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Abstract: The Standard Model predicts a long-range force, proportional to G2
F /r

5, be-
tween fermions due to the exchange of a pair of neutrinos. This quantum force is feeble and
has not been observed yet. In this paper, we compute this force in the presence of neutrino
backgrounds, both for isotropic and directional background neutrinos. We find that for the
case of directional background the force can have a 1/r dependence and it can be signif-
icantly enhanced compared to the vacuum case. In particular, background effects caused
by reactor, solar, and supernova neutrinos enhance the force by many orders of magnitude.
The enhancement, however, occurs only in the direction parallel to the direction of the
background neutrinos. We discuss the experimental prospects of detecting the neutrino
force in neutrino backgrounds and find that the effect is close to the available sensitivity
of the current fifth force experiments. Yet, the angular spread of the neutrino flux and
that of the test masses reduce the strength of this force. The results are encouraging and
a detailed experimental study is called for to check if the effect can be probed.
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1 Introduction

It is well known that classical forces, like the Coulomb potential, can be derived from a
t-channel mediator-exchange diagram in quantum field theory. The same treatment can be
applied to the exchange of massive gauge bosons and scalars, resulting in a Yukawa poten-
tial. To obtain a classical force, the mediator of the force must be a boson. However, a pair
of fermions behaves as an effective scalar and can mediate long-range forces. Such forces
are sometimes called “quantum forces.” Quantum forces have been studied extensively in
the literature, for example, see [1–4], in an attempt to both test the Standard Model (SM)
and to probe new physics beyond.
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Figure 1. A diagrammatic explanation of neutrino forces in the vacuum (left) and in a neutrino
background (right). The background effect can be taken into account by replacing one of the
neutrino propagators with a background-modified propagator (bkg. ν), which can be computed in
finite temperature field theory. The effect can be physically interpreted as absorbing a neutrino
from the background and then returning it back to the background.

In the SM, the force between fermions due to neutrino pair exchange is also well
studied. Since neutrinos are very light, the force mediated by them is long range, without
any significant exponential suppression with distance. Neutrino forces are generated by the
exchange of a neutrino-antineutrino pair between two particles, as shown in the left panel of
figure 1. The original idea of the neutrino-mediated force can be traced back to Feynman,
who tried to explain the 1/r gravity as an emergent phenomenon due to the exchange of
two neutrinos when taking into account multi-body effects [5]. Previous calculations of
such forces in vacuum were first carried out in refs. [1, 6, 7] using the dispersion technique
for massless neutrinos. Later, the effects of neutrino masses [8] and flavor mixing [9–11]
were included, which in principle can be used to determine the nature of neutrinos [11, 12],
namely, whether neutrinos are Dirac or Majorana particles. The study of neutrino forces
in the framework of effective field theories was carried out in ref. [13].

Neutrino forces have important cosmological and astrophysical effects, such as the
stability of neutron stars [14–20] and the impact on dark matter in the early universe [21,
22]. Recently, the calculation of neutrino forces went beyond the four-fermion contact
interaction and a general formula describing the short-range behavior of neutrino forces
was derived [23].

While theoretically we know that the force should be there, it has never been confirmed
experimentally. The reason is that the force is very weak. The fact that it is second order
in the weak interaction makes it proportional to G2

F . In the limit of massless neutrinos, it
is explicitly

V (r) ∼ G2
F

r5 , (1.1)

where GF = 1.166 × 10−5GeV−2 is the Fermi constant and r is the distance between the
two particles. Thus, already at distances longer than about a nanometer, the neutrino
force is smaller than the gravitational force between elementary particles.

Confirming the neutrino force experimentally would be interesting for several rea-
sons. First, it would establish an exciting prediction of quantum field theory that remains

– 2 –
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untested. Second, it would enable us to probe the neutrino sector of the SM since the
neutrino force is sensitive to the absolute masses of the neutrinos. Also, it provides a test
of the electroweak interaction and may serve as a probe of new physics beyond the SM.
Lastly, it would enable us to look for other quantum forces that may be present due to yet
undiscovered light particles [2–4, 24–26].

Given that the neutrino force is so feeble, we need to look for novel ways to probe it.
One such idea was put forward in [27], which pointed out that the neutrino force provides
the leading long-range parity-violation effect in the SM. Thus, it is natural to look for such
effects. Yet even this seems too small to be probed experimentally.

In this paper, we explore a different path: the neutrino force in the presence of an
intense neutrino background, as shown in the right panel of figure 1. The presence of the
background can significantly increase the strength of the interaction. In fact, the effect of
a neutrino background was studied before, for the cosmic neutrino background (CνB), in
refs. [28–30]. However, the effect in this case is small because the number density of the
cosmic neutrinos is very small today.

In this work, we focus on scenarios where the background is much more dense; in par-
ticular, for solar and reactor neutrinos. On the theoretical level, this differs from the case
of CνB in that the background is not spherically symmetric. This results in a preferred di-
rection, providing a fundamentally different signal than that of the vacuum and CνB cases.

Numerically, we find that the effect of reactor and solar neutrinos is remarkably sig-
nificant and can enhance the signal by more than 20 orders of magnitude. In particular,
the encouraging result is that the effect is close to the available sensitivity of fifth-force
experimental searches. Thus, we hope that using the effect of background neutrinos will
enable us to probe the neutrino force.

The paper is organized as follows. In section 2, we set up the general formalism
to calculate the neutrino force in an arbitrary neutrino background. After applying this
formalism to the case of CνB in section 3, we calculate the neutrino force in a directional
neutrino flux background in section 4. In section 5, we discuss the detection of neutrino
forces in neutrino backgrounds and compare our theoretical results with the experimental
sensitivities. Our main conclusions are summarized in section 6. The technical details are
expanded in the appendices.

2 Formalism

In this section, we introduce the general formalism to compute neutrino forces between two
fermions in a general neutrino background. Consider a four-fermion interaction with two
Dirac neutrinos (for the case of Majorana neutrinos, see section 3.3) and two fermions:

Lint = −GF√
2

[ν̄γµ (1− γ5) ν] [χ̄γµ (gχV + gχAγ5)χ] , (2.1)

where GF is the Fermi constant, ν denotes a Dirac neutrino with mass mν , χ is a generic
fermion in or beyond the SM with mass mχ, gχV and gχA are effective vector and axial
couplings of χ to the neutrinos, obtained from integrating out heavy weak bosons.

– 3 –
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neutrino flavor χ = e χ = u χ = d χ =proton χ =neutron
νe

1
2 + 2s2

W
1
2 −

4
3s

2
W −1

2 + 2
3s

2
W

1
2 − 2s2

W −1
2

νµ, ντ −1
2 + 2s2

W
1
2 −

4
3s

2
W −1

2 + 2
3s

2
W

1
2 − 2s2

W −1
2

Table 1. Values of the vector coupling gV in eq. (2.1) in the SM. Here sW ≡ sin θW is the sine of
the Weinberg angle.

Before we start, we note the following:

1. We work in the non-relativistic (NR) limit, i.e, the velocity of the interacting fermions
v � 1 . The description of particle scattering via a potential V (r) is accurate only
in this limit.

2. Throughout our work, we only consider the spin-independent part of the potential.
The reason is that the spin-dependent parts are usually averaged out when neutrino
forces are added at macroscopic scales. The spin-independent part of the potential
only depends on the vector coupling gχV . In table 1, we collect the values of gχV in
the SM [31]. When χ is the proton or the neutron, gχV can be obtained by simply
summing over the vector couplings to the quarks.

In vacuum, the diagram in the left panel of figure 1 leads to a long-range force that we
can describe by an effective potential proportional to r−5 in the massless-neutrino limit, r
being the distance of the two external particles. More explicitly, the spin-independent part
of the neutrino potential between two fermions χ1 and χ2 in that limit reads

V0(r) = G2
F g

1
V g

2
V

4π3
1
r5 (m−1

χ1,2 � r � m−1
ν ) . (2.2)

Here, we use g1
V ≡ gχ1

V and g2
V ≡ gχ2

V to simplify the notation. Note that, for r � 1/mν ,
the potential is exponentially suppressed by e−2mνr [8], while the NR approximation of χ
becomes invalid as r approaches m−1

χ1,2 . The short-range behavior of neutrino forces was
first investigated in ref. [23].

In a neutrino background with finite neutrino number density or temperature, the
neutrino propagator should be modified, as shown on the right panel of figure 1. The
modified propagator is often derived in the real-time formalism in finite temperature field
theory (for a detailed review, see refs. [32–36]. Also, see appendix A for a simple and
pedagogical re-derivation of the modified propagator.) We then have:

Sν(k) = (/k +mν)
{

i

k2 −m2
ν + iε

− 2πδ
(
k2 −m2

ν

) [
Θ
(
k0
)
n+ (k) + Θ

(
−k0

)
n− (k)

]}
,

(2.3)
where ε → 0+, Θ is the Heaviside theta function, and n± (k) denote the momentum
distributions of the neutrinos and anti-neutrinos respectively, such that the integrals∫
n± (k) d3k/(2π)3 correspond to their respective number densities. The first part is the

usual fermion propagator in vacuum while the second part accounts for the background
effect. The second part might seem counter-intuitive in the sense that the Dirac delta
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function requires the neutrino to be on-shell while, in figure 1, this on-shell neutrino is
used to connect two spatially separated particles. To understand this effect, one should
keep in mind that when k in eq. (2.3) is fixed, the uncertainty principle dictates that the
neutrino cannot be localized and is spread out over space. So theoretically, the propaga-
tor’s second (background) term, just like the vacuum part, can mediate momentum over a
large distance.

According to the Born approximation, the effective potential is the Fourier transform
of the low-energy elastic scattering amplitude of χ1 with χ2,

V (r) = −
∫

d3q
(2π)3 e

iq·rA(q) . (2.4)

Here, A(q) is the scattering amplitude in the NR limit, which should be computed by
integrating the neutrino loop in figure 1 using the modified neutrino propagator in eq. (2.3):

iA(q) = G2
F g

1
V g

2
V

2

∫
d4k

(2π)4 Tr
[
γ0 (1− γ5)Sν(k)γ0 (1− γ5)Sν (k + q)

]
. (2.5)

Using the NR approximation we have q ≈ (0,q), thus the amplitude A only depends on
the three-momentum q. Substituting eq. (2.3) into eq. (2.5), one can see that when both
neutrino propagators in eq. (2.5) take the first term in the curly bracket of eq. (2.3), it
leads to the vacuum potential V0(r). When both propagators take the second term, the
result vanishes, as we show in appendix B. The background effect comes from cross terms,
being proportional to n±. We denote the background contribution to A(q) by Abkg(q)
and, correspondingly, the contribution to V (r) by Vbkg(r):

A(q) = A0(q) +Abkg(q) , V (r) = V0(r) + Vbkg(r) . (2.6)

Notice that there is no interference between the vacuum and the background amplitudes
in our calculation because, unlike computing cross sections, here we do not need to square
the total amplitude. The background contribution Abkg(q), after some calculations in
appendix B, reduces to

Abkg(q) = 4G2
F g

1
V g

2
V

∫
d3k

(2π)3
n+ (k) + n− (k)

2Ek

[
2 |k|2 +m2

ν + k · q
2k · q + |q|2

+ (k→ −k)
]
. (2.7)

For isotropic distributions (e.g. cosmic neutrino background, diffuse supernova neutrino
background), n± are independent of the direction of the momentum, i.e., n±(k) = n±(κ)
with κ ≡ |k|, leading to an isotropic Abkg and hence an isotropic Vbkg. In this case,
the angular part of the above integral can be integrated out analytically, resulting in the
following expression for Vbkg:

Vbkg(r) = −G
2
F g

1
V g

2
V

4π3r4

∫ ∞
0

dκκ
n+ (κ) + n− (κ)√

κ2 +m2
ν

[(
1 +m2

νr
2
)

sin (2κr)− 2κr cos (2κr)
]
.

(2.8)
Up to now, we have not used any specific neutrino distributions. In what follows, we

apply the above formulae to specific forms of n± and compute the corresponding potentials.
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3 Neutrino forces with isotropic neutrino background

We now discuss the case where the neutrino background is isotropic and focus on a thermal-
like distribution. In particular, this applies to the cosmic neutrino background (CνB),
which motivates this section.

The existence of isotropic CνB today, with a temperature around 1.9 K and number
density about 56/cm3 per flavor, is one of the most solid predictions from big bang cos-
mology [37]. The temperature correction to neutrino forces in the CνB was first calculated
in ref. [28] with the neutrino momentum distribution to be

n± (k, T ) = exp [(±µ− κ) /T ] with κ ≡ |k| , (3.1)

where µ and T are the chemical potential and temperature of the CνB.
Ref. [28] studied the case of Dirac neutrinos in the massless (mν = 0) and NR (mν � T )

limit. Later, the background effects of the CνB on neutrino forces were further studied in
refs. [29, 30]. In ref. [29] the neutrino distribution was taken to be a standard Boltzmann
distribution,

n± (k, T ) = exp [(±µ− Ek) /T ] with Ek =
√
|k|2 +m2

ν , (3.2)

and the complete expressions of the background potential Vbkg(r) were given for both Dirac
and Majorana neutrinos. The massless limit of the result in ref. [29] matches that in ref. [28].
However, the results of the massive case are very different. In particular, the expression
of Vbkg(r) in ref. [29] is exponentially suppressed at large distances, Vbkg(r) ∼ e−2mνr (for
r � 1/mν), while that in ref. [28] is not, Vbkg(r) ∼ mν/(Tr5) (for r � 1/T � 1/mν).
This discrepancy on the long-range behavior of Vbkg(r) is due to the difference between
the distributions in eqs. (3.1) and (3.2): the former corresponds to the number density of
relic neutrinos proportional to T 3, while the latter distribution corresponds to the number
density that would be exponentially suppressed by e−mν/T for NR neutrinos. In addition,
in ref. [30], Vbkg(r) was calculated for the standard Fermi-Dirac distribution

n± (k, T ) = 1
e(Ek∓µ)/T + 1

, (3.3)

for arbitrary chemical potential, but the mass of neutrinos was neglected therein.
However, in the framework of standard cosmology, neutrinos decoupled at T ∼ MeV,

after which they were no longer in thermal equilibrium with the cosmic plasma. Instead,
they propagated freely until today, maintaining their own distribution:

n± (k, T ) = 1
e(κ∓µ)/T + 1

. (3.4)

The reason why cosmic neutrinos obey the distribution function in eq. (3.4), instead
of eq. (3.3), is that κ, rather than Ek, scales as inversely proportional to the scale factor
a, i.e., κ ∝ 1/a [37]. In the relativistic limit, there is no difference between eqs. (3.3)
and (3.4). However, we know that the temperature of CνB today is around 10−4 eV and
neutrino oscillation experiments [38] tell us that at least two of the three active neutrinos

– 6 –
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are NR in the CνB today. Therefore, the results in refs. [29, 30] using eqs. (3.2) and (3.3)
only hold for relativistic neutrino background and are invalid for the CνB today, while the
computation in ref. [28] using eq. (3.1) is an approximate result.

We emphasize that a strict computation of the background effects on neutrino forces
from the CνB today using eq. (3.4) is still lacking, and this is what we do in this section.

3.1 Maxwell-Boltzmann distribution

As a warm-up, we first take the distribution function in eq. (3.1), whose massless and NR
limits have already been given in ref. [28]. Substituting

n+ (k, T ) + n− (k, T ) = 2 cosh
(
µ

T

)
exp

(
− κ
T

)
, (3.5)

into eq. (2.8), we obtain

Vbkg(r) = −G
2
F g

1
V g

2
V

2π3 cosh
(
µ

T

)
T

r4

[(
1 + b2x2

)
IMB (x, b)− b ∂

∂b
IMB (x, b)

]
, (3.6)

where we have defined the dimensionless quantities

x ≡ mν

T
, b ≡ rT, y ≡ κ

T
, (3.7)

and the dimensionless integral

IMB(x, b) =
∫ ∞

0
dy

y√
y2 + x2 e

−y sin (2by) . (3.8)

Eq. (3.8) cannot be integrated analytically but can be computed numerically for arbitrary
values ofmν , T and r. We are mainly interested in two special scenarios: x = 0 (the lightest
active neutrino can still be massless) and x � 1 (according to the neutrino oscillation
experiments, the heaviest active neutrino is at least 0.05 eV, which corresponds to x & 500
if we consider the temperature of CνB).

For x = 0, we have

IMB (0, b) = 2b
1 + 4b2 = 2rT

1 + 4r2T 2 , (3.9)

and
Vbkg(r) = −8G2

F g
1
V g

2
V

π3 cosh
(
µ

T

)
T 4

r (1 + 4r2T 2)2 (mν = 0) , (3.10)

which is consistent with the result in refs. [28, 29]. In particular, for high temperatures,
r � 1/T , we notice that VT (r) ∼ 1/r5, which is almost independent of the temperature.
For low temperature, r � 1/T , we find that VT (r) ∼ T 4/r.

For x � 1, since the integral in eq. (3.8) with y > 1 is exponentially suppressed, the
dominant contribution to the integral comes from the region 0 < y � x, thus we have

IMB (x, b) ' 1
x

∫ ∞
0

dyye−y sin (2by) = 1
x

4b
(1 + 4b2)2 = 4rT 2

m (1 + 4r2T 2)2 , (3.11)

– 7 –
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and
Vbkg(r) = −2G2

F g
1
V g

2
V

π3 cosh
(
µ

T

)
mνT

3

r (1 + 4r2T 2)2 (mν � T ) , (3.12)

which is consistent with the result in ref. [28]. Note that, in contrast to the result in
ref. [29], there is no exponential suppression in eq. (3.12). In particular, for r � 1/T , we
obtain

Vbkg(r) = −2G2
F g

1
V g

2
V

π3 cosh
(
µ

T

)
mνT

3

r
(mν � T, r � T−1) , (3.13)

while, for r � 1/T ,

Vbkg(r) = −G
2
F g

1
V g

2
V

8π3 cosh
(
µ

T

)
mν

T

1
r5

(
mν � T, r � T−1

)
, (3.14)

which is enhanced by a factor of mν/T compared with the vacuum result in eq. (2.2) for
NR background neutrinos.

3.2 Fermi-Dirac distribution

We now turn to the realistic distribution of background neutrinos in eq. (3.4). The first
thing to notice is that the neutrino degeneracy parameter ζ ≡ µ/T , which characterizes
the neutrino-antineutrino asymmetry, is actually very small from constraints of big bang
nucleosynthesis: ζ . O

(
10−2) [39, 40]. Therefore, we can expand the neutrino distribution

function into a series of ζ,

n+ (κ, T ) + n− (κ, T ) = 2
eκ/T + 1

+O
(
ζ2
)
, (3.15)

and only take the leading-order term, which is independent of ζ. Then the background
potential turns out to be

Vbkg(r) = −G
2
F g

1
V g

2
V

2π3
T

r4

[(
1 + b2x2

)
IFD (x, b)− b ∂

∂b
IFD (x, b)

]
, (3.16)

where x, b, and y are defined in eq. (3.7) and

IFD (x, b) =
∫ ∞

0
dy

y√
y2 + x2

1
ey + 1 sin (2b y) . (3.17)

The integral in eq. (3.17) can be numerically calculated for arbitrary values of mν , T , and
r. In the massless limit (x = 0) and NR limit (x � 1), IFD (x, b) can be carried out
analytically.

For x = 0, we have

IFD (x, b) = 1
4

[1
b
− 2π csch (2πb)

]
, (3.18)

and the background potential

Vbkg(r) = −G
2
F g

1
V g

2
V

4π3
1
r5 {1− πrT csch (2πrT ) [1 + 2πrT coth (2πrT )]} (mν = 0) , (3.19)

– 8 –
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νBDF mν =0, r�T−1 mν =0, r�T−1 mν�T , r�T−1 mν�T , r�T−1

MB − 8
π3G

2
F g

1
V g

2
V
T 4

r − 1
2π3G

2
F g

1
V g

2
V

1
r5 − 2

π3G
2
F g

1
V g

2
V
mνT 3

r − 1
8π3G

2
F g

1
V g

2
V
mν
T

1
r5

FD −7π
90G

2
F g

1
V g

2
V
T 4

r − 1
4π3G

2
F g

1
V g

2
V

1
r5 −14.4

8π3 G
2
F g

1
V g

2
V
mνT 3

r − 1
32π3G

2
F g

1
V g

2
V
mν
T

1
r5

Table 2. Comparison of the short- and long-range behaviors of the background potential Vbkg(r) in
the massless and non-relativistic limits with the neutrino Background Distribution Function (νBDF)
taking the Maxwell-Boltzmann (MB) distribution in eq. (3.1) and Fermi-Dirac (FD) distribution in
eq. (3.4). We have neglected the chemical potential in both distribution functions.

which is consistent with the result obtained in ref. [30], where the neutrino distribution
eq. (3.3) was taken but the neutrino mass was neglected. An interesting observation is
that, in the long-range limit,

Vbkg(r) = −G
2
F g

1
V g

2
V

4π3
1
r5 (mν = 0, r � T−1) , (3.20)

which happens to be the opposite of eq. (2.2). This means that, for massless neutrinos in
the limit ζ → 0, the vacuum potential is completely screened off by the CνB.

Let us now take a look at the NR limit of eq. (3.17). As with the case of Boltzmann
distribution, for x� 1, one obtains

IFD (x, b) ' 1
x

∫ ∞
0

dy
y

ey + 1 sin (2by) (3.21)

= i

8x

[
ψ(1)

(1
2 + ib

)
− ψ(1)

(1
2 − ib

)
+ ψ(1) (1− ib)− ψ(1) (1 + ib)

]
,

where the n-th ordered polygamma function is defined as

ψ(n)(z) = d

dz
ψ(n−1)(z) = dn+1

dzn+1 log Γ(z) , (3.22)

with Γ(z) being the gamma function. Therefore, the background potential of NR cosmic
neutrinos turns out to be

Vbkg(r) = −iG
2
F g

1
V g

2
V

16π3
T 2

mr4

{[
ψ(1)

(1
2 + ib

)
−ψ(1)

(1
2− ib

)
+ψ(1) (1− ib)−ψ(1) (1+ ib)

]
×
(
1+b2x2

)
− ib

[
ψ(2)

(1
2 + ib

)
+ψ(2)

(1
2− ib

)
−ψ(2) (1− ib)−ψ(2) (1+ ib)

]}
,

(mν � T ) (3.23)

In particular, for r � 1/T , i.e., b� 1, we have

Vbkg(r) = −
[
ψ(2)(1)− ψ(2)

(1
2

)]
G2
F g

1
V g

2
V

8π3
mνT

3

r

= −14.4× G2
F g

1
V g

2
V

8π3
mνT

3

r

(
mν � T, r � T−1

)
, (3.24)

while, for the long-range limit b� 1, one obtains

Vbkg(r) = −G
2
F g

1
V g

2
V

32π3
mν

T

1
r5

(
mν � T, r � T−1

)
, (3.25)
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which is, as in the case of the Boltzmann distribution, enhanced by a factor of mν/T

compared with the vacuum potential in eq. (2.2).
To sum up, we have provided in eq. (3.16) the general background potential valid for

any temperatures and distances and discussed the special scenarios in the massless and
NR neutrinos limits, which have simple analytical expressions. Compared to the results
of Maxwell-Boltzmann distribution in last subsection, we conclude that both distributions
lead to similar short-range and long-range behaviors of the background potential in the
massless limit (mν = 0) and NR limit (mν � T ), up to some numerical factors (cf. table 2).

3.3 The case of Majorana neutrinos

The above calculations for Dirac neutrinos can be generalized to the scenario of Majo-
rana neutrinos. If ν is a Majorana neutrino with mass mν , then its general four-fermion
interaction is given by

Lint = GF√
2

[ν̄γµγ5ν] [χ̄γµ (gχV + gχAγ5)χ] , (3.26)

where we have used the identity ν̄γµν = 0 for Majorana fermions comparing with eq. (2.1).
Taking into account the modified neutrino propagator due to the background, eq. (2.3),
the scattering amplitude reads

iA(q) = G2
F g

1
V g

2
V

2

∫
d4k

(2π)4 Tr
[
γ0γ5Sν(k)γ0γ5Sν (k + q)

]
× 2 , (3.27)

where the factor of 2 is due to the exchange of two neutrino propagators in the loop. As
with the Dirac case, the background effect comes from the crossed terms. After some
algebra, one obtains

Abkg(q) = 4G2
F g

1
V g

2
V

∫
d3k

(2π)3
n+ (k) + n− (k)

2Ek

[
2 |k|2 + k · q
2k · q + |q|2

+ (k→ −k)
]
. (3.28)

For isotropic distributions n±(k) = n±(κ), eq. (3.28) can be reduced to

Vbkg(r) = −G
2
F g

1
V g

2
V

4π3r4

∫ ∞
0

dκκ
n+ (κ) + n− (κ)√

κ2 +m2
ν

[sin (2κr)− 2κr cos (2κr)] , (3.29)

which, as expected, matches the result for Dirac neutrinos in eq. (2.8) in the massless limit.
We then take the Fermi-Dirac distribution in eq. (3.4) to calculate Vbkg(r) in the CνB.

Note that for Majorana neutrinos, the chemical potential vanishes, so that

n+(κ) = n−(κ) = 1
eκ/T + 1

. (3.30)

Therefore, the background potential turns out to be

Vbkg(r) = −G
2
F g

1
V g

2
V

2π3
T

r4

[
IFD (x, b)− b ∂

∂b
IFD (x, b)

]
, (3.31)

where x, b, and the integral IFD(x, b) is defined in eqs. (3.7) and (3.17).
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nature of neutrino general expression r � T−1 r � T−1

Dirac Eq. (3.23) −14.4
8π3 G

2
F g

1
V g

2
V
mνT 3

r − 1
32π3G

2
F g

1
V g

2
V
mν
T

1
r5

Majorana Eq. (3.32) −248.9
8π3 G

2
F g

1
V g

2
V

T 5

mνr
− 1

8π3G
2
F g

1
V g

2
V

1
mνT

1
r7

Table 3. Comparison of the short- and long-range behavior of the background potential Vbkg(r) in
non-relativistic CνB (mν � T ) with n± taking the Fermi-Dirac distribution in eq. (3.4) for Dirac
and Majorana background neutrinos.

In the massless limit (x = 0), it is obvious that Vbkg(r) is the same as we have for the
Dirac neutrino case in eq. (3.19).

In the NR limit (x � 1), IFD(x, b) can be integrated analytically and is given by
eq. (3.21). Therefore the background potential turns out to be

Vbkg(r) = −iG
2
F g

1
V g

2
V

16π3
T 2

mr4

{[
ψ(1)

(1
2 + ib

)
−ψ(1)

(1
2− ib

)
+ψ(1) (1− ib)−ψ(1) (1+ ib)

]
−ib

[
ψ(2)

(1
2 + ib

)
+ψ(2)

(1
2− ib

)
−ψ(2) (1− ib)−ψ(2) (1+ ib)

]}
. (3.32)

In particular, for the short-range limit (b� 1) one obtains

Vbkg(r) = −
[
ψ(4)(1)− ψ(4)

(1
2

)]
G2
F g

1
V g

2
V

24π3
T 5

mνr

= −248.9× G2
F g

1
V g

2
V

8π3
T 5

mνr

(
mν � T, r � T−1

)
, (3.33)

while for the long-range limit (b� 1), we have

Vbkg(r) = −G
2
F g

1
V g

2
V

8π3
1

mνTr7

(
mν � T, r � T−1

)
. (3.34)

In table 3, we have compared the short- and long-range behaviors of the background
potential Vbkg(r) due to Dirac and Majorana neutrinos in the NR regime. Notice that,
at short distances (r � T−1 and m−1

ν � T−1), the background potential of Majorana
neutrinos differs from that of Dirac neutrinos by a factor of m2

ν/T
2 � 1. Whereas, at

long distances (r � T−1 � m−1
ν ), the relative factor is m2

νr
2 � 1. This difference can be

understood by the fact that the mass term in the neutrino propagator dominates in the NR
limit, and there should be two mass insertions in the Dirac-neutrino propagator compared
to just one mass insertion in the Majorana-neutrino propagator. Therefore, we conclude
that for NR background neutrinos, the background potential of Dirac neutrinos is much
larger than that of Majorana neutrinos at both long and short distances.

3.4 Discussion

We close this section by briefly summarizing the main results of the thermal corrections to
neutrino forces from cosmic background neutrinos.

Neutrinos in the CνB are NR today (although the lightest neutrino can still be
massless) and obey the Fermi-Dirac distribution in eq. (3.4) with negligible chemical
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potential. The general expressions of the finite-temperature corrections, valid for arbitrary
neutrino masses and distances, are given by eqs. (3.16) and (3.31) for Dirac and Majorana
neutrinos, respectively. In the massless limit, the background potential Vbkg(r) is the
same for Dirac and Majorana neutrinos. However, for NR background neutrinos, Vbkg(r)
is much larger for Dirac neutrinos. This distinction can, at least in principle, be used to
determine the nature of neutrinos.

The most remarkable feature of the background potential from CνB is that, at large
distances (r � 1/mν), it is not exponentially suppressed, whereas the vacuum potential is
suppressed by e−2mνr [8]. This is because the number density of background neutrinos in
the CνB is always proportional to T 3, no matter whether they are relativistic or not. Since
the total potential is given by adding the vacuum part and the background part, neutrino
forces between two objects will be dominated by the corrections of CνB in the long-range
limit for massive mediated neutrinos. However, neutrino forces including thermal correc-
tions of CνB are still too small to reach the experimental sensitivities today (cf. section 5).
Below we will discuss neutrino forces in other higher-energy neutrino backgrounds, which
might offer prospects of experimental detection in the near future.

Finally, we comment on the controversial topic of many-body neutrino forces in neutron
stars. In ref. [14], a catastrophically large many-body neutrino force was obtained using
the vacuum neutrino propagator. Matter effects due to the neutrons have been computed
in ref. [33]. It was claimed in [15–20] that this changes the result of ref. [14]. Our result
is irrelevant to this issue as we only consider the neutrino background, and we do not
elaborate any further.

4 Neutrino forces with directional neutrino backgrounds

In this section, we move to discuss anisotropic backgrounds. In particular, we consider
one with a specific direction. Reactor, solar, and supernova neutrinos are example for such
cases.

4.1 Calculations

Reactor, solar, and supernova neutrinos are anisotropic and much more energetic than
cosmic relic neutrinos. Solar neutrinos arrive at the Earth with an almost certain direction.
Reactor neutrinos can also be assumed to travel in a fixed direction if the sizes of the reactor
core and the detector are much smaller than the distance between them. In addition, we
also consider a galactic (10 kpc) supernova neutrino burst. Although such an event is
rare (2 ∼ 3 times per century), its neutrino flux is orders of magnitude higher than solar
neutrinos with an extremely small angular spread, providing a unique opportunity for
future experiments to search for such forces.

In order to compute the effect of these backgrounds on the neutrino force, we make
two well-motivated assumptions:

1. We assume that the neutrino flux has a directional distribution with all neutrinos
moving in the same direction. For solar and supernova neutrinos, this is a good
approximation, whereas for reactor neutrinos it requires that the size of the reactor
core and detector are much smaller than the distance between them.
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Figure 2. An illustration of neutrino forces between two objects in a directional neutrino flux
background.

2. We assume that the neutrino flux is monochromatic, i.e., all neutrinos in flux have
the same energy. Although this is not exactly true, it is worth mentioning that among
the four well-measured solar neutrino spectra (8B, 7Be, pep, pp), two of them (7Be,
pep) are indeed monochromatic.

With these assumptions of directionality and monochromaticity, we consider the following
distribution:

n± (k) = (2π)3 δ3 (k− k0) Φ0 , (4.1)
where Φ0 =

∫
n± (k) d3k/ (2π)3 is the flux of neutrinos. Although actual reactor and solar

neutrino spectra are not monochromatic, our result derived below based on eq. (4.1) can be
applied to a generic spectrum by further integrating over k0, weighted by the corresponding
Φ0, since any spectrum can be expressed as a superposition of delta functions. For the
treatment of a directional spectrum with a finite energy spread, see appendix C.

The anisotropic background leads to an anisotropic scattering amplitude, and hence
an anisotropic potential that depends not only on r but also on the angle between k0 and
r, denoted by α (cf. figure 2). Without loss of generality, we assume k0 is aligned with the
z-axis and r lies in the x-z plane:

k0 = Eν (0, 0, 1) , r = r (sα, 0, cα) , (4.2)

where (cα, sα) ≡ (cosα, sinα).
Substituting the distribution (4.1) into eq. (2.7), we obtain

Abkg (q) = 2G2
F g

1
V g

2
V

Φ0
Eν

[
2E2

ν + k0 · q
ρ2 + 2k0 · q

+ 2E2
ν − k0 · q

ρ2 − 2k0 · q

]

= 8G2
F g

1
V g

2
V Φ0Eν

1− ξ2

ρ2 − 4E2
νξ

2 , (4.3)

where ρ ≡ |q| and
ξ ≡ k0 · q
|k0||q|

. (4.4)

Note that the typical energy of reactor and solar neutrinos is O(MeV), so we can safely
neglect the neutrino mass in eq. (2.7). Thus, the background-induced potential is given by

Vbkg(r) = −
∫

d3q
(2π)3 e

iq·rAbkg(q) = −g
1
V g

2
V

π3 G2
FΦ0E

2
ν × I , (4.5)
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E
ν
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Figure 3. Evolution of the directional background potential with the distance for α = 0, 30◦, 60◦
and 90◦. Notice that the distance r is in the unit of E−1

ν while the background potential Vbkg(r, α)
is in the unit of Eν . In addition, an overall dimensionless factor, G2

F g
1
V g

2
V Φ0Eν , has been omitted

for the background potential.

where I is a dimensionless integral. We further define

` ≡ rEν (4.6)

and note that I is depends only on ` and α:

I(`, α) ≡ 1
Eν

∫
d3qeiq·r 1− ξ2

ρ2 − 4E2
νξ

2 . (4.7)

In appendix B, we show that, for generic α and `, the integral can be reduced to

I (`, α) = π2

2` (3 + cos 2α)− 2π
∫ 1

−1
dξ ξ

(
1− ξ2

) ∫ π

0
dϕ sin

(
2`ξ

∣∣∣∣cαξ + sα

√
1− ξ2 cosϕ

∣∣∣∣) .
(4.8)

For the special cases of α = 0 and α = π/2, we find

I (`, α = 0) = π2

`

[
1 + sin 2`

2`

]
, (4.9)

I
(
`, α = π

2

)
= π2

`

[
1− 4`

∫ 1

0
dξξ

(
1− ξ2

)
H0

(
2`ξ
√

1− ξ2
)]

, (4.10)
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Figure 4. Comparison between the numerical results of `× I(`, α) computed from eq. (4.8) (blue
dotted points) and the analytical results computed from eq. (4.11) (red solid line) for α = 30◦,
α = 45◦, α = 60◦ and α = 90◦. They match excellently at large distances (i.e., r � E−1

ν ).

where H0 is the zeroth-order Struve H function.1 For generic values of α, though we
cannot carry out the integration analytically, eq. (4.8) can be readily used to compute
I (`, α) numerically. We have numerically verified that

∫
I (`, α) dcα can reproduce the r−4

dependence in eq. (2.8), which is expected when eq. (2.8) is applied to an isotropic and
monochromatic flux. For illustration, in figure 3 we show the evolution of the directional
background potential Vbkg with the distance r for α = 0, π/6, π/3 and π/2.

At long distances (`� 1), the numerical evaluation of the double integral in eq. (4.8)
is computationally expensive. We find that I(`, α) has a simple analytical expression for
`� 1:

I (`� 1, α) = π2

`
cos2

(
α

2

)
cos [(1− cosα) `] + π2

`
sin2

(
α

2

)
cos [(1 + cosα) `] . (4.11)

The analytical formula in eq. (4.11) is very efficient to compute the background potential
at a long distance. In figure 4 we compare the numerical results computed from eq. (4.8)

1We note that Mathematica contains some unidentified bug leading to incorrect results of integrals
involving the Struve H function, e.g.

∫ 1
0 H0(

√
1− z2z) dz should be nonzero while Integrate in Mathematica

only produces a vanishing result. The bug has been confirmed by the developers of Mathematica.
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with the analytical results from eq. (4.11). It can been seen that they match extremely
well for `� 1. Recalling ` = rEν the background potential at a long distance is given by

Vbkg
(
r � E−1

ν , α
)

= −g
1
V g

2
V

π
G2
FΦ0Eν

1
r

{
cos2

(
α

2

)
cos [(1− cosα)Eνr]

+ sin2
(
α

2

)
cos [(1 + cosα)Eνr]

}
. (4.12)

We further consider the small α limit (α � 1 while Eνrα2 can be arbitrarily large) and
find

Vbkg
(
r � E−1

ν , α� 1
)

= −g
1
V g

2
V

π
G2
F × Φ0Eν ×

1
r
× cos

(
α2Eνr

2

)
. (4.13)

A few remarks are in order:

• The first term depends on the couplings of the fermions to the neutrinos.

• The second term is the energy density of the background neutrinos.

• The third term is the leading r dependence. We learn that we have a 1/r potential.

• The last term encodes the angular dependency. We discuss it in more detail below.

• To leading order, this effect has no mass dependence. This is because the mass of
the neutrino is negligible compared to the energies of the background neutrinos.

We next move to discuss the forces between macroscopic objects. In that case, we need
to integrate over the energy of the background neutrinos as well as over the distribution of
the masses. This integration can result in a smearing of the force, leading to the oscillatory
behavior averaging out as we span the size of the macroscopic objects.

In order to get an effective 1/r potential, the smearing should not be very strong.
The α-suppressed oscillation mode starts to rapidly oscillate when α2 ∆(Eν r) ∼ π, where
∆(Eνr) is the spread of the energy Eν and the location of the test masses. So the 1/r
dependence approximately holds if

α2 .
π

∆(Eν r)
. (4.14)

4.2 Discussion

The neutrino-force effect is most significant when the background has a direction. There
are several significant differences when comparing it to the vacuum case:

1. r dependence. While in vacuum the force scales as 1/r5, the leading term for
a directional background scales as 1/r. This implies that, at large distances, the
background effects always overcome the vacuum contribution. Moreover, it implies
that this force scales like gravity and the Coulomb force.

2. Oscillation. The force exhibits oscillatory behavior. The oscillation length depends
on the energy of the background neutrinos and the angle spanned by the background’s
direction and the direction of the induced force. Only at α = 0 there is no oscillation.
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We provide some intuition for these two effects below. (Some of the discussions below
are based on ref. [41]). The point is that, in the presence of background neutrinos, one
of the virtual neutrinos in the loop is effectively replaced by a real neutrino, as imposed
by the delta function δ(k2 −m2) in the background propagator. Then, roughly speaking,
the potential is related to the forward scattering amplitude of the real neutrinos between
the two objects that are subject to the force. Usually, in the absence of a background, the
mass suppression is a result of the “off-shellness” from the momentum transfer q2. But in
the presence of the high energy directional background, the departure from “off-shellness”
is not so straightforward. The situation in vacuum is Lorentz invariant so the departure
from q2 is simply m2. In the presence of the directional background, Lorentz-noninvariant
quantities can be present in the propagator, which is what happens in this case.

Thus, in the vacuum case for a one-particle exchange potential, the potential is the
Fourier transform of (q2 + m2)−1, yielding e−mr/r. In the background the propagator
Π(|q|2) is given by (as in eq. (4.3)):

Π(|q|2) ∼ 1
q2 − 4E2

ν cos2 θk0,q
= 1

q2 + (2iEν cos θk0,q)2 , (4.15)

where θk0,q is the angle between vectors k0 and q (ξ ≡ cos θk0,q in eq. (4.4)). The propaga-
tor has no leading order dependence on mν since Eν � mν . Note that the “off-shellness”,
which is real (i.e, m2) in the vacuum case, is now imaginary in the presence of the back-
ground.

We naively therefore obtain a Fourier transform,

V (r) ∼ e−2iEνrf(α)

r
∼ 1
r

cos(2Eνrf(α)), (4.16)

where f(α) is some function of the angle α, which we cannot predict without performing
the integral explicitly. This rough form allows us to intuit the features of the potential:

1. The 1/r dependence is the geometrical factor for an exchange of a massless inter-
mediate particle. The background neutrinos practically make the potential from a
two body exchange into a one body exchange, as evident from eq. (4.3). One of the
neutrinos is not virtual.

2. The oscillation behavior arises from the fact that the background neutrinos modify the
propagator to carry an imaginary “mass term”. This makes the exchanged neutrino
“real” as opposed to virtual, giving an oscillatory behavior. Another way this can
be understood is as an interference effect between two amplitudes. One amplitude
is the incoming background wave and the other one that scatters off one of the two
interacting objects. At large r, for α = 0, the interference is pure constructive and
the potential behaves as 1/r, corresponding to f(0) = 0 in eq. (4.16) above. While
at α = π/2, there is destructive interference and oscillatory behavior persists.
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exp δV/Vgravity 〈r〉 Refs.
Washington2007 3.2× 10−16 ∼ 6400 km [48]
Washington1999 3.0× 10−9 ∼ 0.3 m [49]

Irvine1985 0.7× 10−4 2− 5 cm [45]
Irvine1985 2.7× 10−4 5− 105 cm [45]
Wuhan2012 10−3 ∼ 2 mm [50]
Wuhan2020 3× 10−2 ∼ 0.1 mm [47]

Washington2020 ∼ 1 52 µm [46]
Future levitated optomechanics ∼ 104 1 µm [51]

Table 4. Sensitivities of long-range force search experiments.

5 Experimental sensitivities and detection of neutrino forces

5.1 Current status of the experiments

There have been decades of experimental efforts to search for new long-range forces (also
referred to as the fifth force) — see refs. [42–44] for reviews. Searches that typically employ
torsion balance devices are closely related to precision tests of gravity, more specifically, to
tests of the gravitational inverse-square law (ISL) [45–47] and tests of the weak equivalence
principle (WEP) [48, 49]. We summarize the experimental sensitivities in table 4 and
compare them with our theoretical expectations of neutrino forces including background
corrections in figure 5. The details are explained in what follows.

Experiments testing the WEP look for possible differences between the accelerations
of different test bodies in the same gravitational field. For example, the gravitational
acceleration on the Earth, a⊕ ≈ 9.8 m/s2, should be universal for all test bodies at the
same location, independent of the material of the test body. In the presence of a new long-
range force whose couplings to electrons and nucleons are disproportional to their masses,
the actual observed acceleration may violate the universality.

Using Be and Ti as test masses and measuring the difference between their gravitational
accelerations, the Washington experiment group reported the following result in 2007 [48]:

aBe − aTi = (0.6± 3.1)× 10−15 m/s2 (Earth attractor) . (5.1)

Here, the Earth serves as the gravitational attractor. The average distance between parti-
cles in the test body and in the attractor in this case is roughly the radius of the Earth,
〈r〉 ∼ 6400 km. Dividing the experimental uncertainty in eq. (5.1) by a⊕ ≈ 9.8 m/s2,
we obtain δV/Vgravity = 3.2 × 10−16 where Vgravity is the gravitational potential and δV

denotes potential variations due to new forces. This experimental setup is referred to as
Washington2007 in table 4.

Instead of making use of the Earth’s gravity, one can also employ laboratory attractors.
An earlier experiment conducted by the same group using a 3-ton 238U attractor and test
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bodies of Cu and Pb reported [49]:

aCu − aPb = (1.0± 2.8)× 10−15 m/s2 (3-ton 238U attractor) . (5.2)

Note that the uncertainty is close to the one in eq. (5.1) but the result should be compared
with the gravitational acceleration caused by the 238U attractor, which is 9.2× 10−7 m/s2.
The 238U attractor has an annular shape with inner and outer radii of 10.2 cm and 44.6
cm while the torsion balance is located in its center. Hence the average distance between
particles in the test body and in the attractor in this case is roughly 〈r〉 ∼ 0.3 m. This
experimental setup is referred to as Washington1999 in table 4.

Experiments testing ISL measures the variation of the gravitational attraction between
two test bodies when their distance varies. The Irvine experiment conducted in the 1980s
was already able to probe ISL over a distance range from 2 cm to 105 cm at the precision
of 10−4 [45], ruling out a previously claimed deviation of ISL by (0.37 ± 0.07)% in the
4.5 to 30 cm range [52]. In recent years, the precision of ISL testing experiments in the
centimeter to meter range has not been improved significantly. The main progress that
has been made so far is the successful measurement of gravitational forces at much smaller
distance scales [46, 47]. So far, the smallest distance scale at which gravity has been probed
in laboratory is 52 µm [46]. Above this scale, gravitational forces have been measured to
certain precision (see results of Wuhan2012 [50], Wuhan2020 [47], and Washington2020 [46]
in table 4) and the measurements are fully consistent with ISL.

5.2 Detection of neutrino forces

When applying the above experimental sensitivities to neutrino forces, one should note
that δV caused by reactor and solar neutrinos are both direction-dependent. For solar
neutrinos, the angle α varies with a period of 24 hours due to Earth’s rotation. For reactor
neutrinos, the angle α varies in experiments with moving attractors, as is the case of the
Washington1999 experiment [49]. Since the reactor neutrino flux is only intense within
a short distance from a reactor, the Washington2007 experiment does not provide strong
probing power to the reactor neutrino force.

In order to compare the deviation of ISL gravitational potential from the background
potentials to the experimental sensitivities, we need to compute Vbkg between two objects
numerically and compare it to the gravity. As a bench mark point, we fix α = 0.

This assumption is not valid in all of the examples that we study below. All of the
current experiments are done between extended objects and the averaging over their shape
is important, making the use of the α = 0 result unjustified. Yet, we do use the α = 0 as the
most optimistic scenario just to get an idea how far the effects are from current sensitivities.

Since in the cases we are considering, the vacuum potential is negligible, the neutrino
force between two particles in the directional neutrino background is simply given by

Vν−force(r) = −g
1
V g

2
V

π
G2
FΦEν

1
r

(
r � E−1

ν , α = 0
)
, (5.3)

which is proportional to 1/r, same as the gravitational potential. Notice that the typical
energy of reactor and solar neutrino flux is Eν ∼ MeV ∼

(
10−11cm

)−1, while the average
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Figure 5. Neutrino forces in comparison with experimental sensitivities. Here all neutrino sources
are assumed to be ideally point-like and the angular spread is assumed to be sufficiently small to
meet eq. (4.14). In reality, a sizable angular spread needs to be taken into account thus the above
should be considered as an upper bound of the effect.

distance between two particles in the test body and in the attractor is larger than µm
(cf. table 4). Hence, we only need to consider the long-range behavior of the background
potential, namely, r � E−1

ν . We use eq. (5.3) below to compute the background potentials.
In figure 5, we plot the reactor neutrino force curves calculated from eq. (5.3) using

the standard reactor neutrino flux at 1 meter and 10 meters from the reactor core. For
a reactor with 2.9 GW thermal power, the neutrino flux is Φ = 5 × 1013 cm−2s−1 at 10
meters away [53]. We take Eν in eq. (5.3) to be 2MeV when computing the background
potential from reactor neutrinos. The curves stop at r = 0.5 m and r = 5 m because
experiments with much larger r (such as Washington2007) are impossible to have test
bodies and attractors all fitted in the limited space within 1 or 10 meters from the reactor.

For solar neutrinos, this is not a concern. So far, all experiments have r much smaller
than the distance to the Sun. However, one should note that the angle α varies with a period
of 24 hours while a large number of noises are also 24-hour periodic. Hence the α depen-
dence could be easily submerged in such noises. Nevertheless, we plot the solar neutrino line
in figure 5 assuming that it could be resolved among various noises in future experiments.

The solar neutrino line in figure 5 is calculated from eq. (5.3) by considering pp neutri-
nos with the flux Φ = 5.99×1010cm−2s−1 and the highest energy Emax = 0.42 MeV [54]. In
the computation we take Eν = 0.3 MeV since the pp neutrino spectrum is not monochro-
matic. We have also calculated the background potential of the 7Be solar neutrinos whose
flux is Φ = 4.84×109 cm−2s−1 with two monochromatic energies being Eν = 0.862 MeV and
Eν = 0.384 MeV [54]. But the result is the same order of magnitude as that of pp neutrinos.
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It might be more feasible to make use of the material dependence feature of neutrino
forces. Since the effective neutrino-proton vector coupling is suppressed by a factor of
1− 4 sin2 θW ≈ 0.05 with respect to the effective neutrino-neutron vector coupling, we can
assume that neutrino forces mainly depend on the neutron number N = A−Z (A: atomic
mass number, Z: proton number) of the material used in test bodies. The contribution
of electrons is more complicated since the charged-current interaction may or may not
contribute (if not, the 1−4 sin2 θW suppression also applies to electrons), depending on the
neutrino flavor. For simplicity, here we neglect the electron contribution (see appendix D
for a more strict treatment). Therefore, for neutrino forces on different materials, the
difference is roughly

δVν−force
Vν−force

∼ δZ/A, δZ/A =


1.6% for Be vs Ti
4.9% for Cu vs Pb
8.2% for Al vs Pt

. (5.4)

Here Z/A is approximately 1/2 for most nuclei, and δZ/A denotes its variation for different
materials. Taking Be vs Ti for example, since Ti (Be) has 22 (4) protons and 26 (5)
neutrons, the difference is 22/48−4/9 = 1.4%. More accurate calculations using A = 47.87
(9.012) gives 1.6%. In principle, δZ/A could be enhanced to as large as 50% if Hydrogen
(Z = A = 1) is used in combination with other Z/A ≈ 1/2 material, though technically it
is difficult to make test bodies of Hydrogen. In figure 5, below the solar neutrino line, we
plot two lines by multiplying it with δZ/A = 10% and 1%. If the direction-dependent signal
of Vν−force are submerged in various 24-hour noises, the material dependence of Vν−force,
which is a factor of δZ/A weaker but more robust against noises, could be exploited to probe
neutrino forces.

In addition to the aforementioned dependence on directions and materials, the differ-
ence between reactor-on and -off measurements could also be used to probe neutrino forces.

For supernova neutrinos, we plot a dashed line in figure 5 to present the magnitude. We
assume that the supernova neutrino flux is 1012 cm−2s−1, corresponding to a 10 kpc core-
collapse supernova neutrino burst [55]. The neutrino mean energy is about 10MeV. Here
we use a dashed line to remind the readers that such a neutrino burst lasts only for a short
period of a few seconds, which might be too short for torsion balance experiments to reach
the desired sensitivity (e.g. the torsional oscillation period of Washington 2007 is 798 s [48]).
A dedicated analysis on such experiments taking the short duration into consideration
might lead to a much weaker sensitivity, but this is beyond the scope of our work.

At last, we give some brief remarks on the background effects from atmospheric and
accelerator neutrinos. The flux of atmospheric neutrinos is much smaller than those of
the reactor and solar neutrinos [56]. As a result, the corresponding background potential
is weaker than that of reactor neutrinos by 12 orders of magnitude. In addition, the flux
from long-baseline accelerator neutrino experiments like DUNE [57] is also weaker than that
of reactor neutrinos. The accelerator neutrino background potential at the near-detector
location of DUNE is about 7 orders of magnitude smaller than that of reactor neutrinos.
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Therefore, the background potentials from both atmospheric and accelerator neutrinos are
out of the reach with current experimental sensitivities.

6 Conclusions

In this paper, we computed the background corrections to neutrino forces in a thermal
or non-thermal neutrino background. We found that the presence of the background can
significantly increase the strength of neutrino forces.

For the isotropic CνB in eq. (3.4), we have derived general formulae of the background
potential for both Dirac [eq. (3.16)] and Majorana [eq. (3.31)] neutrinos that are valid for
arbitrary neutrino masses and distances. The main feature of the potential in the presence
of the CνB is that, at large distances (r � m−1

ν ), it is not exponentially suppressed, as
opposed to the potential in vacuum. Therefore, when the distance between two particles
exceeds the inverse mass of neutrinos, the neutrino force between them is dominated by
the background contribution. However, since the number density of the cosmic neutrinos
is very small today, the thermal effects of the CνB on the neutrino force are still far from
the available experimental sensitivities.

We then computed the neutrino force in a directional background. We parametrized
the non-thermal and anisotropic background as monochromatic distribution function with
a specific direction, α. The general direction-dependent background potential is given
by eqs. (4.5) and (4.8). At r � E−1

ν with Eν being the typical energy of the neutrino
flux, the background potential in the small α limit is proportional to 1/r, which falls much
slower than the 1/r5 potential in vacuum and in isotropic backgrounds. In particular, there
is a potential significant enhancement of the vacuum force in the presence of directional
energetic dense neutrino backgrounds.

We then turned to discuss the possibility of probing the neutrino force using torsion
balance experiments that aim to precisely test the gravitational inverse-square law and the
weak equivalence principle. Assuming the small α limit, the comparison of the neutrino
force in reactor and solar neutrino backgrounds with experimental sensitivities is sum-
marized in figure 5. The figure shows that, if eq. (4.14) could be satisfied, the current
experiments would be 2 or 3 orders of magnitude far from detecting neutrino forces in the
reactor or solar neutrino background. With current technology, however, the condition in
eq. (4.14) is not satisfied and the energy and angular spread smear out the leading 1/r
potential. While it is not clear to us how complicated and practical it is to design an
experiment that can exploit the enhancement we discuss, the point to emphasize is that
strong enhancement is present. We conclude that the neutrino force in the solar or reac-
tor neutrino background is much more experimentally accessible than the one in vacuum.
Dedicated experimental efforts are called for to check if these enhancement factors can be
exploit in order to detect the elusive neutrino force.

Note added. After we updated our paper on arXiv to Version 2, ref. [58] appeared on
arXiv. The authors of that preprint commented that the finite size of the wave packets
would destroy the leading 1/r potential in directional neutrino backgrounds that we found.
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However, the content of [58] was referring to Version 1 of our paper, while in Version 2 we
have already addressed the smearing effect. To address the effect of the smearing, ref. [58]
took a different approach than ours. They included the energy spread in the wave packets
first and then took a monochromatic directional flux and fixed α = 0, while we consider
the smearing effect by varying Eν and α of the flux. While the details of our analyses
are not identical, the results of the current version of our work are in agreement with the
results of ref. [58]. Yet, our conclusions have a different tone. While we emphasize the fact
that there is indeed a strong enhancement when eq. (4.14) is satisfied, ref. [58] is worried
about the feasibility of designing experiments that can use it.
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A The background effect on fermion propagators

The neutrino propagator in a background with finite neutrino number density in eq. (2.3)
can be found in various references including books and reviews on finite temperature field
theory [32–36]. In this appendix, we provide a simple and pedagogical re-derivation of
the formula without using finite temperature field theory, aiming at providing a physical
interpretation of the background effect.

Let us start with the propagator of a generic fermion in vacuum, which is defined as

SF (x− y) ≡ 〈0|Tψ(x)ψ(y)|0〉 , (A.1)

where T indicates that it is a time-ordered product. Using

ψ =
∫

d3p
(2π)3

1√
2Ep

∑
s

[
aspu

s(p)e−ip·x + bs†p v
s(p)eip·x

]
, (A.2)

where we follow the standard notation of ref. [59], and assuming x0 > y0 so that T can be
removed, we obtain

SF ∝
∫

d3p
(2π)3

∫
d3k

(2π)3
1√
2Ep

1√
2Ek

e−ip·x+ik·y〈0|apa
†
k|0〉+ · · · , (A.3)

where for brevity we have neglected us, vs, and the script s (they only affect the structure of
Dirac spinors). The “· · · ” denote terms proportional to 〈0|apbk|0〉, 〈0|b†pa†k|0〉, or 〈0|b

†
pbk|0〉,

all being zero. Since 〈0|apa
†
k|0〉 = (2π)3δ3(p− k), eq. (A.3) gives

SF ∝
∫

d3p
(2π)3

1
2Ep

e−ip·(x−y) =
∫

d4p

(2π)4
i

p2 −m2 + iε
e−ip·(x−y) . (A.4)
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The last step is simply the reverse process of computing the contour integral of p0, with
the underlying assumption that x0 > y0. For x0 < y0, the time ordering guarantees the
same result.

Now we shall replace |0〉 with a background state. Let us first consider a single-
particle state which contains a particle with an almost certain position and an almost
certain momentum. The two cannot be simultaneously fixed at exact values due to the
uncertainty principle, but one can nevertheless introduce a wave package function w(p) so
that both w(p) and its Fourier transform

∫
w(p)eip·xd3x are limited in a small region of

their respective space — for further elucidation, see e.g. appendix A of ref. [60]. The single
particle state is then defined as

|w〉 =
∫

d3p
(2π)3w(p)a†p|0〉 , 〈w|w〉 =

∫
d3p

(2π)3 |w(p)|2 ≡ 1 , (A.5)

where the last step is defined as the normalization condition of w(p).
Replacing |0〉 → |w〉 in eq. (A.3), we obtain

SF ∝
∫

pk
〈w|apa

†
k|w〉 =

∫
pk

〈
w
∣∣∣((2π)3δ3(p− k)− a†kap

)∣∣∣w〉 , (A.6)

where
∫

pk standards for
∫ d3p

(2π)3
∫ d3k

(2π)3
1√
2Ep

1√
2Ek

e−ip·x+ik·y. Since 〈w|w〉 = 1, the first term
leads to the same result as the vacuum case and the second term represents the background
effect. We denote the contribution of the latter by Sbkg

F :

Sbkg
F ∝ −

∫
pk
〈w|a†kap|w〉 = −

∫
pk
w∗(k)w(p) , (A.7)

where we have used ap|w〉 = w(p)|0〉. Note that w(p) has been defined in such a way that
the particle’s position and momentum are nearly fixed at certain values (say x0 and p0).
One can perform spatial translation of the wave package w(p)→ w∆x(p) ≡ eip·∆xw(p) so
that its position is changed to x0 + ∆x while the momentum is unchanged. Now, if we
randomly choose ∆x with a uniform probability distribution in a large volume V (much
larger than the distribution of each wave package), the position of the particle would be
evenly smeared in V . For w∗(k)w(p) in eq. (A.7), the smearing leads to

w∗(k)w(p) smearing−−−−−→ 1
V

∫
w∗∆x(k)w∆x(p)d3∆x

= 1
V

∫
w∗(k)w(p)ei(p−k)·∆xd3∆x

= (2π)3δ3(p− k)
V

|w(p)|2

= (2π)3δ3(p− k)n+(p) , (A.8)

where in the last step we have identified |w(p)|2/V as n+(p) because
∫ d3p

(2π)3 |w(p)|2 = 1
and the number density after smearing is

∫ d3p
(2π)3n+(p) = 1/V .
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Substituting eq. (A.8) into eq. (A.7), we obtain

−
∫

pk
w∗(k)w(p) smearing−−−−−→ −

∫
d3p

(2π)3
e−ip·(x−y)

2Ep
n+(p)

= −
∫

d4p

(2π)4 e
−ip·(x−y)(2π)δ

(
p2 −m2

)
Θ
(
p0
)
n+(p) . (A.9)

Combining eq. (A.9) with the vacuum part in eq. (A.4), we obtain

SF ∝
∫

d4p

(2π)4 e
−ip·(x−y)

{
i

p2 −m2 + iε
− (2π)δ

(
p2 −m2

)
Θ
(
p0
)
n+(p)

}
. (A.10)

For an anti-particle background, the above calculation is similar except that some minus
signs are flipped. In the presence of both particles and anti-particles in the background,
we obtain

SF (p) =
(
/p+m

){ i

p2 −m2 + iε
− (2π)δ

(
p2 −m2

)
Θ
(
p0
)

[n+(p)− n−(p)]
}

=
(
/p+m

){ i

p2 −m2 + iε
− (2π)δ

(
p2 −m2

) [
Θ
(
p0
)
n+(p) + Θ

(
−p0

)
n−(p)

]}
,

where SF (p) is the propagator in the momentum space [i.e. the Fourier transform of SF (x−
y)], the prefactor

(
/p+m

)
can be inferred from the vacuum propagator. The result is the

same as the fermion propagator derived in finite temperature field theory.
From the above calculation, one can see that the background effect comes from the

second term in eq. (A.6), proportional to 〈w|a†kap|w〉. Recall that the annihilation operator
ap acting on |w〉 can be interpreted as reducing one particle in the background. Hence
〈w|a†kap|w〉 corresponds to first absorbing a particle of momentum p from the background
(ap|w〉 = w(p)|0〉), and returning a particle of momentum k back to the background.
Smearing the single particle state in eq. (A.8) leads to δ3(p − k), which guarantees that
the particle being returned has the same momentum as the one being absorbed.

Intuitively, the modified propagator in eq. (2.3) can be understood as the vacuum
expectation value of two fermion fields with the vacuum state |0〉 replaced by the modi-
fied background state |w〉, which is the vacuum equipped with some on-shell background
fermions. Then the Wick contraction can be carried out not only between the two internal
fermion fields (leading to the vacuum propagator), but also among the internal fields and
the background fermions (leading to the modified term). Therefore, the modified term
is naturally proportional to the number density of background fermions, with the factor
2πδ(p2−m2)Θ(p0) coming from cutting the propagator to put it on-shell (optical theorem).
Notice that the above arguments should be valid in any background and do not require the
distribution to be thermal.

B Integrals

In this appendix, we present the details about some integrals in calculating neutrino forces
in the neutrino backgrounds.
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B.1 Derivation of the general background potential Vbkg(r) in eq. (2.8)

We first show how to obtain the general expression of the background potential with an
arbitrary distribution function.

As has been stated above, when both neutrino propagators in eq. (2.5) take the first
part, it corresponds to the vacuum potential V0(r), which is independent of the background
distribution functions. When both propagators take the second part, the result always
vanishes because of the existence of two delta functions. Therefore, the background con-
tribution comes from the cross terms, i.e., Sν(k) takes the first (second) part and Sν(k+ q)
takes the second (first) part:

Abkg(q) = −πG2
F g

1
V g

2
V

∫
d4k

(2π)4 δ
(
k2 −m2

ν

) [
Θ
(
k0
)
n+ (k) + Θ

(
−k0

)
n− (k)

]

×

Tr
[
γ0 (1− γ5) (/k +mν) γ0 (1− γ5)

(
/k + /q +mν

)]
(k + q)2 −m2

ν

+
Tr
[
γ0 (1− γ5)

(
/k − /q +mν

)
γ0 (1− γ5) (/k +mν)

]
(k − q)2 −m2

ν

 ,

= −8πG2
F g

1
V g

2
V

∫
d4k

(2π)4 δ
(
k2 −m2

ν

) [
Θ
(
k0
)
n+ (k) + Θ

(
−k0

)
n− (k)

]
×
[

2k0 (k0 + q0)− (k · q + k2)
(k + q)2 −m2

ν

+ 2k0 (k0 − q0)+
(
k · q − k2)

(k − q)2 −m2
ν

]
. (B.1)

Taking advantage of the identity

δ
(
k2 −m2

ν

)
= δ

((
k0
)2
− E2

k

)
= 1

2Ek

[
δ
(
k0 − Ek

)
+ δ

(
k0 + Ek

)]
,

one can first integrate k0 in eq. (B.1). In addition, the NR approximation requires q '
(0,q). Thus the integral in eq. (B.1) can be reduced to eq. (2.7)

Abkg(q) = 4G2
F g

1
V g

2
V

∫
d3k

(2π)3
n+ (k) + n− (k)

2Ek

[
2 |k|2 +m2

ν + k · q
2k · q + |q|2

+ (k→ −k)
]
. (B.2)

Furthermore, for an isotropic distribution, n± (k) = n± (κ) with κ ≡ |k|, one can first
integrate out the angular part in eq. (B.2) and obtains

Abkg(ρ) = G2
F g

1
V g

2
V

π2

∫ ∞
0

dκ
κ2√

κ2 +m2
ν

[n+ (κ) + n− (κ)]
∫ 1

−1
dξ
m2
ν + 2κ2 (1− ξ2)
ρ2 − 4κ2ξ2 , (B.3)
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where we have defined ρ ≡ |~q| and ξ ≡ cos θ with θ being the angel between k and q. Then
the background potential is given by

Vbkg(r) = −
∫

d3q
(2π)3 e

iq·rAbkg(ρ)=− 1
2π2r

∫ ∞
0

dρρsin(ρr)Abkg(ρ)

= −G
2
F g

1
V g

2
V

2π4r

∫ ∞
0

dκ
κ2√
κ2+m2

ν

[n+(κ)+n−(κ)]
∫ 1

−1
dξ
[
m2
ν+2κ2(1−ξ2)]∫ ∞

0
dρ

ρsin(ρr)
ρ2−4κ2ξ2

= −G
2
F g

1
V g

2
V

4π3r

∫ ∞
0

dκ
κ2√
κ2+m2

ν

[n+(κ)+n−(κ)]
∫ 1

−1
dξ
[
m2
ν+2κ2(1−ξ2)]cos(2κrξ)

= −G
2
F g

1
V g

2
V

4π3r4

∫ ∞
0

dκκ√
κ2+m2

ν

[n+(κ)+n−(κ)]
[(

1+m2
νr

2)sin(2κr)−2κrcos(2κr)
]
, (B.4)

which is just eq. (2.8).

B.2 Calculation of the integral I(`, α) in eq. (4.7)

Here, we calculate the integral I(`, α) appearing in the reactor neutrino background. With-
out loss of generality, we can assume

k0 = Eν (0, 0, 1) , r = r (sα, 0, cα) , q = ρ (sθcϕ, sθsϕ, cθ) , (B.5)

where (cx, sx) ≡ (cosx, sin x) have been defined. With the above coordinates, we have

q · r = ρr (sαsθcϕ + cαcθ) , ξ ≡ k0 · q
|k0| |q|

= cθ ,

∫
d3q =

∫ ∞
0

ρ2dρ

∫ 1

−1
dξ

∫ 2π

0
dϕ .

(B.6)
The integral in eq. (4.7) turns out to be

I ≡ 1
Eν

∫
d3qeiq·r 1−ξ2

ρ2−4E2
νξ

2 = 1
Eν

∫ 2π

0
dϕ

∫ 1

−1
dξ

∫ ∞
0

dρeiρr(sαsθcϕ+cαcθ) ρ
2 (1−ξ2)

ρ2−4E2
νξ

2

= 1
Eν

(∫ 2π

0
dϕ

∫ 1

0
dξ

∫ ∞
0

dρ+
∫ 2π

0
dϕ

∫ 0

−1
dξ

∫ ∞
0

dρ

)
eiρr(sαsθcϕ+cαcθ) ρ

2 (1−ξ2)
ρ2−4E2

νξ
2 . (B.7)

In the second term in the bracket of eq. (B.7), changing the variables as ρ → −ρ and
ξ → −ξ one obtains

I = 1
Eν

∫ 2π

0
dϕ

∫ 1

0
dξ

[∫ ∞
0
dρeiρr(sαsθcϕ+cαcθ)+

∫ 0

−∞
dρeiρr(−sαsθcϕ+cαcθ)

]
ρ2(1−ξ2)
ρ2−4E2

νξ
2 (B.8)

= 1
Eν

∫ π

0
dϕ

∫ 1

0
dξ

[∫ ∞
0
dρeiρr(sαsθcϕ+cαcθ)+

∫ 0

−∞
dρeiρr(−sαsθcϕ+cαcθ)

]
ρ2(1−ξ2)
ρ2−4E2

νξ
2

+ 1
Eν

∫ 2π

π
dϕ

∫ 1

0
dξ

[∫ ∞
0
dρeiρr(sαsθcϕ+cαcθ)+

∫ 0

−∞
dρeiρr(−sαsθcϕ+cαcθ)

]
ρ2(1−ξ2)
ρ2−4E2

νξ
2 .

In the last line of eq. (B.8) changing the variable ϕ→ ϕ− π one obtains

I = 1
Eν

∫ π

0
dϕ

∫ 1

0
dξ

[∫ ∞
0

dρeiρr(sαsθcϕ+cαcθ) +
∫ 0

−∞
dρeiρr(−sαsθcϕ+cαcθ)

]
ρ2 (1−ξ2)
ρ2−4E2

νξ
2 (B.9)

+ 1
Eν

∫ π

0
dϕ

∫ 1

0
dξ

[∫ ∞
0

dρeiρr(−sαsθcϕ+cαcθ) +
∫ 0

−∞
dρeiρr(sαsθcϕ+cαcθ)

]
ρ2 (1−ξ2)
ρ2−4E2

νξ
2

= 1
Eν

∫ π

0
dϕ

∫ 1

0
dξ
(
1−ξ2

)∫ ∞
−∞

dρ
[
eiρr(sαsθcϕ+cαcθ) +eiρr(−sαsθcϕ+cαcθ)

] ρ2

ρ2−4E2
νξ

2 .
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What we have done is to change the integral to the standard form of one-dimensional
Fourier transform. Then one can use the following Fourier transform:∫ ∞

−∞
dρeiρx

ρ2

ρ2 − 4E2
νξ

2 = 2π [δ(x)− sgn(x)Eνξ sin (2Eνξx)] , (B.10)

from which one obtains

I = 2π
Eν

∫ π

0
dϕ

∫ 1

0
dξ
(
1− ξ2

)
[δ (x+)− sgn (x+)Eνξ sin (2Eνξx+)

+δ (x−)− sgn (x−)Eνξ sin (2Eνξx−)]

= 2π
Eν

∫ 1

−1
dξ
(
1− ξ2

) ∫ π

0
dϕ [δ (x+)− sgn (x+)Eνξ sin (2Eνξx+)] (B.11)

where x± ≡ r(±sαsθcϕ + cαcθ). The first term in eq. (B.11) involving δ function can be
analytically integrated out

2π
Eν

∫ 1

−1
dξ
(
1− ξ2

) ∫ π

0
dϕδ [r (sαsθcϕ + cαcθ)]

= 2π
rEν

∫ 1

−1
dξ
(
1− ξ2

) ∫ π

0
dϕδ

(
sα

√
1− ξ2cϕ + cαξ

)
t=cϕ= 2π

`sα

∫ 1

−1
dξ
(
1− ξ2

) 1√
1− ξ2

∫ 1

−1

dt√
1− t2

δ

(
t+ ξ√

1− ξ2 cotα
)

= 2π
`sα

∫ 1√
1+cot2 α

− 1√
1+cot2 α

dξ
1− ξ2√

1−
(
1 + cot2 α

)
ξ2

= π2

2` (3 + cos 2α) , (B.12)

where we have defined the dimensionless quantity ` ≡ rEν . The second term in eq. (B.11)
cannot be analytically integrated. So finally one obtains the directional integral

I(`,α) = π2

2` (3+cos2α)

−2π
∫ 1

−1
dξξ

(
1−ξ2

)∫ π

0
dϕsgn

(
sα

√
1−ξ2cϕ+cαξ

)
sin
[
2`ξ
(
sα

√
1−ξ2cϕ+cαξ

)]
= π2

2` (3+cos2α)−2π
∫ 1

−1
dξξ

(
1−ξ2

)∫ π

0
dϕsin

(
2`ξ
∣∣∣∣sα√1−ξ2cϕ+cαξ

∣∣∣∣), (B.13)

which is the result of eq. (4.8). Then the directional background potential is given by

Vbkg(r, α) = −g
1
V g

2
V

π3 G2
FΦ0E

2
ν × I (rEν , α) . (B.14)

C Energy distribution function with a finite spread

In this appendix, we consider a directional neutrino flux with a finite energy spread instead
of the monochromatic case we considered in the main text in eq. (4.1).
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Neglecting the neutrino mass, which is much smaller than the typical energy of neutrino
flux, the general directional neutrino flux can be written as

n± (k) = (2π)3 f(E)δ
(
k̂− k̂0

)
, (C.1)

where k̂ denotes the unit vector of the three momentum k, while k̂0 represents a cer-
tain direction. Without loss of generality, we take k̂0 = (0, 0, 1) and such that the delta
function enforces k = (0, 0, E). The energy distribution function f(E) should satisfy the
normalization condition: ∫

d3k
(2π)3n± (k) = Φ0 , (C.2)

with Φ0 being the total flux of neutrinos.
For example, a Gaussian-like distribution reads

fg(E) = Φ0
2πB exp

[
−
(
E − E2

0
)

2σ2
E

]
, (C.3)

where E0 is the mean energy and σE denotes the spread of energy. The normalization
factor B is given by

B =
∫ ∞

0
dEE2exp

[
−(E − E0)2

2σ2
E

]

= E0σ
2
E exp

(
− E2

0
2σ2

E

)
+
√
π

2σE
(
E2

0 + σ2
E

) [
1 + Erf

(
E0√
2σE

)]
=
√

2πE2
0σE +O

(
σ3
E

)
. (C.4)

It can be verified explicitly that the distribution in eq. (C.3) satisfies the normalization in
eq. (C.2). In particular, in the limit of σE → 0 one obtains

fg(E)δ
(
k̂− k̂0

)
→ Φ0

2πE2
0
δ (E − E0) δ

(
k̂− k̂0

)
= δ3 (k− k0) Φ0 , (C.5)

which reduces to the monochromatic case in eq. (4.1).
Below we compute the background potential without the specific form of f(E) for the

purpose of generality. Substituting eq. (C.1) in eq. (2.7), one obtains

Abkg(q) = 2G2
F g

1
V g

2
V

∫
d3kf(E)

E
δ
(
k̂− k̂0

) [2 |k|2 + k · q
2k · q + |q|2

+ (k→ −k)
]
. (C.6)

Then using the decomposition∫
d3kδ

(
k̂− k̂0

)
f(E) = 2π

∫ 1

−1
dzδ (z − 1)

∫ ∞
0

dEE2f(E) , (C.7)

where z ≡ k̂ · k̂0, we have

Abkg(q) = 4πG2
F g

1
V g

2
V

∫ 1

−1
dzδ (z − 1)

∫ ∞
0

dEEf(E)
[

2E2 + Eρξ

2Eρξ + ρ2 + 2E2 − Eρξ
−2Eρξ + ρ2

]

= 16πG2
F g

1
V g

2
V

∫ ∞
0

dEE3f(E) 1− ξ2

ρ2 − 4E2ξ2 . (C.8)
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Notice that ρ ≡ |q| and ξ ≡ k·q
|k||q| have been defined. The background potential turns out

to be

Vbkg(r) = −
∫

d3q
(2π)3 e

iq·rAbkg(q) = − 2
π2G

2
F g

1
V g

2
V

∫ ∞
0

dEE3f(E)
∫
d3qeiq·r 1− ξ2

ρ2 − 4E2ξ2

= − 2
π2G

2
F g

1
V g

2
V

∫ ∞
0

dEE4f(E) I (Er, α) , (C.9)

where the dimensionless integral is defined as

I (Er, α) ≡ 1
E

∫
d3qeiq·r 1− ξ2

ρ2 − 4E2ξ2 , (C.10)

whose result has been given by eq. (4.8) with the substitution ` = Er. In particular, in
the monochromatic limit, the background potential reduces to eq. (4.5):

f(E)→ Φ0
2πE2

0
δ (E − E0) , Vbkg(r)→ − 1

π3G
2
F g

1
V g

2
V Φ0E

2
0 I (E0r, α) . (C.11)

To sum up, the background potential in a directional neutrino flux with an arbitrary
finite energy spread is given by eq. (C.9), with the integral I being computed in eq. (4.8).

D Flavor- and material-dependence of the background potential

In section 5 we have neglected the effects of neutrino flavors and materials of test bodies
when computing the directional neutrino background potential. Here we compute a com-
plete expression for the neutrino force between two objects with masses m1 and m2, as
a function of the background neutrino flavor distribution and their respective atomic and
mass numbers. We present the expression under the following assumptions:

1. Let the masses be pure elements of atomic numbers Z1 and Z2 respectively. Let their
mass numbers be A1 and A2 respectively.

2. We further assume that the mass of the objects are constituted entirely by the masses
of the neutrons and protons in the object, i.e, we ignore electron mass me � mp ≈
mn, where the subscripts p and n stand for proton and neutron respectively.

3. We assume the massless limit for the neutrinos, where the mass eigenstates are iden-
tical to the flavor eigenstates.

4. We see in the text how finite spread of the masses weakens the 1/r behavior of the
neutrino background potential. In this appendix, we assume that the angular spread
α2 � 1/∆(Eνr), where r is the distance between the masses and Eν is defined in the
text [see eq. (4.14)].

Given masses mi (for i = 1, 2), the number of protons, neutrons and electrons in each
mass is given by

N i
p ≡

miZi
Aimp

= N i
e , N i

n ≡
mi(Ai − Zi)

Aimp
. (D.1)
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The effective gV ’s for each mass can then be computed simply by adding up the gV ’s of
each of the constituent species and multiplying by the corresponding number of that species
in the mass. The effective gV depends on which neutrino is being exchanged between the
masses. For instance, when the neutrinos exchanged are electron neutrinos, we get:

giV e = N i
p(1/2− 2s2

W ) +N i
e(1/2 + 2s2

W )−N i
n/2 = N i

p −N i
n/2 , (D.2)

where sW is the sine of the Weinberg angle θW . For other neutrinos being exchanged the
effective coupling is:

giV µ/τ = N i
p(1/2− 2s2

W ) +N i
e(−1/2 + 2s2

W )−N i
n/2 = −N i

n/2 . (D.3)

Note that, in the presence of electron neutrino background, the electrons in the material
need to be considered when calculating the force.

In the end, the neutrino background potential between the two masses is given by (we
have taken α = 0 like what we did in eq. (5.3)] in accordance with assumption 4 above):

Vbkg(r) = −G
2
FΦEν
πr

[
neg

1
V eg

2
V e + (1− ne) g1

V µ/τg
2
V µ/τ

]
, (D.4)

where ne is the fraction of electron neutrinos in the flux Φ. After some algebra this can be
written as:

Vbkg(r) = −G
2
FΦEν
πr

m1m2
m2
p

× f(A1, A2, Z1, Z2, ne) , (D.5)

where

f(A1, A2, Z1, Z2, ne) = 1
4

[
ne

(3Z1
A1
− 1

)(3Z2
A2
− 1

)
+ (1− ne)

(
1− Z1

A1

)(
1− Z2

A2

)]
.

(D.6)
The net potential between these two masses is therefore given by:

Vnet = Vgrav + Vbkg = −m1m2
r

[
GN + G2

FΦEν
πm2

p

f(A1, A2, Z1, Z2, ne)
]
, (D.7)

where GN is the gravitational constant. We have ignored the 1/r5 term from the vacuum
neutrino force since at the distances we are talking about that force is negligible. Note
that the Weinberg angle does not feature in our final expression for the neutrino force.

The ratio of the neutrino force to the gravitational force between these two masses at
some distance r � E−1

ν is independent of r,

Vbkg(r)
Vgrav(r) = G2

FΦEνf(A1, A2, Z1, Z2, ne)
πGNm2

p

. (D.8)

Below we mention some special cases:

1. Consider the special case Z1 = Z2 = Z,A1 = A2 = A and ne = 1, i.e, the background
is purely electron neutrino. In this case, the ratio reads:

Vbkg(r)
Vgrav(r) = G2

FΦEν
4πGNm2

p

(3Z
A
− 1

)2
. (D.9)
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Note that this ratio is maximized when Z = A, i.e, for Hydrogen.
Putting in the numbers we get (using Φ ∼ 1014cm−2s−1 and Eν ∼ 1MeV):

Vbkg(r)
Vgrav(r) ∼ 10−13 . (D.10)

The gravitational force is thus 13 orders of magnitude greater than the neutrino
background force in this limit. This corresponds to the purple line (reactor 10m) in
figure 5.

2. Consider the special case Z1 = Z2 = Z,A1 = A2 = A and ne = 0, i.e, the background
is purely muon/tau neutrino. In this case we note that force is entirely due to the
number of neutrons in the masses, and the ratio:

Vbkg(r)
Vgrav(r) = G2

FΦEν
4πGNm2

p

(
1− Z

A

)2
. (D.11)

In the special case of Hydrogen we see that we shall not find any additional force due
to background neutrinos. However in other elements we can see this effect.

To finish this section, we show how the force varies for different materials. For a given Φ
and Eν , and assuming that A ≈ 2Z as is usually the case for most elements, we have,

δVbkg
Vbkg

≈ 4 (4ne − 1) δZ/A , (D.12)

where δZ/A refers to the variation of Z/A for different materials, as in eq. (5.4).
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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