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Abstract
Purpose Obesity is linked to cognitive dysfunction in humans and rodents, and its effects can be passed on to the next generation.
However, the extent of these effects is not well understood. The purpose of this study was to determine the effect of a prenatal
maternal high-fat diet and an individual high-fat diet in inbred mice.
Methods We varied maternal diet and offspring diet to test the hypothesis that a high-fat diet would increase anxiety, reduce
activity levels, and impair nest-building. First, we fed a high-fat (HF) or low-fat (LF) diet to genetically identical female Small
(SM/J) mice and mated themwith LF males. We cross-fostered all offspring to LF-fed SM/J nurses and weaned them onto an HF
or LF diet. We weighed the mice weekly and we tested anxiety with the Open Field Test, activity levels with instantaneous scan
sampling, and nest building using the Deacon Scale.
Results Diet significantly affected weight, with HF females weighing 28.2 g (± 1.4 g SE) and LF females weighing 15.1 g (±
1.6 g SE) at 17 weeks old. The offspring’s own diet had major behavioral effects. HF mice produced more fecal boli and
urinations in the Open Field Test, built lower-quality nests, and had lower activity in adulthood than LF mice. The only trait
that a prenatal maternal diet significantly affected was whether the offspring built their nests inside or outside of a hut.
Conclusions Offspring diet, but not prenatal maternal diet, affected a wide range of behaviors in these mice.

Keywords Diet . Obesity . Anxiety . Nest . Mice . Activity

Background

Obesity is tightly linked to Alzheimer’s disease and other
types of cognitive dysfunction in humans [1], and is associat-
ed with lower cognitive performance in men based on tests of
learning and memory [2]. Obesity’s effects in mice include
increased anxiety [3, 4], diminished spatial memory [4], re-
duced object location memory [5], impaired learning of con-
textual fear conditioning and passive avoidance [6], and in-
creased depressive-like behavior [3].

Compounding its consequences for public health, the ef-
fects of obesity are not limited to one generation. In humans,

maternal obesity not only raises the risk of obesity and cardio-
metabolic disease in children [7], it also increases the risk of
anxiety, attention deficit hyperactivity disorder, and autism
[8]. In rodents, offspring of obese dams exhibit significant
deficits in reversal learning accompanied by striatal distur-
bance [9], as well as long-term impairments in spatial learning
[10]. Rats born to obese mothers have been found to have
hippocampal inflammation and increased anxiety as adults
[11], and female mice born to high-fat-fed mothers exhibit
higher anxiety, brain tissue inflammation, and inflammatory
cytokines [12].

The effects of a maternal high-fat diet on behavior are com-
plex, and its impact on offspring anxiety is far from resolved
in the field (Table 1). In some cases, maternal high-fat diet is
credited with increasing anxiety in offspring [11, 12, 14–16],
while in others it has been shown to have an anxiolytic effect
[17–20]. This discrepancy can be attributed to several causes,
including the fact that behavior is a highly variable and noto-
riously difficult trait to measure—especially anxiety
behavior—as well as the multitude of tools being used
to measure anxiety and the variability in fat content of
diets studied by different researchers.
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While high-fat diet rodent models have been used to study
maternal effects on offspring anxiety behavior most common-
ly, other behaviors have also been studied. Research on the
effect of maternal dietary fat on offspring activity levels has
yielded mixed results. A maternal high-fat diet was found to
decrease locomotor activity in daughters in Sprague-Dawley
rats [21], but it increased activity in one of three mouse strains
in an Open Field Test and in all three strains during a swim test
[22]. More research is needed in order to understand the di-
rection and magnitude of the effect of maternal obesity on
offspring activity levels, if indeed there is a consistent effect.

Another interesting avenue to explore in terms of maternal
diet is its effect on nest-building behavior. After observing that
high-fat-fed mice seemed to build lower-quality nests, we be-
came interested in quantifying the difference to test it statisti-
cally. Nests are important for murine thermoregulation, and
both males and females build them [23]. Mouse pups espe-
cially rely on nests to reduce heat loss, as they are born hairless
[24]. Nest quality affects mouse fitness, as illustrated by
Lynch [25] who found that mice selected for poor nest build-
ing became less fertile over 15 generations, whereas mice
selected for good nest building became more fertile and in-
creased their litter size and body weight. More recent research
has shown that nest size is correlated with locomotor activity
[26], and that mice in cages lacking enrichment materials for
nest building produced pups that weighed less and had lower
survival rates to weaning age [27]. Several quantitative trait
loci have been identified that contribute to genetic variation in
nest building [28]. In addition to genetics, nest building is
affected by hormones [29] and lesions on the hippocampus,
which are also both known to be disrupted by obesity [30, 31].

We tested the hypotheses that an individual’s high-fat diet
would: (1) increase anxiety (shown by a reduced center:total
distance ratio and higher levels of rearing, urination, and fecal
boli production in the Open Field Test); (2) reduce activity
levels (shown by increased time performing inactive behav-
iors such as sleeping and resting and decreased time
performing self-maintenance, exploring, and social interaction
behaviors during instantaneous scan sampling sessions); and
(3) impair nest-building ability (shown by a lower score on the
Deacon Scale). We also tested the hypothesis that a maternal
high-fat diet would affect anxiety, activity levels, and nest
building in the same manner in offspring.

Methods

Animal rearing

We studied the inbred SM/J mouse strain from The Jackson
Laboratory (Bar Harbor, Maine) which we have previously
shown is hyper-responsive to the same high-fat (HF) diet used

in this study [32–34]. Using a strain with maximal response to
an HF diet increases our power to detect effects.

At 3 weeks of age, 30 male mice and 10 female mice born
at Loyola University were weaned onto a low-fat (LF) diet,
and 20 female mice were weaned onto an HF diet to create an
F0 generation. We used twice as many HF females as LF
females because they had a lower rate of successful pregnan-
cy. In the LF diet, 15% of the calories came from fat (Research
Diets D12284), whereas 42% of the calories came from fat in
the HF diet (Harlan Teklad diet TD.88137) (Table 2).We have
studied these mice using these particular diets for 20 years
[32–34]. We chose the LF diet instead of regular chow be-
cause it was specifically designed to match the HF diet as
closely as possible in terms of nutrients and calories (the HF
diet has 18.95 kJ per gram, whereas the LF diet has 16.99, as
determined based on Atwater factors by the manufacturers).
These diets are in line with what humans consume, with fat
intake ranging from 28.5–46.2% of total energy in Europe
[35] and 34% in the United States [36]. Procedures followed
the institutional and national guidelines for the care and use of
animals, and all experimental procedures were approved by
the Institutional Animal Care and Use Committee at Loyola
University (protocol #1188). Each day, animal welfare was
assessed by the facility staff and researchers, and a veterinary
technician was in the facility for consultation and further as-
sessment. There were no known adverse events observed in
the mice other thanweight gain in the HF-fedmice, which was
intended. The behavior assays were selected because they are
minimally invasive and minimally disruptive to the animals.

The F0 mice were weaned onto an HF or LF diet at 3 weeks
of age and raised for 7 weeks on that diet, while being housed
with one other mouse of the same sex and diet. Theywere then
mated, with one male and one female housed per cage. When
the female was determined to be pregnant by abdominal pal-
pation, the male was removed from the cage. To avoid con-
founding the prenatal and postnatal maternal obesity effects,
all pups were cross-fostered within 24 h of birth to an LF-fed
SM/J nurse. Half of the pups from each litter were weaned

Table 2 Composition of diets

Component High-fat diet Low-fat diet

Energy from fat, % 42 15

Casein, g/kg 195 197

Sugars, g/kg 341 307

Corn starch, g/kg 150 313

Cellulose, g/kg 50 30

Corn oil, g/kg 0 58

Hydrogenated coconut oil, g/kg 0 7

Anhydrous milk fat, g/kg 210 0

Cholesterol, g/kg 1.5 0

Kilojoules per gram 18.95 16.99

J Diabetes Metab Disord (2018) 17:297–307 299



onto an HF diet and the other half onto an LF diet. This
resulted in four F1 diet treatment groups: HF-HF, LF-HF,
HF-LF, and LF-LF, where the first diet listed is the mother’s
diet and the second is the offspring’s diet (Fig. 1). Ten off-
spring of each sex were randomly assigned to each diet treat-
ment group, for a total of 80 F1 mice. After weaning, each
mouse was housed in corn-based bedding with one other
mouse of the same sex and diet in a cage that contained a
wooden gnawing block (Bio Serve), a red privacy hut (Alt
Design), a 2″ × 2″ cotton nestlet for nesting material
(Ancare), and food and water ad libitum in a 12 h light, 12 h
dark cycle. We took advantage of the fact that SM/J mice have
forced heterozygosity (Aw/a) at the agouti locus; since
half of the mice are tan and the other half are black, we
housed each mouse with a mouse of a different color in
order visually differentiate between the two mice in
each cage for behavioral analysis. The mice were
weighed weekly and were sacrificed via CO2 asphyxia-
tion at 17 weeks of age for a different experiment [37].

Our sample size gave us 80% power to detect differences of
0.4 residual standard deviation units (p = 0.05), which we
deemed sufficient based on other studies of rodent anxiety in
the literature.

Open field test

The Open Field Test was conducted using a 17.5″ (L) × 13″
(W) × 15″ (H) opaque plastic box with a grid on the floor that
subdivided it into 48 rectangles measuring 2.16″ × 2.18″
(Fig. 2). The mice were brought into the testing room at
9:00 AM and allowed to acclimate, with testing beginning at
11:30 AM. No cage changes were performed within 24 h prior
to testing to avoid impacting mouse behavior, and the entire
arena was sanitized with 70% ethanol after each mouse
was tested. A 10 week old F1 mouse was then placed into
a corner of the arena, and the mouse’s movements were
observed and video recorded for 5 min by 2 female re-
searchers concurrently. Any discrepancies in observations
by the 2 researchers were corrected by reviewing the vid-
eo. We note that the researchers were female because
Sorge et al. [38] showed that male experimenters induce
a stress response in mice and rats, which includes increas-
ing fecal boli production. The following measurements
were collected: the number of times the mouse reared,
the number of times it crossed any of the 8 squares in

the center of the arena, the total number of squares it
crossed, the number of times it urinated, and the number
of fecal boli it produced. The number of squares crossed
was determined by reviewing the video of the session,
because the mice often moved too quickly to accurately
count with the unaided eye. The center:total distance ratio
was calculated by dividing the number of center squares
crossed by the total number of squares crossed. A low
center:total distance ratio and high levels of rearing, uri-
nation, and fecal boli production were interpreted as indi-
cators of anxiety [39].

Ethogram data

After noticing that mice on an HF diet seemed to be less active
than LF mice, we resolved to investigate the possible differ-
ence quantitatively. A behavioral ethogram was created by
listing all mouse behaviors witnessed during 5 h of observa-
tion, for a total of 19 behaviors (Table 3). The offspring were
observed 3–4 times per week, and the observation times were
categorized as a morning session (between 8:00 and
10:30 am) or an afternoon session (between 2:30 and
5:00 pm). Each session consisted of 20 observations by in-
stantaneous scan sampling, with each observation of an indi-
vidual mouse at least 1 min apart. Specifically, a researcher
marked on the ethogram checklist which behavior the mouse
was performing at the instant it was observed, then moved on
to the next mouse, and continued until all of the mice had been
observed once. The observer then returned to the first mouse
and checked off its behavior again, completing this cycle 20
times. The mice were observed for an average of 26 sessions
between the ages of 3–14 weeks. Since some mice were ob-
served more than others, we calculated an average of each
behavior per age period for analysis (3–5, 6–8, 9–11, and
12–14 weeks). The cages were rearranged randomly on the
rack each week so the order of observation varied.

Many of the behaviors were performed too infrequently to
detect a difference due to diet. For example, behaviors ob-
served less than 1% of the time were: motionless but alert,
being groomed, rearing, drinking, gnawing, digging, carrying,
nesting, allogrooming, running, fighting, and mounting. To
incorporate these rarer behaviors into the analysis in a more
meaningful way, in addition to analyzing the individual

Fig. 2 Diagram of the Open Field Test arena

Fig. 1 Breeding design. HF =High-fat diet, LF = Low-Fat diet

300 J Diabetes Metab Disord (2018) 17:297–307



behaviors, we grouped them into four larger behavior catego-
ries: Self Maintenance (drinking, eating, and autogrooming),
Inactive (sleeping, resting, motionless but alert, and sitting),
Explore Cage (walking, climbing on the ceiling bars,
gnawing, digging, carrying, nest arrangement, running, and
rearing), and Social Interaction (allogrooming, being
groomed, fighting, and mounting) (Table 3). We calculated
the average percent of time a mouse spent performing behav-
iors in these four categories during each of the four age periods
that each animal was observed in. The Social Interaction cat-
egory could only be analyzed for the first three age periods,
because the mice were housed individually after 12 weeks of
age to measure nest building ability.

Nest quality

At 13 weeks of age, each mouse was housed alone in a fresh
cage and given a 2″ × 2″ cotton nestlet between 10:00 to
11:00 am. Twenty-four hours later, the nest was photographed
and rated for quality using the Deacon Scale, which ranges
from 1 to 5 [23]. A Deacon score of 1 indicates a poor quality
nest, where over 90% of the nestlet remains unused; a score of
2 means that 50–90% of the nestlet is still intact; 3 indicates
the nestlet is mostly shredded but there is no identifiable nest
site; 4 means that more than 90% of the nestlet is torn and the
nest walls are higher than the mouse’s body; and a score of 5 is

a near perfect nest (Table 4) [23]. Since there was a privacy hut
in the cage, we also noted if the nest was built inside of the hut
or outside of it.

Statistical analysis

In each of the three assays, we measured the effect of
offspring diet and maternal diet on behavior. In testing
for anxiety, the response variables for the Open Field
Test were the center:total distance ratio and the number
of times each mouse reared, urinated, and produced fe-
cal boli. In the test of activity via instantaneous scan
sampling, there were 19 response variables for each of
the four age periods: the proportion of time each mouse
spent performing each of the 19 behaviors per session
during that age period. In the test of nest quality, the
response variable was the mouse’s nest quality score
based on the Deacon Scale.

In each of the three behavioral assays, the data were
not normally distributed, as determined by the Shapiro-
Wilk test of normality. Because the data had a non-
normal distribution, we randomized the relevant pheno-
types (the behaviors) over the factors to obtain a null
distribution of ANOVA parameters under the hypothesis
of no treatment effects. Using just the offspring of HF
mothers, we randomized the trait values 9999 times,

Table 3 Mouse behaviors

Behavior Category Factor Age 3–5 weeks Age 6–8 weeks Age 9–11 weeks Age 12–14 weeks

Self Maintenance
(drinking, eating, autogrooming)

High fat avg 7.3% 6.2% 6.7% 10.0%
Low fat avg 12.1% 10.8% 14.6% 13.4%
Offspring Diet 0.00864 0.0134 8.00E-04 8.60E-04
Nurse 0.00178 0.00066 0.36662 0.00126

Inactive
(resting, motionless but alert,

sitting, sleeping)

High fat avg 80.6% 81.7% 75.4% 79.8%
Low fat avg 75.8% 77.3% 67.5% 66.6%
Offspring Diet 0.10326 0.64236 2.58E-02 0.00001
Nurse 0.00002 0.02823 0.00897 1.17E-06

Explore
(gnawing, digging, carrying, nest

arrangement, climbing, running,
rearing, walking)

High fat avg 11.5% 11.8% 16.9% 10.1%
Low fat avg 11.7% 11.7% 17.7% 19.8%
Offspring Diet 0.56773 0.51643 0.17565 0.00012
Nurse 0.00002 0.1679 0.00005 2.96E-09

Social Interaction
(allogrooming, being groomed,

fighting, mounting)

High fat avg 0.7% 0.3% 1.0% NA
Low fat avg 0.4% 0.3% 0.2% NA
Offspring Diet 0.12934 0.50193 0.00333 NA
Nurse 0.17361 0.57082 0.10353 NA
Sample size n = 36 HF

40 LF
n = 35 HF

40 LF
n = 36 HF

35 LF
n = 35 HF

38 LF

This table indicates how the 19 ethogram behaviors were grouped into 4 larger 645 behavioral categories. It shows the average percent of time that mice
on a high-fat diet and mice on a low-fat diet mice were observed performing behaviors in each of these summary categories at each of the four age
periods. Since sex did not have a significant effect on the behaviors, males and females were analyzed together. The p-values are from an ANOVA
showing the effect of nurse ID and offspring diet on the summary ethogram categories. Nurse ID affected how often the mice performed self-
maintenance, inactive, and exploration behaviors throughout their lives. Offspring diet affected self-maintenance behaviors throughout life, and inactive,
exploration, and social interaction behaviors later in adulthood

Statistically significant effects of offspring diet and nurse are bolded
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then tested the difference between the LF and HF off-
spring using a 2-sample t-test for each behavior and
compared the t-test statistic from the observed values
to those of the randomized values. We performed anoth-
er randomization to determine if offspring sex had a
significant effect on behavior. We repeated this proce-
dure for the offspring of LF mothers. The t-test statistics
for each of these tests were normally distributed, even
though the raw data was not. The p-values from the
randomization procedure were nearly identical to those
resulting from the ANOVA. Since the ANOVA was so
robust to the non-normally distributed data, we
proceeded to analyze the data with a General Linear
Model and report the p-values resulting from the GLM.

For each of the three assays (Open Field Test,
ethogram, and nest quality) we used SYSTAT (Version
12) to test the full model, which included the effects of
maternal diet, offspring diet, offspring sex, nurse ID, par-
ity, and their two- and three-way interactions. For the
ethogram data we also included observation time of day
and age period in the model (this was not necessary for
the Open Field Test or nest quality traits because those
assays were conducted on each mouse only once, at the
same time of day when the mice were all the same age).
We then ran a reduced model for the ethogram data that
included just nurse, offspring diet, and age period, since
those were the only three variables with a statistically
significant effect. We also performed a principal compo-
nents analysis for each of the three behavioral assays.

Results

Weight

Offspring diet had a significant effect on weight within 1 week
of being weaned onto it, with HF-fed mice weighing signifi-
cantly more than LF-fed mice at 4 weeks of age (p = 5.6 ×
10−10). The weight difference increased with age, and by the
time the mice were 17 weeks old, the HF females weighed
28.2 g (± a standard error of 1.4 g), the LF females weighed
15.1 ± 1.6 g, the HF males weighed 33.4 ± 1.7 g, and the LF
males weighed 19.3 ± 1.6 g, with a strongly statistically sig-
nificant effect of diet (p < 0.0001). We considered the HF-fed

mice to be obese when their mean was 3 standard deviations
apart from the LF-fed mean. The mean of the HF males was
3.7 standard deviations apart from the mean of the LF males at
10 weeks of age, and 5.2 standard deviations apart at 17 weeks
of age. The mean of the HF females was 3.2 standard devia-
tions apart from the LF females mean at 10 weeks of age, and
4.8 standard deviations apart at 17 weeks of age. The HFmice
had significantly higher serum levels of triglycerides, glucose,
insulin, and leptin at 17 weeks of age than the LF mice [37].
Maternal HF diet did not affect the weight of the sons or LF
daughters, but did significantly increase the weight of HF
daughters at 9-weeks of age (p = 0.041) and beyond [37].

Open field test

Offspring diet had a significant effect on the Open Field Test
traits. The principal components analysis revealed that PC1
accounted for 98.3% of the variance and was dominated by
rearing in the Open Field Test (with a weight of greater than
0.99). PC2 accounted for 1% of the variance and was domi-
nated by fecal boli production and urination (which were
weighted 0.82 and 0.56 respectively), with rearing and
center:total distance weighted negatively. Despite the strong
variation in rearing, this trait was not significantly affected by
diet. This is likely due to diet having an opposite affect de-
pending on sex. HF females reared more than LF females
(13.06 times versus 9.47 times), but HF males reared less than
LF males (9.11 times versus 11.63).

Urination frequency and fecal boli production, the drivers
of variation in PC2, were affected by diet in the same direction
in males and females. The general linear model revealed that
offspring diet was significant on a multivariate level (p =
0.028), as well as for the individual traits of urination frequen-
cy (p = 0.007) and fecal boli production (p = 0.042). The av-
erage urination frequency was 3.8 times higher in HF females
than LF females, and 1.9 times higher in HF males compared
to LF males (Fig. 3a). The average fecal boli production was
more than 4 times higher in mice on an HF diet than those on
an LF diet for both sexes (Fig. 3b).

There was little effect of prenatal maternal diet on anxiety.
The general linear model of the Open Field Test traits indicat-
ed that maternal diet had borderline significance on the mul-
tivariate level (p = 0.054) and was not significant for any of
the individual traits. However, a maternal HF diet did appear

Table 4 Deacon Scale to measure
nest quality, from Deacon et al.
[23]

Deacon Score Description of Nest

1 Over 90% of the nestlet remains unused

2 Between 50 and 90% of the nestlet is still intact

3 Nestlet is mostly shredded but there is no identifiable nest site

4 More than 90% of the nestlet is torn and the nest walls are higher than the mouse’s body

5 A near perfect nest
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to increase urination frequency in HF sons (1.2 average uri-
nations) compared to LF sons (0.42 average urinations), with
a t-test showing borderline significance (p = 0.058) (Fig. 3c).

Ethogram data

Testing the full model revealed that offspring diet (p = 4.60 ×
10−8), age period (p = 2.08 × 10−10), and nurse ID (p = 0.01)
all had a statistically significant effect on offspring activity as
assessed by the ethogram traits. Since sex did not have a
significant effect, the males and females were analyzed to-
gether. Maternal diet also did not have significant effect. The

fact that nurse ID was significant means that even though all
pups were cross-fostered to genetically identical LF-fed SM/J
nurses, the nurses differed in some other way that had a lasting
impact on their fostered offspring, no matter what diet the
offspring or the biological mother had. We included nurse
ID in the model to control for it.

The most commonly observed behaviors in the mice were
sleeping (62.5% of the time), autogrooming (7.4%), climbing
(7.4%), walking (5.9%), and eating (3.7%). The results of the
principal components analysis indicated that PC1 (which ex-
plained 80.9% of the variance) was dominated by sleeping
(0.90), with resting (0.002) and being groomed (0.00075)
weighted in the same direction and all other behaviors in the
opposite direction. PC2 (which explained 7.7% of the variance)
was dominated equally by resting (0.43) and autogrooming
(0.43), with motionless but alert making a minor contribution
(0.10). In PC2, eating (0.72), climbing on the ceiling bars (0.23),
and sleeping (0.18) were weighted in the opposite direction.

We also grouped the behaviors into four larger categories for
analysis: self-maintenance, inactive, explore cage, and social
interaction. HF offspring spent less time performing self-
maintenance behaviors than LF mice at all four age periods
(Fig. 4a). Although they differed in self-maintenance early on,
significant differences in other behaviors did not manifest until
later in life. The mice spent an equal amount of time exploring
the cage until 12–14 weeks of age, when LF mice increased
their time exploring and HF mice decreased it (p = 0.0001).
This change meant that HF mice explored only half as often
as LF mice in adulthood (Fig. 4b). While spending less time
performing self-maintenance and exploration behaviors than
LF mice, the HF mice spent more time being inactive as adults.
Mice on an LF diet became more active with age (they were
inactive 75.8% of the time at 3–6 weeks old, and 66.6% of the
time at 12–14 weeks old), whereas mice on an HF diet never
increased their activity levels (they were inactive 80% of the
time at both 3–6 weeks and 12–14 weeks of age) (Fig. 4c). The
difference in activity levels between the two diet groups be-
came detectable at 9–11 weeks of age (p = 0.026), but weight
differences were detectable at 4 weeks, indicating that the re-
duced activity levels followed the weight gain from an HF diet.
Neither group of mice performed social interaction behaviors
frequently, but at 9–11 weeks of age the HF mice performed
them significantly more often than LF mice (1% of the time
versus 0.2% of the time, p = 0.003) (Fig. 4d). This was not due
to differences in time spent fighting or mounting, but rather due
to the HF mice spending more time grooming each other (p =
0.005) and being groomed (p = 0.025).

The differences in the four behavior summary categories
appear to be primarily driven by a significant difference in the
following individual behaviors at 12–14 weeks of age:
sleeping (Fig. 5a), climbing on the ceiling (Fig. 5b), and walk-
ing (Fig. 5c), with HF-fed mice sleeping more and climbing
and walking less than LF-fed mice.

Fig. 3 a In the Open Field Test, high-fat male mice born to high-fat
mothers (HF-HF ♂) had a borderline significant elevation in anxiety
through increased urinations compared to high-fat males born to low-fat
mothers (LF-HF ♂) (p = 0.058). b High-fat mice also produced more
fecal boli than low-fat mice (p = 0.042). c Independent of maternal diet,
high-fat mice urinated more than low-fat mice (p = 0.007). Sample size:
HF diet♀ (n = 20), LF diet♀ (n = 20), HF diet♂ (n = 20), LF diet♂ (n =
20), HF-HF ♂ (n = 10), LF-HF ♂ (n = 10), LF-LF ♂ (n = 10), HF-LF ♂
(n = 10). Error bars represent ± a single standard error, HF = high-fat diet,
LF = low-fat diet, OFT =Open Field Test
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Nest quality

Mice on an HF diet built poorer quality nests than mice on an
LF diet (p = 0.040) (Fig. 6a). The difference was driven by the
males, where HF-fedmales scored an average of 2.8 out of 5 on
the Deacon scale, compared to 3.8 for LF-fed males. Although
offspring diet did not significantly affect where the nests were
built (p = 0.075), it is interesting to note that a t-test of just the
sons shows that HF sons built their nests inside of the hut less
often (p = 0.021) (Fig. 6b). Maternal diet did not affect the
offspring’s Deacon score, however it did affect where they built
their nests. Regardless of their own diets, offspring of LF diet
mothers were 2.5 to 3.5 times more likely to build their nests
inside of the hut than offspring of HF diet mothers (p = 0.020)
(Fig. 6c). In other words, having an HF-fed mother reduced the
offspring’s probability of building a nest inside of the hut (11%

of offspring of HF mothers built their nests inside the hut,
compared to 38% of offspring of LF mothers).

Discussion

We found that a high-fat (HF) diet in offspring increased urine
and fecal boil production in the Open Field Test, reduced levels
of activity and exploration, and reduced nest quality, indicating
that diet impacts a wide range of behaviors in mice. This gen-
erally supports the findings of previous studies [3, 4, 6, 40].
Unlike previous studies, we did not detect an effect of a mater-
nal HF diet in the Open Field Test. There is a dearth of knowl-
edge in the scientific literature about the effect that a maternal
HF diet has on activity levels and nest building in rodent off-
spring, and we report finding no effect. If there is an effect of

Fig. 4 aHigh-fat mice performed self-maintenance behaviors significant-
ly less often than low-fat mice at every age group. b By 12–14 weeks of
age, high-fat mice spent less time exploring than low-fat mice (p =
0.0001). c Low-fat mice became less inactive in adulthood, whereas

high-fat mice never decreased their level of inactivity (p = 0.00001). d
At 9–11 weeks of age, high-fat mice engaged in more social interaction
behaviors than low-fat mice (p = 0.0033). Error bars represent ± a single
standard error, HF =High-Fat diet, LF = Low-Fat diet

Fig. 5 These graphs contrast the behavior of the high-fat and low-fat diet
mice at 12–14 weeks of age. a High-fat mice spent more time sleeping
than low-fat mice (p = 0.0017). b High-fat mice spent less time climbing
on the ceiling bars than low-fat mice (p = 0.014). c High-fat mice also

spent less time walking around (p = 0.0031). Error bars represent ± a
single standard error, HF = high-fat diet, LF = low-fat diet, sample size
is high-fat (n = 35), low-fat (n = 38)
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maternal HF diet on activity levels and nest building, it is pos-
sible that the effect size is very small and would require a larger
sample size or different methods to detect, such as measuring
nest size, nest temperature, or locomotive activity. Alternatively,
it is possible that maternal HF diet does not affect these traits.

In the Open Field Test, the higher levels of urination and
fecal boli production in both sexes of HF-fed mice support the
hypothesis that obesity increases anxiety. However, there was
no difference in rearing or the center:total squares ratio be-
tween the diet treatment groups. Open Field Test results can
be difficult to compare across studies, since rodents may show
a significant difference in only one or two of the anxiety mea-
sures, and there is not a standardized way of interpreting the
collective findings. In the present study, the mice showed in-
creased anxiety for two of the five measures. Although we
found no effect of anHF diet on the number of squares crossed
in the center of the arena, Bruce-Keller et al. [40] found that
HF-fed male mice (n = 10) spent less time in the inner zone of
the Open Field Test than chow-fed mice (n = 10), with the
total distance traveled unchanged. Similarly, Sharma and
Fulton [3] found that HF-fed mice (n = 8) entered the inner
zone less often and spent less time in it than LF-fed mice (n =
8). Both of those studies were conducted with C57BL/6 J
mice, whereas we used SM/J mice, so it is possible that the
manifestation of anxiety is dependent on genetic background.
Nevertheless, although different aspects of the Open Field
Test came out as significant in these studies, all of them de-
tected increased anxiety due to an HF diet. Since maternal diet
had a p value just below the p = 0.05 significance threshold in
the sons, we used G*Power [41] to perform an a priori power
analysis with our data to provide researchers in the future with
an idea of the sample size needed to detect maternal effects in

the Open Field Test in a study like ours, which we may have
just missed. We found that a sample size of 17 for each group
would give 80% power to detect significance at the 0.05 level.

In addition to beingmore anxious, HFmice performed fewer
self-maintenance behaviors at all ages, and by 11 weeks of age
they explored the cage half as often and were far less active than
low-fat (LF) mice. In fact, while LFmice becamemore active as
they aged, HF mice became less active. HF mice slept signifi-
cantly more and spent less time walking and climbing as adults.
The lower activity levels in HF mice developed several weeks
after they began to weigh more than the LF mice. This suggests
that weight gain can lead to inactivity, and not just the other way
around. The reduced activity levels in the HF-fed mice may
compound the effect of the diet to lead to further weight gain.
Compared to the LF mice, the HF mice had significantly higher
serum leptin levels [37]. A diminished response to leptinmay be
linked to the reduced activity levels, since it known that treating
leptin-deficient ob/ob mice with leptin increases their ambula-
tory activity, wheel running, and total energy expenditure [42].

The mice on an HF diet also built poorer quality nests. This
could potentially be influenced by several factors, such as ther-
moregulatory changes due to obesity, the observed reduction in
activity levels, hormonal changes, or alterations in brain regions
known to both affect nesting behavior and be impaired by obe-
sity, such as the hippocampus. Favoring a possible connection
to a thermoregulatory mechanism, the HFmice had significant-
ly more brown fat than the LF mice [37]. If the HF mice give
off more heat, a lower quality nest may in fact be more optimal
for them—although not necessarily for their pups.

An HF diet affected a wide range of behaviors in SM/J
mice, whereas we did not detect such an effect of maternal
prenatal HF diet on the offspring behaviors that we measured.

Fig. 6 a Offspring diet had a
significant effect on nest quality,
with this difference being driven
by the sons. High-fat diet sons
built lower-quality nests than low-
fat diet sons. b High-fat offspring
diet showed a nonsignificant
trend (p = 0.075) of building nests
in the hut less often, although a
paired t-test of just the sons
showed a statistically significant
difference (p = 0.021). (C)
Offspring of high-fat mothers
built their nests inside of a hut less
often. Error bars represent the
standard error, HF = high-fat diet,
LF = low-fat diet, sample size:
n = 10 HF-HF♀, 10 LF-HF♀, 10
HF-LF♀, 10 LF-LF♀, 10 HF-
HF♂, 10 LF-HF♂, 8 HF-LF♂, 10
LF-LF♂)
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However, we only used one test of anxiety and did not per-
form any cognitive tests, so it is possible there were maternal
effects we did not detect. Our results do support the findings of
Hiramatsu et al. [43], though, who recently found that a ma-
ternal Western diet did not have a major effect on the behavior
of adult offspring, including no effect on anxiety as measured
by an Elevated Plus Maze.

Althoughwe did not find an effect of maternal diet, there was
in fact a significant effect of nurse ID on offspring behavior,
despite the nurses all being genetically identical and LF-fed.
This environmental maternal effect persisted through adulthood,
indicating that the rearing and lactation environment has a last-
ing effect onmurine anxiety and activity levels, more so than the
prenatal maternal diet. We did not measure maternal behavior in
this experiment, but the significant effect of nurse ID indicates
that this would be interesting to pursue in the future.

Findings on the effect that maternal obesity has on offspring
anxiety are varied in rodents, ranging from decreasing to increas-
ing anxiety [11–20]. The present study found no effect of mater-
nal diet on offspring anxiety in the Open Field Test, other than a
borderline increase in urinations in HF sons. If there is an effect
of maternal diet, the effect size must be small, as our sample size
gave us 80% power to detect differences of 0.4 residual standard
deviation units. By not detecting an effect of maternal obesity on
anxiety, our findings suggest that the effect of maternal diet
found in other rodent studies may principally be due to postnatal
maternal diet, since we only varied prenatal diet. This is support-
ed by an experiment by Kang et al. [12], who found that the
increased anxiety in mice with HFmothers was reduced in those
whosemothers were transferred to a control diet during lactation.
Postnatal maternal diet in rodents may thus have a stronger effect
on offspring behavior than prenatal diet.

Maternal diet did not affect the offspring’s behavior pat-
terns as measured by instantaneous scan sampling, consistent
with the outcome of the Open Field Test. It did, however, have
an unexpected effect on offspring nesting behavior. Mice with
mothers on an HF diet were less likely to build their nests
inside of huts (not a single HF male with a HF mother built
a nest inside of the hut). The connection between maternal HF
diet and building nests outside of huts is unclear. Perhaps
thermoregulation plays a role, although maternal diet only
affected the weight of HF daughters and not of LF daughters
or sons. Alternatively, anxiety could play a role if having a
nest separate from the hut provides a second hiding place. This
has yet to be established, however.

Limitations to our study include the sample size of 10 per
treatment (a sample size of 17 would have been better) and our
use of only theOpen Field Test tomeasure anxiety (an additional
test such as the Elevated Plus Maze could have been more in-
formative). Our results suggest that it would be interesting in
future studies to include measurements of maternal behavior.

Although this study did not investigate the effects of an HF
diet on parenting behavior, the lasting effect of nurse ID as

well as the observed changes in behavior due to dietary fat
give reason to predict that parental HF diet could have major
effects on the pups. For instance, pup survival could be re-
duced if the parents’ poorer nest building failed to keep the
pups warm and hidden from predators. Higher levels of inac-
tivity in the mothers could lead to a reduction in arch-backed
nursing, which could negatively affect offspring fitness.
Higher levels of maternal anxiety could increase offspring
stress response into adulthood, as seen in rats [44]. It will be
important in the future to study the effect of a postnatal ma-
ternal HF diet and determine its underlying mechanisms.

Conclusions

Our results support the conclusion that an individual mouse’s
own high-fat diet affects anxiety, nest building, and activity pat-
terns, while prenatal maternal high-fat diet does not. Other rodent
studies have found an effect of maternal diet on offspring behav-
ior when the high-fat diet continued through lactation; thus, it is
possible that a postnatal maternal high-fat diet has a larger effect
size on behavior than prenatal maternal high-fat diet.
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