powers of ε. Thus,
the proper crossing time T̃2 as measured by an observer at Xc in the spacetime with mass
M̃ = M + δM differs from the expected value T2 for an observer in the spacetime with
mass M by

T̃2 − T2 = βc
2π

2 δM
wh′Xh

exp
(2π
βc

(T2 − T1)
)
× (constant) . (5.10)

Using (5.8) and the universal result S = 2πXh for the black hole entropy, this can be
written as

T̃2 − T2 = βc
2π (δ logS) exp

(2π
βc

(T2 − T1)
)
× (constant) . (5.11)

The proper-time delay in the arrival of the signal grows exponentially with the expected
waiting time and is characterized by the maximal Lyapunov exponent

λL = 2π Tc (5.12)

where Tc = 1/βc is the proper local temperature measured by an observer at Xc. In this
calculation the proper times are defined with respect to the bulk metric at Xc. However,
one may instead express the result in terms of proper quantities as measured with respect
to the “field theory” metric of section 3, in which case the exponent is λL = 2π TFT.

5.3 Chaos bound saturation

The calculation of the time delay of an outgoing signal due to an infalling shockwave
indicates that the bound (1.2) is saturated for all of the models described in section 2.
This should not come as a surprise; the time delay (5.10) is due to the outgoing signal
originating a bit closer to a horizon than it would have in the absence of a shockwave. This
is a near-horizon effect that is insensitive to the asymptotics. As was pointed out in [12],
the time delay in the JT model is not affected by the presence of a finite cut-off at Xc. For
the same reason, it is insensitive to both the “box” at X0 � Xc and the general behavior
of w(X) as X →∞.

The benefit of the present calculation is that it establishes the result (5.12) for a large
group of models, in a manner that makes the insensitivity to the specific asymptotics
manifest. On the other hand, there is no known holographic dual for most of the models
we consider, which prevents us from matching the result (5.12) to a boundary calculation.

6 Discussion

The general class of Maxwell-dilaton gravity models described in section 2 shares certain
universal features with the JT model. Specifically, they satisfy a flow equation with the
same general structure as (1.4) and saturate the bound (1.2) on the Lyapunov exponent.
For the JT model, these features are understood in the context of (dimensionally reduced)
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AdS3/CFT2 duality, and predictions on the dilaton gravity side can be matched to well-
defined calculations in the dual quantum mechanics. But many of the Maxwell-dilaton
gravity models we consider, which include the dimensional reduction of higher-dimensional
theories with non-AdS asymptotics, do not have a known holographic dual.

While our treatment of dilaton gravity was rather generic and included asymptotically
AdS2, Rindler or flat spacetimes we did make a couple of assumptions. The main mo-
tivation to relax some of them is the desire to further generalize the universality of the
flow equation (3.12) and chaos bound saturation (5.12) (or to find counter examples). We
review now our assumptions and reasons to drop them.

The first one concerns the boundary, which we assumed to be a dilaton isosurface.
For applications to SYK/JT-like correspondences this assumption should be dropped. A
consequence is an additional boundary term beyond the ones present in the action (2.15),
namely a kinetic term for the dilaton [25]. This boundary term and the fact that the
dilaton varies along the boundary will modify some of our discussion accordingly. We do
not expect this generalization to change the flow equations, nor our main conclusions on
chaos bound saturation.

The second one is asymptotic positivity of the Weyl invariant dilaton function w (2.7),
which excludes in particular asymptotic dS2 behavior.5 For toy models of cosmology it
could be useful to avoid this assumption. As we showed in section 3.2 the flow equa-
tion (3.15) follows from the quasi-local form of the first law of black hole thermodynamics.
Theories that admit cosmological horizons also satisfy a first law, so it is not unreasonable
to expect that it can also be recast as a flow equation. However, without relaxing our
condition on w we cannot speculate on the structure and interpretation of such a flow
equation, if it exists, and we therefore leave this point open to future discussions.

The third assumption is asymptotic dominance of w over the coupling function H (2.8).
Relaxing this requirement would allow, among other things, to discuss models where the
cosmological constant is state-dependent [27]. Another generalization in the same spirit,
called ‘asymptotic mass domination’ was discussed in [28]. In that case neither w nor H
but rather the mass M in the Killing norm (2.3) dominates the asymptotic behavior. Both
of these cases require a modification of the boundary action (2.15). We have not checked
how such generalizations affect the flow equations. It could be rewarding to do so.

Even if we drop none of the assumptions above there are numerous generalizations
by including extra fields, such as matter fields, extra (non-)abelian gauge fields or higher
spin fields. The impact of matter fields on the interpretation of T T̄ -deformations [29] are
indicative that the inclusion of matter fields can lead to qualitative changes, in particular
concerning the interpretation of the dual field theory. It could be worthwhile to investi-
gate which of the generalizations has an impact on the flow equations, the chaos bound
saturation and the (existence of the) dual field theory.

5One of the key results of the study of two-dimensional cosmological horizons with scalar matter in [26]
is the absence of a Lyapunov exponent. Instead, their out-of-time-ordered correlation functions oscillate as
a consequence of a crucial sign change (their kinetic term in the Schwarzian action has the ‘wrong’ sign).
Their results about cosmological horizons do not contradict our results about black hole horizons, but they
showcase that one has to be careful in extrapolating black hole results and insights to cosmological ones.
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Finally, we stress that our no-go result does not imply the absence of potentially inter-
esting IR dynamics in the dual field theory. While there is no way to connect an AdS2 fixed
point in the UV with a dS2 fixed point in the IR, we have confirmed that centaur-inspired
flows like the one associated with (4.2) exist, where asymptotically AdS2 flows into a strong
coupling region of (approximately) positive curavture. If there was a dual field theory it
would exhibit QCD-like behavior in the sense that from the dual field theory perspective we
have a (nearly) CFT fixed point in the UV that flows to a strong coupling region in the IR.
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