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1 Introduction

The covariant phase space formalism, based on a Lagrangian description of gauge theories,
can be used to compute charges associated with gauge symmetries [1–8], see also the
review [9]. These charges carry physical information about the system and label the states
in the phase space.

In the present work we are interested in theories where the behavior of the fields
is specified around a boundary; for instance the spatial boundary. For an asymptotic
symmetry ξ that preserves these fall-offs, an associated charge can be defined as the integral
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of a form kξ over a closed, codimension-2 surface C located on this boundary. The Iyer-
Wald construction [3–5] can be used to obtain a suitable form kξ, and the candidate charge
is then given by

/δQξ = lim
r→∞

∫
C

kξ . (1.1)

The limit in this expression, which refers to a coordinate r, is shorthand for a procedure
involving integrals over a sequence of closed surfaces Cr that approach C.

An immediate problem is that the limit described above may not exist for a given kξ.
One is then faced with the problem of somehow adjusting kξ so that the r → ∞ limit
of its integral over C exists. A common approach to this problem is to exploit so-called
“corner ambiguities” in the Iyer-Wald covariant phase space formalism [3–5, 10]. There, the
codimension-2 form satisfies dkξ = ωξ for a choice of presymplectic current ω contracted
with the symmetry. The presymplectic current is itself obtained from a potential that is
defined only up to the addition of a closed form, so there is a natural ambiguity in the choice
of ω and hence the defining property of kξ. The goal, then, is to find an appropriate shift
in the codimension-2 form, consistent with this ambiguity, so that the limit (1.1) exists.

Once this hurdle is cleared, there is still the issue of the integrability property of /δQξ.1

For theories without propagating degrees of freedom it is expected that the charge is inte-
grable. But this can be tedious to show, especially in the presence of “leaks” at the bound-
ary [9, 14, 15]. These leaks might be associated with a flux that could pass across the bound-
ary, or simply the fact that there are fields on the boundary with unspecified dynamics, as
would be the case for an open system. When there is flux through the boundary, there is a
discussion on how to split the charges into integrable and non-integrable parts [10, 16–18].

Identifying a corner ambiguity that renders the charges finite can involve trial-and-
error, or ad hoc justifications that seem to apply only to specific examples.2 But in
some cases there are proposals that unambiguously motivate these terms. For example, in
Einstein-Hilbert gravity with asymptotically anti-de Sitter boundary conditions, one can
construct the charges working in Fefferman-Graham gauge [20]. The corner terms used to
render the charges finite for various boundary conditions are related to symplectic poten-
tials associated with boundary Lagrangians [21–24] used for holographic renormalization
of the action [25, 26]. Another proposal for extracting the necessary corner contributions
from a boundary Lagrangian was given in [27, 28], though it may be difficult to determine
the precise form of the boundary Lagrangian, or if such a Lagrangian exists. Note also
that the prescription advocated in [29–31] is inapplicable in presence of leaks.

However, even in a theory with asymptotically AdS boundary conditions, it may be
desirable to work in a gauge other than Fefferman-Graham. For example, one might
consider AdS spacetimes in Bondi gauge, since this description admits a well-defined flat
limit [32–35]. But when the boundary metric dynamics is fluctuating, it does not seem that
the asymptotically AdS construction referenced above can be carried out in Bondi gauge
while simultaneously preserving the flat limit [36, 37]. Specifically, it was shown that the

1See [11–13] for another method to discuss the (non-)integrability of charges.
2However, see [19] for a renormalization procedure for electromagnetism for spacetime dimensions higher

or equal to six.
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renormalization of the charges was not connected to the boundary terms renormalizing the
action.

In this paper, we show that there is a straightforward way of ensuring that the right-
hand side of (1.1) exists, using only the variation of the bulk Lagrangian and the fall-offs of
the fields at the boundary to identify the necessary corner terms. We apply this prescription
to two dimensional dilaton gravity theories and three dimensional Einstein gravity (with or
without a cosmological constant) with leaky boundary conditions. These lower dimensional
theories are widely used as toy models of quantum gravity, tractable examples of black
hole evaporation, and concrete examples of holographic dualities [32, 38–49]. The resulting
charges (1.1) are not only finite, but also symplectic in the sense that the codimension-2
form is independent of the coordinate r used to define the limiting procedure (consistent
with previous results obtained in various gauges [36, 37, 50–53]). With the correct field-
dependence assigned to the symmetry parameters, the charges are integrable and agree
with or generalize previous results [36, 37].

Our approach ensures that the limiting procedure used to define the charges exists,
but a residual ambiguity remains in the finite (as r → ∞) part of the codimension-2 form.
However, at least for the lower-dimensional examples considered here, we argue that one
prescription for identifying the finite part seems to be more natural in the sense that it
leads to integrable charges. In particular, for three-dimensional Einstein gravity in Bondi-
Weyl gauge (which is an extension of Bondi gauge that satisfies a weaker condition on the
determinant of the transverse metric), this explains the origin of a finite corner term added
by hand in [37] to restore integrability of the charges.

The construction of the charges does not reference boundary terms in the action, and
there is no requirement that the first variation of the action vanishes (though we do impose
a subset of the bulk equations of motion). However, the analysis of the asymptotic structure
of the presymplectic potential naturally identifies boundary terms which must be added to
the action to obtain a well-defined variational principle for a particular choice of boundary
conditions. For the two- and three-dimensional theories we consider, we first obtain the
charges, and then use our results for the presymplectic potential to work out actions for
fields satisfying Dirichlet conditions at the asymptotic boundary. This generalizes results
obtained in [36, 37, 54]. In particular our construction of the action extends to cases where
the boundary includes non-smooth corners.

An additional feature of our analysis is that, unlike the usual covariant phase space
approach, the fields are not assumed to be fully on-shell. Instead, we enforce a subset of
the equations of motion sufficient to determine the r-dependence of the fields.3 The other
equations of motion, which are conjugate to fields fixed by our choice of gauge and would
normally be imposed as constraints, are not enforced. Nevertheless, we show there is a (not
unique) codimension-2 form kξ sourced by a combination of the presymplectic current and
the weakly-vanishing Noether current associated with diffeomorphism invariance. Although
the focus here is lower-dimensional theories, this result is completely general and holds for

3In the low-dimensional gravity theories we consider, the r-dependence of the fields and their variations
is completely fixed. In theories with local degrees of freedom, it will only be determined to some order in
a large-r expansion.
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any diffeomorphism invariant theory in any number of spacetime dimensions. It reduces
to the usual definition of the codimension-2 form when the fields are fully on-shell, but
supports additional charges for our slightly weaker condition. This is relevant, for example,
in Jackiw-Teitelboim dilaton gravity [55, 56], which is dual to a quantum mechanical model
that exhibits on-shell breaking of conformal symmetry [42–44, 57–60]. There, relaxing
one of the equations of motion results in charges that realize a Virasoro algebra, but the
conformal symmetry is broken when the fields are fully on-shell.

Organization of the paper. In section 2 we state our main result and present the
proof. Sections 3 and 4 illustrate our procedure applied to two dimensional dilaton gravity
in linear dilaton Bondi gauge, and on three dimensional gravity in Bondi-Weyl gauge,
respectively. In both cases, we follow up an analysis the charges with the construction of
an action principle using our adapted choice of presymplectic potential.

Some details of the calculations in sections 3 and 4 have been place in appendices.
A final appendix D translates some of our results for three dimensional gravity back to
Fefferman-Graham gauge.

Notation. In general we use Greek letters µ, ν, . . . for indices on the full two- or three-
dimensional spacetime, and letters a, b, . . . from the beginning of the Roman alphabet for
indices on codimension-1 surfaces at finite r or on the asymptotic boundary. A generic
index i is used to label the field content. Other notation is explained as it is introduced.

2 Covariant phase space and charges

In the first subsection we give a rough overview of the main result. This is derived in more
detail, with a slightly weaker set of assumptions, in the second subsection. Finally, we
comment on the relation between our results and the boundary terms needed for an action
with a well-defined variational principle.

2.1 Sketch of main result

It is easy to see why the r → ∞ limit in the definition (1.1) of the charge /δQξ might
not exist. Consider a theory on a spacetime M and some choice of presymplectic current
ωµ(Ψ; δ1Ψ, δ2Ψ). For now we assume that the fields and field variations satisfy the equations
of motion, so ω is closed. In the covariant phase space formalism, the codimension-2 form
for an asymptotic symmetry ξ satisfies

∂νkµν
ξ = ωµ

ξ (2.1)

where the equality holds on-shell. The right-hand side of this equation is shorthand for
the presymplectic current with one of the field variations given by the action of ξ on the
fields. Working in coordinates where the boundary is the r → ∞ limit of a constant r

surface B, let N be a surface that intersects B at a closed, codimension-2 surface C. On
a neighborhood of B the surface N is an isosurface of some other coordinate u, and the
charge associated with ξ is then obtained as

/δQξ = lim
r→∞

∫
C

kur
ξ . (2.2)
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Denoting coordinates on C by xA, this component of the codimension-2 form satisfies

∂rkur
ξ + ∂AkuA

ξ = ωu
ξ . (2.3)

If ωu
ξ does not fall off fast enough for large r, then the integral over C of kur

ξ will diverge
in the limit r → ∞, and the charge is not defined.4 Working at large but finite r, one
typically finds that kur

ξ can be written as a part that diverges, a part that remains finite,
and terms that vanish in this limit. Even if one could simply discard the divergent part,
the finite piece that remains may not describe the expected charge [18, 37].

To address these problems we take advantage of a natural ambiguity in the Iyer-Wald
formalism to identify a choice of presymplectic current such that (2.2) is well-defined. This
choice is not unique; a residual ambiguity will remain. Once the boundary conditions are
set, the behavior of the fields is known to some order in a large-r expansion near B. Then the
components of the presymplectic potential along B can be integrated, allowing us to write

Θa(Ψ; δΨ) = ∂r

∫
dr Θa(Ψ; δΨ) , (2.4)

with xa = (u, xA) coordinates on B. Here, the integral is meant to capture the parts of Θa

common to all field configurations — there may also be subleading terms associated with
degrees of freedom not fixed by the boundary conditions. Expressing the components Θa as
total r-derivatives, the bulk divergence of the presymplectic potential can now be written

∂µΘµ(Ψ; δΨ) = ∂r

(
Θr(Ψ; δΨ) + ∂a

∫
dr Θa(Ψ; δΨ)

)
=: ∂rΘr

ren.(Ψ; δΨ) (2.5)

with Θa
ren.(Ψ; δΨ) ≃ 0 (2.6)

Essentially, we shift components of the presymplectic potential along B to zero (with ≃
indicating the possibility of subleading terms) while preserving their contributions to ∂µΘµ

as “corner terms” in a new r-component. This shift in the potential changes both the
presymplectic current and the associated codimension-2 form. For the lower-dimensional
examples we consider in this paper, Θu is the same for all field configurations and Θu

ren = 0
with no subleading terms. Then ωu

ren is exactly zero and the integral of (2.3) over C gives

∂r

∫
C

kur
ξ +

∫
C

∂AkuA
ξ = 0 . (2.7)

The surface C is closed, so the second term vanishes, and hence the r → ∞ limit ex-
ists in the definition of the charge (2.2). The codimension-2 form obtained from the new
presymplectic current satisfies

∂r∂akra
ξ ≃ 0 , (2.8)

such that ∂akra
ξ is independent of r. For theories with dynamical degrees of freedom the

statements above may apply only up to sub-leading terms in a large-r expansion near B.
This is discussed in the conclusion.

4One might argue that this means the boundary conditions must be tightened, so that the fields and
their variations in ωu

ξ fall off more rapidly with r. Our assumption is that the boundary conditions necessary
for the theory to admit a sufficiently wide array of solutions have already been determined, and faster fall
off in r would be too restrictive.
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This is the main result of this paper: we give a prescription to obtain finite charges
based solely on corner terms identified in the bulk presymplectic potential. The result does
not rely on a particular choice of gauge, or the presence of a particular set of boundary
terms in the action.

Note that the conditions above do not completely fix the ambiguity in the definition
of the presymplectic potential in the Iyer-Wald formalism. In passing from (2.4) to (2.5),
one could still shift Θr

ren. by an r-independent piece. However, for the theories we consider,
which do not have local degrees of freedom in the bulk, a suitable choice of gauge naturally
gives the relevant components of Θa as total r-derivatives of the fields and their variations.
These expressions give corner terms in Θr

ren. with both r-dependent and r-independent
parts, and result in integrable charges δQξ. Thus, for these theories, corner contributions
extracted from the bulk presymplectic potential are all that is needed to ensure that the
construction in (2.2) both exists and gives integrable charges.

2.2 Proof of finite charges at the boundary

Let us now give a more detailed derivation of the results sketched out above. The setting
is a diffeomorphism-invariant theory on an n + 1-dimensional spacetime M , describing
a collection of tensor fields Ψi that includes the metric g. The definition of the theory
specifies boundary conditions for the fields, expressed as conditions on their behavior with
respect to some coordinate r as r → ∞. These conditions may refer to quantities that
vanish or diverge in this limit, so we work on a spacetime M with a regulating boundary
∂M that includes a component B which is an isosurface of r. Calculations are carried out at
large but finite r, with the limit r → ∞ taken at the end. (This final step may be implicit
in some our results, and we routinely use B to refer to both the surface at finite r and
the component of the boundary at r → ∞.) The boundary may have other components,
as well, which possibly intersect B at corners that comprise ∂B. The fact that B may
have a boundary ∂B requires careful attention later on when dealing with total derivatives
appearing in boundary integrals.

The theory is described by a variational principle that considers all field configurations
satisfying the boundary conditions, on manifolds M with a boundary that includes B with
corners ∂B. These field configurations are weighted by an action functional of the form

Γ =
∫

M
dn+1x LM +

∫
∂M
dnx L∂M . (2.9)

The boundary Lagrangian L∂M , which may have support on some components of ∂M and
not others, will not be relevant for our results on charges. Everything that is needed comes
from the bulk part of the action, which changes under an infinitesimal variation of the
fields as

δLM = Ei δΨi + ∂µΘµ(Ψ; δΨ) . (2.10)

The tensor densities Ei are the equations of motion and Θµ is the presymplectic potential.
Now consider a second variation of the fields. Without loss of generality these field varia-
tions can be taken to be independent, so they commute. It follows that the presymplectic
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current ωµ, defined as

ωµ(Ψ; δ1Ψ, δ2Ψ) = δ2Θµ(Ψ; δ1Ψ)− δ1Θµ(Ψ; δ2Ψ) , (2.11)

satisfies
∂µωµ + δ2Ei δ1Ψi − δ1Ei δ2Ψi = 0 . (2.12)

This is just a consequence of [δ2, δ1] = 0 applied to (2.10); it holds independent of the
equations of motion. The presymplectic current is conserved, ∂µωµ = 0, when we restrict
to field variations that satisfy the equation of motion.

Under a diffeomorphism xµ → xµ + ξµ the fields Ψi change by their Lie derivative
along ξ. The response of the bulk Lagrangian is

δξLM = Ei δξΨi + ∂µΘµ(Ψ; δξΨ). (2.13)

After integration-by-parts this can be written as

δξLM = ξµNµ + ∂µ

(
Θµ(Ψ; δξΨ) + Sµ

ξ

)
. (2.14)

The quantity Nµ — a combination of the equations of motion, the fields, and their deriva-
tives — vanishes as a consequence of diffeomorphism invariance. These Noether identities
take the form

Nµ = Ei∂µΨi − ∂ν
(
EiΨi

)ν
µ = 0 , (2.15)

where
(
EiΨi

)ν
µ denotes the contractions of the tensor densities Ei and tensors Ψi appearing

in
Ei δξΨi = Ei ξµ∂µΨi +

(
EiΨi

)µ
ν ∂µξν . (2.16)

The current Sµ
ξ appearing as a divergence in (2.14) is then

Sµ
ξ = ξν (Ei Ψi)µ

ν . (2.17)

This is the “weakly vanishing Noether current”. It is zero when the fields are fully on-
shell — when all the equations of motion Ei = 0 are satisfied — but may have non-zero
components if one or more of the equations of motion are not enforced.

Diffeomorphism invariance implies Nµ = 0 for all field configurations, independent of
whether the equations of motion hold. Thus, given two sets of fields that differ by infinites-
imal δΨi, the difference δNµ = Nµ(Ψ+ δΨ)− Nµ(Ψ) must also vanish. Linearizing (2.15),
we have

δNµ = δEi ∂µΨi + Ei∂µδΨi − ∂νδ
(
EiΨi

)ν
µ = 0 . (2.18)

Contracting this with ξµ, and recalling that the Ei transform as tensor densities, leads to
the important identity

δEi δξΨi − δξEi δΨi = ∂µ

(
ξν δ

(
EiΨi

)µ
ν − ξµ Ei δΨi

)
. (2.19)

The left-hand side takes the same form as the terms appearing in (2.12), for a generic field
variation δ2 = δ and a field variation δ1 = δξ with the same form as a diffeomorphism.
Combining these results gives

∂µ

(
ωµ

ξ + ξν δ
(
EiΨi)µ

ν − ξµ Ei δΨi

)
= 0 , (2.20)
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where ωµ
ξ = ωµ(Ψ; δξΨ; δΨ). This equation holds off-shell, like the other results above,

and is straightforward to verify for specific models. Since the divergence (2.20) vanishes,
it is always possible to find a (non-unique) codimension-2 form with components kµν

ξ that
satisfy

∂νkµν
ξ = ωµ

ξ + ξν δ
(
EiΨi)µ

ν − ξµ Ei δΨi . (2.21)

This is a consequence of diffeomorphism invariance that holds for any field configuration,
not just solutions of the equations of motion.5 When the fields are fully on-shell it reduces
to the Iyer-Wald definition.

Covariant phase space methods impose the equations of motion Ei = 0 for the fields.
Here, we take a different approach and enforce the slightly weaker condition Ei δΨi = 0.
This can be accomplished by gauge fixing components of some of the fields, restricting to
field variations that preserve this gauge, and enforcing only some of the equations of motion.
For example, the Bondi gauge used in the next few sections fixes a particular component
grr of the spacetime metric. Field variations that preserve this gauge satisfy δgrr = 0. As
a result, the term Err δgrr appearing in Ei δΨi will vanish even if the component of the
equation of motion conjugate to grr (which would normally be enforced as a constraint)
does not vanish: Err ̸= 0. Field configurations that satisfy

Ei δΨi = 0 (2.22)

in this way, through a combination of equations of motion and gauge conditions, will be
referred to as “partially on-shell.” For partially on-shell fields, the defining equation (2.21)
for the codimension-2 form reduces to

∂νkµν
ξ = ωµ

ξ + ξν δ
(
EiΨi)µ

ν . (2.23)

The motivation for imposing (2.22) rather than the stronger condition Ei = 0 comes
from the last term in this equation. Now the variation of the weakly vanishing Noether
current may have non-zero components that contribute to the codimension-2 form, sup-
porting charges that are not present when Ei = 0. Such charges appear, for instance, in
gravitational theories dual to quantum mechanical models that exhibit a larger symmetry
algebra when off-shell, which is then broken to something simpler when the fields are fully
on-shell [42, 58, 61, 62].

There are natural ambiguities in the definitions of both Θµ and ωµ which may or may
not affect the defining property (2.23) of the codimension-2 form. For example, boundary
terms in the action can be thought of as shifting the presymplectic potential by a δ-exact
contribution; i.e. Θ → Θ+ δL∂M . However, such a shift has no effect on ωµ, and a bound-
ary term in the action does not change the equations of motion, so the result (2.21) is not
sensitive to this sort of ambiguity in the definition of Θ.6 On the other hand, it is clear
from (2.10) that the presymplectic potential is only defined up to a shift Θµ → Θµ+∂νΥµν

for an anti-symmetric Υµν(Ψ; δΨ) that is linear in the field variations. This does change
5See the discussion around equation (2.2.67) in [9] for a similar result.
6A shift of this sort is relevant for the variational problem, as we will discuss below.
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ωµ, by a term

ωµ(Ψ; δ1Ψ; δ2Ψ) → ωµ(Ψ; δ1Ψ; δ2Ψ) + ∂νYµν(Ψ; δ1Ψ, δ2Ψ) , (2.24)

where
Yµν(Ψ; δ1Ψ, δ2Ψ) = δ2Υµν(Ψ; δ1Ψ)− δ1Υµν(Ψ; δ2Ψ) . (2.25)

The shift in ωµ is consistent with both (2.12) and (2.20), but it contributes a new term
to (2.21) that changes kµν

ξ by

kµν
ξ → kµν

ξ + Yµν(Ψ; δξΨ, δΨ) . (2.26)

For the models we consider, there is a natural prescription for Υµν , or equivalently Yµν ,
such that the resulting codimension-2 form gives finite charges at the boundary.

Consider now the component B of ∂M , defined as a surface of constant r. Coordinates
along this surface are denoted by xa. Since we know the fall-offs of the fields close to the
boundary,7 the components of the presymplectic potential along B can be written as total
derivatives with respect to r:

Θa ≃ ∂rY ar . (2.27)

This is trivially true once the r-dependence of the fields is known; simply integrating Θa

gives Y ar up to an r-independent ambiguity. However, for the theories we consider, some
of the components can already be put in the form (2.27) simply by evaluating Θa in Bondi
gauge and applying integration-by-parts. For those components, the resulting Y ar are
functions of the spacetime fields and their variations, and give specific r-dependent and r-
independent parts when the fields are partially on-shell. Making a shift Θµ → Θµ + ∂νΥµν

and choosing Υµν to set the components Θa to zero, gives Υar = −Y ar up to the residual
ambiguity mentioned above. As a result, we have

Θr → Θr + ∂aY ar (2.28)

ωa(Ψ; δ1Ψ; δ2Ψ) → 0 (2.29)

ωr(Ψ; δ1Ψ; δ2Ψ) → ωr(Ψ; δ1Ψ; δ2Ψ) + ∂a

(
δ2Y ar(Ψ; δ1Ψ)− δ1Y ar(Ψ; δ2Ψ)

)
, (2.30)

along with a corresponding shift (2.26) to the codimension-2 form. Note that both Θr and
ωr, which naturally appear in integrals over the constant r surface B, acquire corner terms
(total derivatives on B) with support on ∂B.

There is one additional modification to the codimension-2 form coming from the vari-
ation of the weakly vanishing Noether current in (2.23). For the theories we consider, its
components along B for an asymptotic symmetry ξ can also be written as total r-derivatives

ξν δ
(
EiΨi

)a
ν = ∂rZar

ξ . (2.31)

As a result, (2.20) can be expressed entirely as a total r-derivative

∂r

(
ωr

ξ + ∂aYar
ξ + ξν δ

(
EiΨi

)r
ν + ∂aZar

ξ

)
= 0 , (2.32)

7For instance in Bondi gauge these can be obtained once we partially solve the equations of motion.
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where Yar
ξ denotes the shift in (2.26). This gives a family of codimension-2 forms kµν

ξ that
satisfy

∂akra
ξ = ωr

ξ + ∂aYar
ξ + ξν δ

(
EiΨi

)r
ν + ∂aZar

ξ . (2.33)

The quantity ∂akra
ξ is independent of r, by virtue of (2.32). Compared to the codimension-2

form obtained from (2.21), it is shifted by

kra
ξ → kra

ξ + Yar
ξ + Zar

ξ , (2.34)

up to a residual ambiguity which is independent of r.
In the lower-dimensional theories we investigate, setting Θu → Θu

ren = 0 via the Iyer-
Wald ambiguity described above implies ωu → ωu

ren = 0. The codimension-2 form then
satisfies

∂rkur
ξ + ∂AkuA

ξ = 0 , (2.35)

so that the r → ∞ limit of kur
ξ integrated over C exists. Alternately, one can begin with

the right-hand side of (2.33), which is explicitly independent of r by virtue of (2.32), and
use integration by parts to obtain kur

ξ up to total derivatives on C. The result is not
simply the finite part of the problematic codimension-2 form from our earlier statement
of the problem; the new terms in (2.34) have also contributed terms independent of r.
Accounting for these finite shifts, we will find that the charges are now integrable once
proper field-dependence is assigned to the generators of the asymptotic symmetries. Thus,
we have obtained a codimension-2 form such that the construction (2.2) of the charge
associated with the symmetry ξ exists and is integrable, using only quantities arising in
the variation of the bulk Lagrangian.

This result can be generalized to anomalous Lagrangians, and to state dependent
asymptotic symmetries following the mathematical framework developed for instance in [24,
27]. It can also be generalized for fields transforming with higher derivatives of the sym-
metry parameters, see for instance [63].

2.3 A comment on boundary terms and variational principles

The construction detailed above makes no reference to specific boundary terms in the
action (2.9). But it is relevant for identifying boundary terms that must be added to
the bulk action to obtain a well-defined variational principle for a given set of boundary
conditions, including cases where B is taken to have a boundary ∂B.

When the fields are partially on-shell (EiδΨi = 0) or fully on-shell (Ei = 0), the
divergence of the presymplectic potential is the bulk contribution to the variation of the
action (2.10). It has support on ∂M , including terms on B that typically do not vanish as
r → ∞ for the full range of field variations that preserve the boundary conditions. This
is addressed by adding boundary terms to the action, a procedure that will be discussed
in more detail for specific models later in this paper. The point we wish to make here is
that the structure of the shifted presymplectic potential — not just Θr on B, but also the
corner terms obtained from the components Θa, which contribute at ∂B — will determine
some of the boundary terms which must be included in the action.
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In the following sections we construct the codimension-2 form and identify the charges
for partially on-shell fields in lower-dimensional gravitational theories. Then we apply
what was learned about the structure of the presymplectic potential to obtain an action
with a well defined variational principle for (Dirichlet) boundary conditions on the fields at
r → ∞. In each example the charges are calculated first, to emphasize that our prescription
is not sensitive to boundary terms in the action, or how one carries out “holographic
renormalization” or related procedures.

3 2d dilaton gravity

In this section we apply our prescription for the charges to the UV -family of dilaton gravity
theories in 2d dimensions, for a review see [41]. The bulk Lagrangian is

LM = 1
2κ2

√
−g

(
X R − U(X) (∇X)2 − 2V (X)

)
. (3.1)

where gµν is the two-dimensional metric, X is the dilaton, and U and V are two arbitrary
functions of the dilaton.

We first present the solution space in linear dilaton Bondi gauge, and explain which
equations of motion are enforced for the partially on-shell fields. The most general sym-
metries and transformation laws that preserve the form of the fields are determined, with
special care given to an on-shell Killing vector that is present in all 2D dilaton gravity the-
ories. When the theory is not fully on-shell, as is the case here, this diffeomorphism acts on
the metric at the boundary. Incorporating it into the symmetries of the theory identifies a
specific field-dependence of the symmetry parameters which naturally leads to integrable
charges in the presence of corners. The adapted covariant phase space construction out-
lined in the previous section ensures that our results are finite as r → ∞ . Carrying out
this calculation before discussing the variational principle emphasizes two points. First,
the procedure is independent of how “holographic renormalization” is implemented in the
action. And second, the terms needed to cancel divergences in the codimension-2 form
kµν

ξ are obtained directly from the variation of the bulk Lagrangian, at the level of the
presymplectic potential — there is no need for ad hoc subtractions. We also note that our
prescription selects a specific finite part of the codimension-2 form, and comment on its
relation to the charges that were considered in [36]. As pointed out in the previous section,
the construction of the charges takes place without the fields being fully on-shell.

Next, we revisit the first variation of the action and discuss the variational principle
in the presence of corners at spatial infinity. This leads to a discussion of holographic
renormalization that generalizes the results of [54, 62] when spatial infinity is not obtained
as the limit of an isocurve of the dilaton. In the case of models with no kinetic term (U = 0)
the boundary terms required for a well-defined variational principle (and a finite on-shell
action) are similar to the ones derived in [36]. However, the origin of these terms is more
clear in the present construction.
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3.1 Solution space and symmetries in linear Bondi gauge

The first variation of the bulk Lagrangian (3.1) takes the form

δLM = (Eµν δgµν + EX δX) + ∂µΘµ , (3.2)

where the equations of motion are

Eµν =
√
−g

2κ2

(
∇µ∇νX − gµν ∇2X − gµν V + U

(
∇µX∇νX − 1

2gµν(∇X)2
))

(3.3)

EX =
√
−g

2κ2

(
R + ∂XU (∇X)2 + 2U ∇2X − 2∂XV

)
. (3.4)

The presymplectic potential receives contributions from both the metric and the dilaton

Θµ =
√
−g

2κ2

(
− 2U ∇µX δX + (gµλgνσ − gµνgλσ)

(
X ∇νδgλσ − δgλσ∇νX

))
. (3.5)

Linear dilaton Bondi gauge. The coordinate gauge is partially fixed by choosing a
spacelike coordinate r such that the other coordinate u is null, which implies grr = 0, and
the dilaton is linear in r.

ds2 = 2B(u, r) du2 − 2 eA(u,r) du dr (3.6)

X = r e−q(u) + φ(u) . (3.7)

The condition on the dilaton is the 2D equivalent of specifying the transverse metric in
higher dimensional Bondi gauge. The constraint associated with fixing grr, which would
normally be enforced by setting the Err component of the metric equation of motion to
zero, is relaxed. The remaining equations of motion are sufficient to completely determine
the r-dependence of the other fields. Solving the Euu and Eur components of the metric
equations of motion, the functions A(u, r) and B(u, r) in the metric take the form

A(u, r) = a(u) + Q(X) (3.8a)

B(u, r) = −1
2 eQ(X)e2(a(u)+q(u))

(
w(X) + 2 e−(a(u)+q(u)) ∂uX − 2M(u)

)
. (3.8b)

Here Q(X) and w(X) are familiar functions constructed from U(X) and V (X) as

Q(X) =
∫ X

dY U(Y ) w(X) = −2
∫ X

dY eQ(Y ) V (Y ) (3.9)

The final term in B(u, r) involves the Casimir8 M(u). Thus, the fields in linear dilaton
Bondi gauge are described by a set of four functions q(u), φ(u), a(u), and M(u). This
matches the results obtained in appendix A of [36].

With the fields parameterized as above, the Err component of the metric equation of
motion becomes

Err = 1
2κ2 ea(u)+q(u)e−A(u,r) ∂uM(u) . (3.10)

8When the dilaton gravity admits a Poisson Sigma model formulation, M(u) is typically a Casimir
function when the fields are fully on-shell.
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Hence, the constraint Err = 0 associated with the choice of coordinate gauge grr = 0 would
imply constant M. As stated earlier, we relax this condition and consider the partially
on-shell theory where M is instead an arbitrary function of u. In the static case ∂uM = 0
the conventions above reproduce (after transforming to Schwarzschild gauge and defining
a new coordinate r̃) the conventions of [54].

Symmetries and transformation laws. A diffeomorphism ξµ that preserves the gauge
condition grr = 0 requires ξu independent of r, while preserving the form of the dilaton
fixes ξr to also be linear in r,

ξ = ϵ(u) ∂u +
(
r χ(u) + η(u)

)
∂r . (3.11)

Under this diffeomorphism the fields A and B appearing in the metric transform as

δξA = ∂uϵ + ϵ ∂uA + η∂rA + χ(1 + r∂rA) (3.12)
δξB = 2B∂uϵ + ϵ ∂uB − eA∂u

(
r χ(u) + η(u)

)
+
(
r χ(u) + η(u)

)
∂rB . (3.13)

In terms of the integration functions ϵ, χ, and η, the set of functions of u parameterizing
the field configurations transform as

δξq = ϵ ∂uq − χ δξφ = ϵ ∂uφ + η e−q (3.14)

δξa = ∂uϵ + ϵ ∂ua + χ δξM = ϵ ∂uM = ϵ e−(a+q) eA 2κ2 Err . (3.15)

There is one diffeomorphism of particular interest among these transformations. In two
dimensions, any solution of a dilaton gravity theory possesses a Killing vector that also
leaves the dilaton invariant [64, 65]. For the bulk Lagrangian (3.1) this vector takes the form

ξX = eQ(X) ϵµν ∂µX ∂ν , (3.16)

with Q defined in (3.9) and ϵµν related to the Levi-Civita alternating symbol by ϵµν =
εµν/

√
−g. By construction, this diffeomorphism leaves the dilaton invariant. However,

since we are not fully on-shell, it acts non-trivially on the metric. In Bondi gauge
√
−g = eA,

so using (3.6) and the fields (3.8a), (3.8b) this vector is

ξX = e−(a+q)∂u +
(
e−(a+q) r ∂uq − e−a ∂uφ

)
∂r . (3.17)

This has the same general form as (3.11), and from (3.14)–(3.15) we see that only M(u)
transforms

δξX
M = e−(a+q) ∂uM . (3.18)

Requiring that ξX is among the asymptotic symmetries generated by (3.11) suggests a
specific field-dependence of the functions ϵ, χ, and η. If we rewrite these functions as

ϵ = ϵ̄ e−(a+q) , χ = χ̄ + ϵ̄ e−(a+q) ∂uq , η = η̄ − ϵ̄ e−a ∂uφ (3.19)

where ϵ̄, χ̄, η̄ are functions of u, then the asymptotic symmetries are generated by vectors

ξ = ϵ̄ ξX + χ̄ r ∂r + η̄ ∂r . (3.20)
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For instance the fields transform under this parameterization as

δξ

(
ea+q) = ∂uϵ̄ δξq = −χ̄ δξφ = η̄ e−q δξM = e−(a+q) ϵ̄ ∂uM . (3.21)

As we will show in the next section, there is a natural choice for the codimension-2 form
kur

ξ such that the infinitesimal charges are integrable when the symmetry parameters ϵ̄, η̄,
and χ̄ are taken to be field-independent.

Using the modified Lie bracket [66], the algebra of the asymptotic Killing vector is
given by

[ξ1, ξ2]⋆ = (η̄1 χ̄2 − χ̄1η̄2) ∂r − δ1ξ2 + δ2ξ1 , (3.22)

and for the slicing

δϵ̄ = δη̄ = δχ̄ = 0 (3.23)

the algebra is three abelian Lie algebras of smooth functions with a Heisenberg central
extension. Note that if we take the functions appearing in (3.16) to be state independent
(δϵ = δχ = δη = 0) the algebra is the diffeomorphism along the u-direction in semi-direct
sum with an Heisenberg algebra, see eq. (2.24) of [36].

3.2 Covariant phase space for two dimensional dilaton gravity

First, let us review the construction of section 2.2 applied to dilaton gravity in two dimen-
sions [4, 36, 46]. The first variation of the bulk Lagrangian in (3.1) is

δLM = Eµν δgµν + EX δX + ∂µΘµ , (3.24)

with equations of motion given in (3.3) and the presymplectic potential given by (3.5).
When the fields variations are given by a diffeomorphism, integration by parts of the bulk
term in (3.24) gives

Eµν δξgµν + EX δξX = ξνNν + ∂µSµ
ξ . (3.25)

The first term on the right-hand side, which vanishes by Noether’s second theorem, takes
the form

Nν = EX∂νX + Eµλ∂νgµλ − 2∂µEµ
ν = 0 , (3.26)

The second term in (3.25) is the weakly vanishing Noether current Sµ
ξ = ξν(Ei Ψi)µ

ν , which
in this case involves only

(EiΨi)µ
ν = 2Eµλ gλν . (3.27)

Since we have relaxed the constraint involving Err, this quantity and its variation have
non-vanishing components which will contribute to the construction of the charges.

The presymplectic current ωµ is obtained from the total derivative term in the anti-
symmetrized second variation of the bulk Lagrangian. Calculating ωµ from (3.5) is straight-
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forward, and gives

2κ2
√
−g

ωµ = U ∇µX δ1g δ2X + 2U δ2X ∇µδ1X + 2U ∇νX δ1X(δ2g)µν + δ1X ∇µδ2g

+ δ1g ∇µδ2X + δ2X ∇ν(δ1g)µν + (δ2g)µν∇νδ1X + 1
2 (δ1g)µν δ2g ∇νX (3.28)

+ 1
2 X

[
δ2gνλ∇µ(δ1g)νλ + δ1g ∇µδ2g + (δ2g)µν∇νδ1g − 2 δ2gνλ∇λ(δ1g)µν

+ δ2g∇ν(δ1g)µν
]
−
(
1 ↔ 2

)
.

In this expression, δg = gµνδgµν and (δg)µν = gµλ gνσ δgλσ = −δ(gµν). For the special case
of a field variation δ1 that takes the same form as a diffeomorphism δξ, with δ2 arbitrary, the
result (2.20) from the introduction implies the existence of a (not unique) codimension-2
form kµν

ξ such that

∂νkµν
ξ = ωµ(Ψ; δξΨ, δΨ) + 2 δ(Eµλgλν) ξν − ξµ (Eνλ δgνλ + EX δX

)
. (3.29)

This result holds off-shell as explained in section 2. When the fields are fully on-shell,
the presymplectic current is conserved and (3.29) reduces to ∂νkµν

ξ = ωµ(Ψ; δξΨ, δΨ).
This is not the case for the field configurations described in the previous section, which
instead satisfy EiδΨi = 0 through a combination of a subset of the equations of motion
(Euu = Eur = EX = 0) and a coordinate gauge condition (δgrr = 0). In this case ωµ

and δ(Eµλgλν)ξν are independently conserved. However, it is their combination appearing
in (3.29) that will be relevant for the calculation of the charges.

For dilaton gravity described by (3.1), we find kµν
ξ satisfying (3.29) is given by

κ2
√
−g

kµν
ξ = U δX

(
ξν∇µX − ξµ ∇νX

)
+ ξν∇µδX − ξµ∇νδX (3.30)

+ 1
2 δX

(
∇νξµ −∇µξν)+ 1

2
(
ξµ(δg)λν − (δg)µλξν)∇λX

+ 1
4 X

(
(δg)µλ (∇λξν +∇νξλ

)
− (δg)λν (∇λξµ +∇µξλ

))
.

This is the same expression obtained in [36] via the Barnich-Brandt procedure [6, 7]. Like
that earlier result, this codimension-2 form is independent of the potential V (X) appearing
in the bulk Lagrangian. And while (3.30) includes explicit factors of the dilaton kinetic
term U(X), this dependence drops out when it is evaluated in linear dilaton Bondi gauge.
A subtle point related to the last line of (3.30) is discussed in appendix A.

As explained in section 2, the charges are not obtained directly from the ur component
of (3.30). It is instructive to see why this does not work. First, evaluating (3.30) for the
fields (3.6)–(3.8b), we find a term that is linear in r

kur
ξ = 1

2 e−q r
(
χ (δa + δq) + ϵ (∂ua δq − ∂uq δa) + δq ∂uϵ

)
+ . . . , (3.31)

where . . . denotes terms that are finite as r → ∞. This r-dependence (which comes
from terms in ωµ that are linear in r) is the obstruction to taking the r → ∞ limit. A
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second issue, not obviously related to the first, is that the part of (3.31) that remains
finite as r → ∞ is not integrable for diffeomorphisms with field dependence (3.19). This
is not a problem per se, since a different choice of field dependence renders the finite part
integrable [36]. However, since ξX is always a Killing vector when the fields are fully on-
shell, one would prefer that it appears naturally among the asymptotic symmetries for the
partially on-shell field configurations. As we will show in the next section, both issues
are resolved by accounting for corner contributions coming from the ωu component of the
presymplectic current.9

3.3 Charges

We begin this section by implementing the prescription outlined in section 2, and showing
that the result is an r-independent codimension-2 form that leads to integrable charges.
Nevertheless, there remain ambiguities in this procedure, as well as ambiguities in the
slicing — defined as the choice of field dependence of the symmetries generators — which
we examine in the second part.

The coordinate gauge condition grr = δgrr = 0 leads to a u component of the presym-
plectic potential (3.5) given by

κ2 Θu = −1
2 δA ∂rX + δQ ∂rX + 1

2 X ∂rδA . (3.32)

Since the r-dependence of the fields is completely determined by the equations of motion
and linear condition on the dilaton, one could simply impose them and integrate the result
to express Θu as a total r-derivative. However, we note that already in (3.32), integration-
by-parts gives

κ2 Θu = ∂r

(1
2 X δA + X (δQ − δA)

)
+ X ∂r

(
δA − δQ

)
. (3.33)

The result A(u, r) = a(u) + Q(X), which follows from Euu = 0 and the condition that the
dilaton is linear in r, reduces this to a total derivative ∂rY ur with

κ2 Y ur = 1
2 δQ(X)X − 1

2 δa X . (3.34)

The first term is δ-exact and will not contribute to ωµ or kµν
ξ , though it will be important

when we return to the variational problem. The second term in (3.34) is not δ-exact and
will therefore impact the charges. Note that Y ur is defined only up to an r-independent
piece. Here we choose to identify Y ur as the combination of A, X, and their variations that
naturally arises from integration by parts in Θu, before imposing any equations of motion.
This leads to integrable charges for the slicing (3.19), (3.23) associated with the Killing
vector ξX . Another choice for Y ur, which was used in [36], keeps only the r-dependent part
of (3.34). An integrable slicing also exists in that case (though it is more complicated) and
yields the same charge algebra.

9Corner contributions from components of the weakly vanishing Noether current ξν δ(Ei Ψi)µ
ν will be

relevant for 3D gravity, but do not contribute here since Euu = Eur = 0.
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The prescription described in section 2 is implemented at the level of the presymplectic
potential by taking Θµ → Θµ + ∂νΥµν , with

κ2 Υur = −κ2 Y ur = −1
2 δQ(X)X + 1

2 δa X . (3.35)

This shifts the components of Θµ as

Θu → 0 (3.36)

Θr → Θr + 1
κ2 ∂u

(1
2 δQ(X)X − 1

2 δa X

)
. (3.37)

The effect on the presymplectic current is to set the component ωu to zero and shift the
ωr component by a corner term

ωr → ωr + 1
2κ2 ∂u

(
δ1X δ2a − δ2X δ1a

)
. (3.38)

This in turn changes the ur component of the codimension-2 form as

kur
ξ → kur

ξ − 1
2κ2

(
δξX δa − δX δξa

)
, (3.39)

with the minus sign relative to (3.38) coming from considering kur
ξ rather than kru

ξ . The
shift in kur

ξ includes a piece that is linear in r, from the leading part of the dilaton, which
precisely cancels the terms shown in (3.31). The result for kur

ξ is now independent of r and
given by

κ2 kur
ξ = ϵ(u) ea(u)+q(u) δM(u) + δφ(u)

(
χ(u)− ϵ(u) ∂uq(u)

)
(3.40)

+ δq(u)
(
η(u) e−q(u) + ϵ(u) ∂uφ(u)

)
.

Incorporating the field dependence (3.19) of the symmetry parameters, this reduces to

κ2 kur
ξ = ϵ̄(u) δM(u) + χ̄(u) δφ(u) + η̄(u) e−q(u) δq(u) . (3.41)

In the slicing (3.23) where δϵ̄ = δη̄ = δχ̄ = 0 this is integrable, kur
ξ = δQξ. The charge is

then
Qξ = 1

κ2

(
ϵ̄(u)M(u) + χ̄(u)φ(u)− η̄(u) e−q(u)

)
. (3.42)

Since the charges are integrable, they form a representation of the asymptotic symmetry
algebra up to a possible central extension [38, 67] (see also [6, 8, 68] for the covariant
formulation of this result). Thus,

δξ2(Qξ1) =: [(Qξ1), (Qξ2)] = Qξ12 , (3.43)

where ξ12 is given by (3.22), and the charge algebra is given by three abelian Lie algebras
with a Heisenberg central extension.

A few comments about the charges are in order. First, note that (3.42) does not depend
on the function a(u). This is not surprising, since the fields in linear dilaton Bondi gauge
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involve four functions of u, but only three field-dependent symmetry parameters appear in
the diffeomorphisms ξ (3.20). Second, the charges are not sensitive to the specific potential
V (X) or kinetic term U(X) appearing in the bulk Lagrangian. There is explicit dependence
on U(X) in the first few terms of (3.30), but this is canceled by other terms when the full
expression is evaluated in linear dilaton Bondi gauge. This is not changed by the shift
in the presymplectic potential, which depends on U(X) only through a δ-exact term that
does not affect ωr or kur

ξ .
Finally, for the partially on-shell fields in linear Bondi gauge, the codimension-2

form (3.40) is obtained from (3.29) by evaluating ωr + 2 ξν δ(Erλgλν) and writing the
result as a total u-derivative. As we saw above, when Θu is set to zero there is a corre-
sponding change in ωr which leads to the shift (3.39). This shift cancels the problematic
term in (3.31) linear in r, and also contributes a finite piece. But the contribution from
2 ξν δ(Erλgλν) also plays an important role. It evaluates to

2 ξν δ(Erλgλν) = − 1
κ2 ea+q (δM′ + δ(a + q)M′) ϵ . (3.44)

This combines with a term in ωr to produce the total derivative ∂u
(
− ϵ ea+q δM

)
, which is

the first term in (3.40). Without the contribution from the variation of the weakly vanishing
Noether current, we would not obtain M(u) as a charge with the slicing (3.19). In fact,
an integrable charge would only be obtained in that case by requiring ∂uM = ∂uδM =
0, which is equivalent to enforcing Err = 0 and placing the fields fully on-shell. The
contribution from the weakly vanishing Noether current is essential for capturing the full
tower of charges M(u), as opposed to just the zero mode. This is important, for example,
when reproducing the off-shell symmetry of the SYK dual of the Jackiw-Teitelboim model
of dilaton gravity [62].

3.4 First variation of the action and holographic renormalization

In the previous sections we obtained a finite and integrable codimension-2 form kµν
ξ via a

shift in the presymplectic potential that set Θu to zero. Now we turn to an analysis of the
variational principle, where this shift is associated with terms in the first variation of the
action that have support on the corners ∂B.

The goal of this section is to construct an action for general models of dilaton gravity
that admits a well-defined variational problem when the fields satisfy Dirichlet boundary
conditions at a spatial infinity that includes corners. We work in linear dilaton Bondi
gauge, on a “regulated” spacetime M with a boundary ∂M . The boundary includes a
timelike component B and null components N± that intersect B at corners ∂B± = B∩N±.
This is shown schematically in the figure below. The component B is a curve of constant
r = rc which becomes spatial infinity when the cut-off is removed by taking rc → ∞.
Calculations involving the action and its first variation are performed on this regulated
spacetime, with rc large but finite, and the rc → ∞ limit taken as the final step.

Before jumping into the construction, let us quickly review the variational principle
given in [36]. That analysis, tailored to dilaton gravity models with U = 0, accounts for
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Figure 1.

corners and arrives at the action

Γ[36] = 1
2κ2

∫
M

d2x
√
−g

(
X R − 2V (X)

)
+ 1

κ2

∫
B

d1x
√
−γ
(
X K + Lw + Lc + Ln

)
. (3.45)

Here K is the extrinsic curvature of a constant r curve embedded in M with outward
pointing unit normal nµ, and

Lw = −
√

w + 2e−(a+q)∂uX, Lc = Du(vu X), Ln = −√
γXvµaµ . (3.46)

In the last two functions, v is a unit vector field (vava = γuuvuvu = −1) tangent to
r = constant leaves, D is the covariant derivative compatible with the induced metric γuu

on B, and aµ is the “acceleration” nν∇νnµ. This action is finite on-shell, has a well-defined
flat limit, and is stationary for Dirichlet boundary conditions. But since it assumes U = 0
it is not suitable for the full range of dilaton gravity models we consider. Furthermore,
the motivation for some of the boundary terms is ad hoc, so even though a number of
generalizations to U ̸= 0 suggest themselves, it is not immediately clear if they are all
on equal footing. Rather than starting from this action and trying to modify it, we will
instead use variational arguments and holographic renormalization techniques to build an
appropriate action from the ground up, paying careful attention to contributions at the
corners and on components of ∂M other than B. The resulting action will reduce (in the
rc → ∞ limit) to (3.45) for models with U = 0.

For our purposes, a theory described by an action Γ and boundary conditions on the
fields has a well-defined variational principle if field configurations satisfying Ei δΨi = 0
are local extrema of Γ among all nearby field configurations with the same boundary condi-
tions. An essential point is that δΓ = 0 for any field variation consistent with the boundary
conditions, and not just field variations that satisfy additional and more restrictive condi-
tions.10 For the variational principle to have any meaning, it must be able to distinguish

10This is a common problem when constructing an action for fields that satisfy conditions at spatial
infinity. An example is four-dimensional gravity with asymptotically flat boundary conditions. A meaningful
variational principle should distinguish the Schwarzschild solution from competing field configurations with
similar asymptotic fall-off; i.e., metrics whose gtt components differ from Schwarzschild at O(1/r) as r → ∞.
But the variation of the Einstein-Hilbert action plus the Gibbons-Hawking-York boundary term does not
vanish unless the metric variation δgtt falls off faster than 1/r [69]. To address this problem, one must add
additional boundary terms to the action [70–72].
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solutions of the equations of motion from all competing field configurations with similar
asymptotic behavior. This means that field variations with any asymptotic behavior that
preserves the boundary conditions must be allowed.

The focus here will be on Dirichlet boundary conditions for the fields at B. In that
case δΓ evaluated on Ei δΨi = 0 should be a functional of the fields Ψi and their variations
δΨi on B, as well as derivatives ∂uδΨi of the field variations tangent to B. But it should
not depend on the derivatives ∂rδΨi of the field variations in the direction normal to B.
Working in linear dilaton Bondi gauge, with fields Ψi = A, B, and X, we take Dirichlet
boundary conditions to fix the boundary data a(u), q(u), and φ(u) in (3.7)–(3.8). Thus,
when EiδΨi = 0, a well-defined variational principle should have δΓ = 0 for all field
variations that preserve grr = 0 and do not change this boundary data. An immediate
and useful consequence is that changing the boundary data should produce a finite (as
rc → ∞) change in the action.11 It will be convenient in the following section to use this
fact when analyzing the properties of the action, since changes in the boundary data δa,
δq, and δφ producing a finite response δΓ is a necessary (though not sufficient) condition
for a well-defined variational principle.

It is easy to see that an action based only on the bulk Lagrangian (3.1) does not lead
to a well-defined variational principle. The variation of the bulk Lagrangian, evaluated on
EiδΨi = 0, is just the total derivative of the presymplectic potential. Integrated over M , it
gives terms on B (and ∂B) that include factors which diverge as rc → ∞. As a result, the
variation of the bulk action on its own does not vanish for all field variations preserving the
boundary data. For example, in the Jackiw-Teitelboim model [55, 56] (U = 0, V = −X)
there are terms in Θr proportional to r2 δA and r δA. These vanish only if δA falls off
faster than 1/r2, which is much more restrictive than the condition δa = 0. This can
be addressed by supplementing the action with boundary contributions whose variations
cancel problematic terms on ∂M coming from ∂µΘµ in the bulk. As long as the problematic
terms on ∂M are δ-exact (total variations of some combination of the fields) it will be
possible to cancel them against the variation δL∂M of appropriate boundary terms.

In the following, we restrict our attention to models with potentials U(X) and V (X)
such that w(X) → ∞ as X → ∞. This includes, for example, models with AdS2 and
Minkowski asymptotics. We also assume that ∂uX/w ∼ X/w → 0 as X → ∞. Both condi-
tions can be relaxed, but doing so would require a qualitatively different construction than
the one we present here. Additional details, and comments on the regime of applicability
of some of our results, can be found a the end of appendix B.

Corner contribution from the bulk symplectic potential. A complication related
to this last point arises when ∂M includes corners. Consider the ∂rΘr part of δLM . When

11If a change in the boundary data caused δΓ to diverge as rc → ∞, then a suitably rescaled field
variation would give a finite and non-zero δΓ, while also falling off fast enough to preserve the boundary
data. This would contradict the defining property of the variational principle, that δΓ = 0 for any field
variation consistent with the boundary conditions.
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integrated over M it produces terms on B. In Bondi gauge they are

κ2 Θr = δ
(
X e−A ∂rB

)
+
(
2 e−A B U ∂rX − e−A ∂rB

)
δX − e−A ∂rX δB (3.47)

+ ∂uX δ
(
Q − A

)
+ ∂u

(1
2 X δA

)
.

The first term includes a ∂rδB contribution, which is not consistent with Dirichlet bound-
ary conditions, while the other terms do not vanish for all field variations that preserve
the boundary conditions due to various factors that diverge as rc → ∞. For fields of
the form (3.7)–(3.8) these problematic terms reduce to δ-exact expressions that will be
addressed with appropriate boundary terms. However, the final term in (3.47) — a total
u-derivative with support on ∂B — includes an rc → ∞ divergence proportional to X δa.
This corner term is not δ-exact and therefore cannot be canceled by adding a boundary
term to the action. Instead, the resolution comes from the Θu component of the presym-
plectic potential. The integral over M of ∂uΘu gives terms on N±. As we saw previously,
Θu in Bondi gauge is a total r-derivative. When integrated over N it gives contributions
at the corners that can be written as ∂uY ur on B with

κ2 Y ur = 1
2 X δA + X δ(Q − A) = X δQ − 1

2 X δA (3.48)

Thus, once the full total derivative ∂µΘµ in the variation of the bulk Lagrangian is ac-
counted for, the terms on B are

κ2 (Θr + ∂uY ur) = δ
(
X e−A ∂rB

)
+
(
2 e−A B U ∂rX − e−A ∂rB

)
δX (3.49)

− e−A ∂rX δB + ∂uX δ
(
Q − A

)
+ ∂u

(
X δQ

)
.

The parts of this expression which cause problems in the rc → ∞ limit are δ-exact and will
now be addressed with appropriate boundary terms.

Gibbons-Hawking-York term. The first term in (3.49) is incompatible with Dirich-
let boundary conditions because it includes a contribution proportional to ∂rδB. This
is remedied by adding the dilaton gravity version of the Gibbons-Hawking-York (GHY)
term [73, 74] on B.

κ2 LGHY =
√
−γ X K = −X e−A ∂rB − X

(
∂uA − ∂uB

2B

)
. (3.50)

The dependence on the normal derivative of the metric eliminates the ∂rδB term in (3.49).
Combining all terms with support on B up to this point, we have

κ2 (Θr + ∂uY ur + δLGHY ) =
(
2 e−A B U ∂rX − e−A ∂rB

)
δX − e−A ∂rX δB (3.51)

+ ∂uX δ
(
Q − A

)
− δ

(
X

(
∂uA − ∂uQ − ∂uB

2B

))
,

Evaluating this for the solution (3.8) and using ∂u
(
X δQ(X)

)
= δ

(
X ∂uQ(X)

)
κ2 (Θr + ∂uY ur + δLGHY ) = δ

(
ea+q w

)
+ ∂u

(
δX
)
− δ

(
X ∂u log

(
eA−Q

√
−2B

))
(3.52)

+ ∂uφ δq − ∂uq δφ − e−(a+q) δ
(
e2(a+q) M

)
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The terms in the first line on the r.h.s. diverge as rc → ∞ for variations of the boundary
data, and hence do not vanish for all field variations consistent with our boundary condi-
tions. However, these terms are all δ-exact and can be addressed by additional boundary
contributions to the action. The terms in the second line are zero for variations that
preserve the boundary conditions, except for a non-zero term proportional to δM.

Boundary terms in the presence of corners. To understand the remaining boundary
terms, let us now write an action with the form suggested by [75] for spacetimes with a
boundary that includes both timelike and null parts, generalized to dilaton gravity in two
dimensions. It consists of a bulk integral over M as well as contributions on the boundary
components N± and B.

Γ = 1
2κ2

∫
M

d2x
√
−g

(
X R − U(X)

(
∇X

)2 − 2V (X)
)
+ 1

κ2

∫
B

d1x
√
−γ X K

+ 1
κ2

∫
N±

dλ X K + 1
κ2

∫
B

d1x
(
LX∂B + LCT

)
.

(3.53)

As before, γ is the induced metric on B and K = ∇µnµ is the extrinsic curvature formed
from the outward-pointing spacelike unit vector nµ. The integrals on the null components
of the boundary involve a parameter λ along a null generator kµ, while K measures the
failure of this parameter to be affine according to

kν∇νkµ = K kµ , (3.54)

or K = ∇µkµ. The last set of terms in (3.53) are a boundary term LX∂B that is needed
when B has corners, along with a “boundary counterterm” LCT that implements a holo-
graphic renormalization prescription explained in the next section. Note that LX∂B is
not necessarily a pure corner term. Rather, it represents terms which may be needed (in
addition to the other boundary terms) when there is a corner B ∩N .

An ambiguity in the action (3.53) is that it depends on the definition of the null gener-
ator kµ, which is not unique. We fix part of this ambiguity as in [75] by demanding affine
λ, so that K = 0 and the integrals over N± vanish. Then motivated by the construction
in [75], the term LX∂B on B takes the form

κ2 LX∂B =
√
−γ X vu∂u log

(
nµ kµ

)
, (3.55)

where vu = 1/
√
−γ is the timelike unit vector tangent to B. Requiring affine λ gives

kµ = −β(u) δµ
u with arbitrary β(u). Contracting this with the unit vector nµ normal to a

curve of constant r, we have

κ2 LX∂B = X ∂u log
(

β(u)√
−2B

)
. (3.56)

The remaining ambiguity in the choice of kµ is fixed by comparing this boundary term with
the third term on the first line of (3.52). An rc → ∞ divergence cancels if β(u) = eA−Q,
which fixes (up to an irrelevant constant factor) the choice of null generator

kµ = −eA(u,r)−Q(X) δµ
u . (3.57)
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The final form of LX∂B is then

κ2 LX∂B =
√
−γX vu ∂u log

(
nµ kµ

)
= X ∂u log

(
eA(u,r)−Q(X)√
−2B(u, r)

)
. (3.58)

Schematically, this can be thought of as the dimensional reduction of a higher dimensional
corner term, with the dilaton identified with the transverse part of the metric.

Boundary counterterms for dilaton gravity models. The derivation of the bound-
ary counterterms LCT is described in appendix B. Following the Hamilton-Jacobi approach
used in [54], the counterterm Lagrangian LCT is obtained as a solution of the radial Hamil-
tonian constraint in a derivative expansion on B. There are no curvature invariants built
from γ and its derivatives along B, so this amounts to an expansion in derivatives of X

which takes the form

LCT(γ, X) = 1
κ2

√
−γ

(
F0(X) + F2(X) γuu(∂uX)2 + . . .

)
. (3.59)

The number of terms in this expansion needed for the renormalization of a particular model
will depend on the r → ∞ behavior of the functions Q(X) and w(X) constructed from
U(X) and V (X). The derivation in appendix B gives the first two terms in the expansion as

κ2 LCT(γ, X) = −
√
−γ

(√
e−Q(X)w(X) + 1

2
√

e−Q(X)w(X)
DuX DuX

)
+ . . . , (3.60)

where D is the derivative along B compatible with the induced metric γ. In the analysis
below, we will focus on the wide class of models that require only these first two terms;
i.e., models for which the subsequent terms in the boundary derivative expansion of LCT
approach zero as rc → ∞. It should be emphasized that, while the boundary counterterms
are normally presented as a way of systematically addressing rc → ∞ problems with the
variational principle, LCT also makes a finite contribution to both the action and its first
variation. Evaluating (3.60) for the partially on-shell fields, the relevant terms are

κ2LCT ∼ −w(X)ea+q − ∂uX + ea+qM+ (∂uX)2

ea+qw(X) + . . . . (3.61)

The roles played by finite parts of this expression are explained below.

Summary: renormalized action and first variation of the action. To summarize,
the following action gives a well-defined variational principle for general dilaton gravity
models with fields satisfying Dirichlet boundary conditions at a spatial infinity with corners

Γ = 1
2κ2

∫
M

d2x
√
−g

(
X R − U(X)

(
∇X

)2 − 2V (X)
)
+ 1

κ2

∫
B

d1x
√
−γ X K

+ 1
κ2

∫
B

d1x
(
LX∂B + LCT

)
.

(3.62)

The boundary term LX∂B is given in (3.58), and LCT is given in (3.60).
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Using the results of the previous sections to evaluate the first variation of (3.62) in
linear dilaton Bondi gauge, the terms with support on B are

δΓ
∣∣∣
B
= 1

κ2

∫
B
du

(
δq ∂uφ − δφ ∂uq − δ(a + q) ea+q M+ δ

(
e−(a+q) (∂uX)2

w

))
. (3.63)

With our assumptions about the falloff of w this vanishes for variations that preserve the
Dirichlet boundary data (a, q, and φ), and it is finite for variations of the boundary data.
A term in (3.52) proportional to δM has canceled against a similar finite term coming
from LCT. This is important, since M is not part of the boundary data and hence δΓ
must vanish for a variation δM. Note that the last term in (3.63), which is the only part
of the expression that explicitly depends on (integrals of) the potentials V (X) and U(X),
is delta-exact and hence does not contribute to the symplectic current. In the case of
Jackiw-Teitelboim gravity and related models, this term is needed to obtain the expected
Schwarzian action for the dual theory [62].

Finally we can also show that the limit rc → ∞ does not produce any divergences in
the (partially) on-shell action. This gives12

Γ = 1
κ2

∫
B
du

(
−ea+q M+ e−(a+q) (∂uX)2

w

)
+ . . . , (3.64)

where “. . .” refers to contributions to the action from integration-by-parts terms evaluated
in the interior of M ; i.e. total r derivatives that may also give a finite contribution at
r = 0, the horizon of a black hole, or similar. When considering δΓ we are only interested
in terms with support on B, since the fields satisfy boundary conditions at spatial infinity.
For applications that make use of the on-shell action, the “. . .” terms in (3.64) are just as
important as the contributions on B. Those terms cannot be evaluated without having a
specific model and solution in mind, as they depend on what happens in the interior of M .
The point here is simply that there are no terms in the action that diverge as rc → ∞.

4 3d Einstein gravity

In this section we revisit the results of [37] where a new gauge for three dimensional Einstein
gravity, dubbed the Bondi-Weyl gauge, was introduced.13 This is an enhancement of the
Bondi gauge where the condition on the determinant of the transverse metric is relaxed.
The space of partially on-shell field configurations in Bondi-Weyl gauge is characterized
by four charges, which is two more than in the usual Bondi gauge [36]. Previous efforts
to calculate the charges in this gauge encountered two problems: the “obvious” choice of
codimension-2 form diverges as r → ∞, and its finite part is not integrable. These issues
were addressed using the intrinsic corner ambiguities of the covariant phase space à la
Iyer-Wald, along with a change in the field dependence of the symmetries generators. We
show in this section that this is not necessary when corner contributions in the symplectic

12In [36], there was a finite term −ea+qM missing in the computation of the on-shell action.
13One can show that this is precisely the three dimensional analog of the partial Bondi gauge introduced

later in four dimensions [76].
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potential are taken into account, as described in section 2. Moreover, the finite corner
term introduced in [76] to restore integrability appears naturally in our construction, in
the same way as the dilaton gravity example of section 3.

We begin by reviewing the solution space of the Bondi-Weyl gauge. This is followed
by a quick review of the covariant phase space in Einstein gravity. Applying the results of
section 2 we recover the same charges as in [37]. Finally, we present a new variational prin-
ciple for three-dimensional gravity with a negative cosmological that accounts for corners,
and also admits a straightforward flat-space limit.

The discussion in this section is carried out in Bondi-Weyl gauge, but many of our
results hold for other choices of gauge. In appendix D we consider the variational properties
of the action in the more familiar Fefferman-Graham gauge [20], and show that corner
contributions from the symplectic potential cancel divergent total derivative terms on the
boundary which cannot be discarded in the presence of corners.

4.1 Solution space and symmetries in Bondi-Weyl gauge

We consider Einstein gravity in three dimensions with a negative cosmological constant.
The bulk Lagrangian is

LM = 1
2κ2

√
−g

(
R + 2

ℓ2

)
, (4.1)

where ℓ is the AdS radius.14 Its variation

δLM = Eµν δgµν + ∂µΘµ , (4.2)

gives the equations of motions

Eµν := δLM

δgµν
= −

√
−g

2κ2

(
Rµν − 1

2 gµνR − 1
ℓ2 gµν

)
, (4.3)

and the symplectic potential

Θµ =
√
−g

2κ2
(
∇ν(δg)µν −∇µ(δg)ν

ν
)

. (4.4)

Bondi-Weyl gauge. The line element in the Bondi-Weyl gauge is

ds2 = −2e2β(u,ϕ) du dr + V(u, r, ϕ) e2β(u,ϕ) du2 +W2(u, r, ϕ)
(
dϕ − U(u, r, ϕ) du

)2
, (4.5)

with grr = grϕ = ∂rgur = 0 imposed as gauge conditions. The condition ∂rgur = 0 can
be relaxed, but this will not enlarge the solution space and many of the calculations that
follow are simpler with this condition in place. The coordinate ϕ in (4.5) is taken to be
periodic: ϕ ∼ ϕ + 2π. Later on we will use this to discard total ϕ-derivatives appearing in
integrals, under the assumption that the fields are single-valued. Solving the components

14The results of this section assume a negative cosmological constant, and also hold in the flat limit
ℓ → ∞. A similar construction can be carried out in the case of a positive cosmological constant.
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of the equations of motion associated with the non-zero components of the metric gives15

Euu = 0 ⇒ W = eφ (r − C) , (4.6a)

Euϕ = 0 ⇒ U = U + e2(β−φ)

(r − C)

(
2β′ − N

(r − C)

)
(4.6b)

Eϕϕ = Eur = 0 ⇒ V = −e2β

ℓ2 (r − C)2 − 2 (U ′ + Uφ′ + ∂uφ)(r − C)

+ 2
(
M + 2 e2(β−φ)(β′)2)− e2(β−φ)

(
2β′ − N

(r − C)

)2
(4.6c)

where C, U, β, φ are functions of (u, ϕ), and a prime ′ denotes a partial derivative with
respect to ϕ. The two remaining components, Err and Erϕ, would typically be enforced
as constraints on the functions M and N , associated with the choice of coordinate gauge.
However, we do not impose these constraints. This leaves a total of six arbitrary functions
of (u, ϕ) parameterizing the partially on-shell fields in Bondi-Weyl gauge.

Symmetries and transformation laws. The asymptotic Killing vectors ξµ of the met-
ric (4.5) take the form

ξu = f, (4.7a)

ξϕ = g − e2(β−φ)

r − C
f ′, (4.7b)

ξr = (r − C)(h + Uf ′ − g′ − gφ′ − f∂uφ)− k

+ e2(β−φ)
(

f ′′ + f ′(4β − φ)′ − N

r − C
f ′
)

. (4.7c)

They depend on four arbitrary functions of (u, ϕ) — denoted f , g, h and k — which may
be field-dependent. Under these diffeomorphisms, the fields transform as

δξβ = f ∂uβ + g β′ + Uf ′ + 1
2
(
∂uf − f∂uφ − g′ − gφ′ + h

)
, (4.8a)

δξφ = h, (4.8b)

δξU = f ∂uU + g U ′ + U
(
∂uf − g′ + Uf ′)− ∂ug + e2(2β−φ)

ℓ2 f ′, (4.8c)

δξC = f ∂uC + g C ′ + k. (4.8d)

The transformations δξM and δξN are more involved, but can be easily derived.
Using the modified Lie bracket [66] these vector fields satisfy the commutation relations[
ξ(f1, g1, h1, k1), ξ(f2, g2, h2, k2)

]
⋆
=
[
ξ(f1, g1, h1, k1), ξ(f2, g2, h2, k2)

]
− δξ1ξ2 + δξ2ξ1

= ξ(f12, g12, h12, k12), (4.9)
15The notation here is different than in [37], with C = H [37], V = V [37]/r, and W2 = r2W [37]. The

functions M, N have been shifted as

N = N [37] + 2C β′ , M = M [37] + e2βC2

2ℓ2 − C
(
U ′ + Uφ′ + ∂uφ

)
.
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where

f12 = f1∂uf2 + g1f ′
2 − δξ1f2 − (1 ↔ 2), (4.10a)

g12 = f1∂ug2 + g1g′2 − δξ1g2 − (1 ↔ 2), (4.10b)
h12 = −δξ1h2 − (1 ↔ 2), (4.10c)
k12 = f1∂uk2 + g1k′

2 − δξ1k2 − (1 ↔ 2). (4.10d)

When the functions parameterizing the diffeomorphism (4.7) are taken to be independent
of the fields, δf = δg = δh = δk = 0, the algebra is

(
Diff(C2)(f,g) + (C∞)(k)(C2)

)
⊕

(C∞)(h)(C2), where C2 is the cylinder spanned by (u, ϕ) and (C∞)(C2) denotes the smooth
functions over C2.

4.2 Covariant phase space for three dimensional gravity

We consider the covariant phase space, reviewed in section 2.2, for Einstein gravity in three
dimensions.16

The presymplectic potential for the Einstein-Hilbert action was given in (4.4). The
antisymmetrized second variation of the action then gives the presymplectic current

ωµ(g; δ1g, δ2g) =
√
−g

2κ2

[ 1
2 gµλ

(
gαβgσν − gασgβν

)
+ 1

2 gβν
(
gαλgσµ − gασgλµ

)
(4.11)

+ 1
2 gλν

(
gµαgβσ − gαβgσµ

)] (
δ2gαβ ∇σδ1gλν − (1 ↔ 2)

)
.

The other ingredient needed for the construction of the codimension-2 form is the weakly
vanishing Noether current. Contracting the bulk term in the variation of the La-
grangian (4.1) with a diffeomorphism yields

Eµν δξgµν = ξνNν + ∂µSµ
ξ , (4.12)

which gives the Noether identities and the weakly vanishing Noether current as

Nν = −2 ∂µEµ
ν + Eµλ ∂νgµλ = 0 , Sµ

ξ = 2Eµλ gλν ξν . (4.13)

Then (2.20) implies the existence of a non-unique codimension-2 form kµν
ξ such that

∂νkµν
ξ = ωµ(g; δξg, δg) + 2 ξνδ(Eµλgλν)− ξµ Eνλ δgνλ . (4.14)

Using the above results for the terms on the right-hand side, integration by parts leads to
kµν

ξ given by

kµν
ξ =

√
−g

2κ2

(
ξµ∇λ(δg)νλ − ξµ∇ν(δg)λ

λ + ξλ∇ν(δg)µλ

+1
2(δg)λ

λ∇νξµ − δgλν∇λξµ − (µ ↔ ν)
)

. (4.15)

16In fact, the expressions in this subsection are valid for pure gravity in any spacetime dimension.
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Note that (4.14) is satisfied by (4.15) for all field configurations, independent of whether
the equations of motion hold. When the fields are fully on-shell, so that the presymplectic
current is conserved, (4.14) reduces to ∂νkµν

ξ = ωµ(g; δξg, δg). However, for partially on-
shell field configurations only the last term on the right-hand side of (4.14) vanishes. In
that case, some components of ξνδ(Eµλgλν) are non-zero and contribute to kµν

ξ .
Evaluating the kur

ξ component of (4.15) leads to the same problem encountered in
section 3: it diverges in the limit r → ∞, and the finite part is not integrable. We address
this with the prescription outlined in section 2 for constructing a finite (r-independent)
codimension-2 form, and determine the field dependence of the functions appearing in (4.7)
that leads to integrable charges.

4.3 Charges

The construction in section 2.2 shifts the components of the codimension-2 form by cor-
ner contributions Yar from the presymplectic current and Zar from the weakly vanishing
Noether current, as in (2.34). This defines (up to residual ambiguities) a codimension-2
form such that ∂akra

ξ is independent of r. The charges are obtained from the ur component,
which may depend on r through terms whose u-derivative cancels against similar terms in
∂ϕkrϕ

ξ . In other words, any r-dependence in kur
ξ is a total ϕ-derivative and therefore can

be discarded in integrals over B or ∂B. Thus, to determine the charges it is sufficient to
calculate only the shift in the ur component of (4.15)

kru
ξ → kru

ξ + Yur
ξ + Zur

ξ . (4.16)

However, since we consider field configurations that satisfy the Euu, Euϕ, and Eur compo-
nents of the equation of motion, Zur

ξ = 0 and the only shift to the ur component of (4.15)
comes from Yur. This is obtained from the anti-symmetrized variation of Θu written as a
total r-derivative.

Recall from section 2 that the contributions from the Θa components to the divergence
of the presymplectic current can be folded into the r-derivative to define a Θr

ren. that
includes corner contributions

∂µΘµ = ∂r

(
Θr + ∂u

∫
drΘu + ∂ϕ

∫
drΘϕ

)
:= ∂rΘr

ren . (4.17)

Evaluating the symplectic potential (4.4) on the line element (4.5) one has

κ2 Θu = ∂r(δW − δβ W) + 2W∂rδβ (4.18)

κ2Θϕ = δ

(
− 1
W

∂ϕe2β + ∂rW U
)
+ ∂r

(
−W U δβ + 1

2W δU
)

(4.19)

+ 2e2β

W
δβ∂ϕβ +W ∂rU δβ + 2W U ∂rδβ (4.20)

Since ∂rβ = ∂rδβ = 0, Θu is automatically a total r-derivative in Bondi-Weyl gauge. The
Θϕ component, on the other hand, must be integrated with respect to r. However, as
explained above, only the shift coming from the ∂uΘu = ∂r∂uY ur corner contribution will
be relevant for the charges.
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Incorporating the corner contribution from Θu in the r component of the presymplectic
potential, and ignoring both total ϕ-derivatives (including the contribution from Θϕ) and
δ-exact terms, we have

κ2 Θr
ren = κ2 Θr + ∂u (δW −W δβ)

= −eφ(M − ∂uC − U C ′ + 2e2β−φβ′2)δ(2β − φ) (4.21)
+ eφ(N − C ′)δU − ∂u(eφδC) .

The only r-dependence takes the form of a δ-exact term, which will not contribute to ωr

and hence has been dropped. Then the r component of the symplectic current is

κ2 ωr
ren = κ2 ωr + ∂u

(
δ1W δ2β − δ2W δ1β

)
= −δ1

(
eφ(M − ∂uC − U C ′) + 2e2β−φβ′2

)
δ2(2β − φ) (4.22)

+ δ1
(
eφ(N − C ′)

)
δ2U − ∂u (δ1eφδ2C)− (1 ↔ 2) (4.23)

The total u-derivative on the right-hand side of the first line gives Yur
ξ when δ2 is a generic

field variation, and δ1 = δξ is a field variation with the same form as a diffeomorphism.
Before giving the ur component of the shifted codimension-2 form, let us briefly com-

pare the results above with the two corner terms introduced in [37] to ‘renormalize’ the
presymplectic potential. The presymplectic potential in that reference is related to the Θr

component of (4.4) by

Θr[37]
ren = Θr − r

κ2 ∂u(eφδβ − δeφ) + 1
κ2 ∂u(eφCδβ) . (4.24)

The first of the two terms canceled the r-dependent part of Θr that diverges in the r → ∞
limit. The second corner term, which is finite in this limit, led to an integrable codimension-
2 form when the functions parameterizing the diffeomorphism (4.7) have a specific field
dependence. This is equivalent to (4.21), up to total ϕ-derivatives and δ-exact terms

Θr
ren = Θr[37]

ren + (. . .)′ + δ(. . .) . (4.25)

Thus, the ad hoc corner terms introduced in [37] are in fact explained by corner contri-
butions from the component Θu of the symplectic potential. Note the second corner term
introduced in [37], which is necessary for integrability of the charges, appears as the r-
independent part of Y ur when we use integration-by-parts to express Θu = ∂rY ur as a
total r-derivative.

Incorporating the Yur
ξ shift to the ur component of (4.15), and dropping total ϕ-

derivatives, kur
ξ is given by

kur
ξ = f

[
e2β δ

(
− 2e−2β (e2β−φβ′)′)+ e2β−φδ

(
− M e2φ−2β) (4.26)

+ e2β δ
(
U eφ−2βC ′

)
+ e2β δ

(
eφ−2β∂uC

)]
+
(
− k + e2β−2φ (f ′′ + f ′ (4β − φ)′

))
δ(eφ)

+
(
h + U f ′ − g′ − g φ′ − f ∂uφ

)
eφ δC

+
(
f U − g

)
δ
(
eφ N

)
+ f δC

(
∂ueφ +

(
U eφ)′) .
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This becomes integrable when the field dependence of the functions in the asymptotic
Killing vectors is

f = f̄ eφ−2β , h = −
(
h̄ + (ḡeφ)′

)
e−φ + ḡ′ + ḡφ′, (4.27)

g = ḡ + f̄ eφ−2βU, k = k̄ − ḡC ′ − f̄ eφ−2β(UC ′ + ∂uC) . (4.28)

The functions f̄ , ḡ, h̄, and k̄ are taken to be independent of the fields, but are otherwise
arbitrary functions of (u, ϕ). With this assignment, the charges are then precisely the ones
presented in [37]:

δQξ =
∫ 2π

0
dϕ
(
f̄ δM̄ + ḡ δN̄ + h̄ δC + k̄ δeφ

)
, (4.29)

with

M̄ = 4(β′)2 − 2β′φ′ + 1
2(φ

′)2 + (2β − φ)′′ + e2(φ−β)(M − ∂uC−U C ′) (4.30)

N̄ = eφ(N − C ′). (4.31)

When δf̄ = δḡ = δh̄ = δh̄ = 0, the algebra of charges is

[Qξ̄1
, Qξ̄2

] = Q[ξ̄1,ξ̄2]⋆ +
∫ 2π

0
dϕ
(
f̄1ḡ′′′2 − f̄2ḡ′′′1 + h̄1k̄2 − h̄2k̄1

)
, (4.32)

where [ξ̄1, ξ̄2]⋆ = ξ(f̄12, ḡ12, h̄12, k̄12) is the vector with

f̄12 = f̄1ḡ′2 + ḡ1f̄ ′
2 − (1 ↔ 2), h̄12 = 0 (4.33a)

ḡ12 = ḡ1ḡ′2 +
1
ℓ2 f̄1f̄ ′

2 − (1 ↔ 2) , k̄12 = 0 . (4.33b)

Explicitly this is an algebroid whose base space is parametrized by u and at each u we
have the conformal algebra in two dimensions in direct sum with the Heisenberg algebra.
In the flat limit the conformal algebra becomes the BMS algebra in three dimensions.

4.4 First variation of the action and holographic renormalization

The goal of this section is to use what we learned about the structure of the presymplectic
form in the previous sections to construct an action with a well-defined variational
principle, for fields that satisfy Dirichlet boundary conditions at r → ∞. In Bondi-Weyl
gauge (4.5) with the partially on-shell fields (4.6a)–(4.6c), we take Dirichlet boundary
conditions to fix the functions β, φ, U , and C characterizing the large-r behavior of the
metric. The first variation of the action should vanish for variations of the fields that
preserve this boundary data. The functions M and N , which are sub-leading in the large
r expansion of the metric, are not fixed.

Since Eµν δgµν = 0 for these field configurations, the variation of the bulk Lagrangian
is just the total derivative δLM = ∂µΘµ with support on ∂M . Our focus is the contribution
on the constant-r surface B that becomes spatial infinity in the limit r → ∞. The Θr com-
ponent of the presymplectic potential contains factors that diverge as r → ∞. As a result,
it is non-zero for some field variations that preserve the boundary conditions. This is most
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easily seen by considering field variations that change the boundary data; i.e. field variations
δβ, δφ, δU , and δC. Such variations produce terms at O(r2) and O(r) in Θr. The O(r2)
term is δ-exact, so it could in principle be canceled by a suitable boundary term added to
the action. But the O(r) term is not δ-exact. So the terms in Θr that interfere with a well-
defined variational principle cannot be entirely removed by boundary terms in the action.

However, as we saw in the previous section, contributions from the Θa components
must be accounted for. They can be expressed as total r-derivatives, Θa = ∂rY ar, which in
turn give corner contributions on B. If we consider the shifted quantity Θr + ∂aY ar, which
represents all contributions on B (including ∂B) from the variation of the bulk Lagrangian,
then field variations which shift the boundary data produce δ-exact terms at both O(r2)
and O(r).

Θr + ∂aY ar = − 1
ℓ2 δ

(
e2β−φ W2

)
+
(
terms independent of r) . (4.34)

The obstruction to a well-defined variational principle is now a δ-exact term which can
be addressed by the variation of boundary terms; this is the correct starting point for
constructing an action with a well-defined variational principle. All that remains is to
identify suitable boundary terms such that δΓ = 0 for field variations that preserve the
Dirichlet boundary data.

Before presenting the action and verifying its properties, we comment on two ambi-
guities present in these constructions. First, as we saw with the two-dimensional dilaton
gravity models of section 3, it is natural to consider terms in the action with support on
the null components of the boundary N±. We always work with an affine parameterization
of the null generators on N±, so that these terms and their first variation are zero except
for contributions that arise at the corners B ∩N± [75, 77]. Second, given an action with a
well-defined variational principle, one can define another such action by adding an intrinsic
functional of the boundary data on B that remains finite as r → ∞ (assuming such a
functional of the fields exists). Both actions have the same bulk equations of motion. And
since the new term vanishes for field variations which preserve the boundary data there is
no impact on the variational principle. Here, we fix (or at least reduce) this ambiguity by
demanding that the action have a finite flat-space limit ℓ → ∞ for partially on-shell fields
in Bondi-Weyl gauge, without any additional rescalings or redefinitions of the fields.

Given the considerations outlined above, we arrive at an action that admits a well-
defined variational principle with Dirichlet boundary conditions, is finite in the r → ∞
limit that removes B to spatial infinity, and has a sensible flat space limit ℓ → ∞. As
expected, it is similar in form to the usual action for AAdS3 gravity, with additional terms
needed in the presence of the corners ∂B and to accommodate the ℓ → ∞ limit:

Γ = 1
2κ2

∫
M

d3x
√
−g

(
R + 2

ℓ2

)
+ 1

κ2

∫
B

d2x
√
−γ

(
K − 1

ℓ

)
(4.35)

+ 1
κ2

∫
B

d2x
√
−γ

(
ℓ

2 K2
c

)
+ 1

κ2

∫
∂B

d1x
√

σ
(
− ℓ Kc − 1

)
. (4.36)

Here K = ∇µnµ is the trace of the extrinsic curvature of the constant-r surface B embedded
in M with outward-pointing, spacelike unit normal nµ. The coordinates on B are xa =
(u, ϕ), and γab is the induced metric. In addition, B is foliated into curves of constant u,
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with forward-pointing timelike unit normal ρa. The extrinsic curvature of the leaves in
this foliation is Kc = Daρa, where Da is the covariant derivative on B compatible with the
metric γab. The one-dimensional metric along each curve in the foliation is σ dϕ2.

The terms (4.35) in the first line of the action are the familiar bulk and boundary
terms for Einstein-Hilbert gravity in three dimensions, with asymptotically anti-de Sitter
boundary conditions. They include the Gibbons-Hawking-York (GHY) term and a bound-
ary counterterm [78–80]. The second line (4.36) includes new terms that are needed to
implement the variational principle when B has corners, and to ensure a finite ℓ → ∞
limit.

First variation of the action. The variational properties of the terms in (4.35) are well
established when ∂M does not have corners. To verify our claims about the full action
it is sufficient to show that the contributions at the corners ∂B do not interfere with the
variational principle, and that the ℓ → ∞ limit is well defined.

First, consider the terms in δΓ with support on B coming from the first line (4.35).

δΓ = . . . +
∫
B
d2x

[
Θr + ∂aY ar + 1

κ2 δ

(√
−γ K −

√
−γ

1
ℓ

)]
(4.37)

The variation of the GHY term and boundary counterterm gives

δ
(
LGHY + LCT

)
= −Θr + 1

2κ2
√
−γ

(
γab
(

K − 1
ℓ

)
− Kab

)
δγab (4.38)

+ 1
κ2

√
−γ Daca .

This includes a commonly neglected total derivative term arising from the variation of the
extrinsic curvature [81], which cannot be ignored in the presence of corners ∂B. As above,
D is the two-dimensional covariant derivative on B compatible with γ, and the vector ca

is given by
ca = −1

2 γab δgbλ nλ . (4.39)

Together, the terms in (4.37) reduce to a familiar contribution on B and a corner term
with support on ∂B

δΓ = . . . +
∫
B
d2x

[√−γ

2κ2

(
γab
(

K − 1
ℓ

)
− Kab

)
δγab + ∂a

(
Y ar + 1

κ2
√
−γ ca

)]
. (4.40)

The first set of terms, involving the extrinsic curvature and the variation of the induced
metric on B, vanishes for field variations that preserve Dirichlet boundary conditions at
r → ∞ [82]. But this is not the case for the corner term. From (4.18) we have Y ur =
δW−W δβ, and the definition (4.39) gives

√
−γ cu = W δβ. Thus, the variation of the first

line of the action (4.35) includes a corner term that interferes with the definition of the
variational principle. For field variations that change the boundary data it takes the form

1
κ2

∫
∂B

dϕ δW . (4.41)
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This diverges as r → ∞, since W = eφ
(
r − C

)
. Therefore, there will be field variations

that preserve the boundary data for which the corner terms in (4.40) are non-zero. This
is at odds with our requirements for the variational principle.

The corner term described above, which is δ-exact, is addressed by adding the very
last term in (4.36) to the action. It takes the form

− 1
κ2

∫
∂B

d1x
√

σ . (4.42)

A leaf of the foliation of B by curves of constant u has induced metric σ dϕ2, so
√

σ = W
for the fields (4.6a). Thus, the variation of this term in the action immediately cancels the
problematic term (4.41).

All that remains in our proposed action are the terms in (4.36) involving the extrinsic
curvature Kc of the constant-u curves foliating B. It is straightforward to see that these
terms are a finite (as r → ∞) functional of the Dirichlet boundary data on B. The future-
pointing timelike unit vector normal to curves of constant u on B is

ρa = 1
eβ

√
−V

(
δa

u + U δa
ϕ

)
, (4.43)

so the extrinsic curvature of these curves is

Kc = Daρa = 1√
−γ

(
∂uW + ∂ϕ

(
W U

))
. (4.44)

From the large-r behavior of the fields (4.6a)–(4.6c) it is apparent that the quantities√
−γ K2

c and
√

σ Kc in (4.36) are finite functions of the Dirichlet boundary data as r → ∞,
and hence do not interfere with the variational principle. An alternate presentation of
these terms is given in appendix C.

Including the contributions from all terms in (4.35)–(4.36), and evaluating on fields
that satisfy Eµν δgµν = 0, we have δΓ = 0 for all field variations that preserve the Dirichlet
boundary data at r → ∞. For field variations that change this boundary data, the non-zero
terms in δΓ are

δΓ = 1
κ2

∫
B
dudϕ

[
∂u(−eφδC) + eφδ (2β − φ)

(
−M + ∂uC + U C ′) (4.45)

+ eφδU
(
N − C ′)− δβ

(
4e2β−φβ′

)′ ]
.

Total derivatives with respect to ϕ have been dropped to obtain this form of δΓ. It is
interesting to note that this can also be written as

δΓ = 1
κ2

∫
B
dudϕ

[
∂u(−eφδC)− M̄ δ(e2β−φ) + N̄ δU (4.46)

+ δ

(
−2
(
e2β− 1

2 φ
)′ (

e−
1
2 φ
)′)]

,

where M̄ and N̄ are the charges defined in (4.30)–(4.31).

– 33 –



J
H
E
P
0
8
(
2
0
2
3
)
1
5
4

On-shell action. The value of the action for a specific field configuration will depend
on details in the interior of M , like the presence of a horizon. Evaluating (4.35)–(4.36) for
the fields (4.6a)–(4.6c) on a semi-infinite interval r+ ≤ r < ∞, gives

Γ = 1
κ2

∫
B
dudϕ

(
−eφ (M − ∂uC − U C ′)+ 1

ℓ2 e2β+φ(r+ − C
)2)

. (4.47)

Total ϕ-derivatives have been discarded, and the last term captures contributions from
the lower limit of the integral over r. This result makes two things apparent. First, the
boundary terms needed for a well-defined variational principle also render the action finite
as the regulator is removed via the r → ∞ limit. And second, the action remains finite in
the flat space ℓ → ∞ limit.

5 Conclusion

In this paper we have outlined a procedure for obtaining finite charges at an asymptotic
boundary, and applied it to two lower-dimensional examples where the resulting charges
are integrable. The existence of the limiting procedure that defines the charges is in-
sured by appropriate corner terms in the presymplectic current, obtained directly from
the variation of the bulk Lagrangian. This method of identifying the corner terms gives a
systematic accounting of the ad hoc shifts and subtractions used in some previous calcu-
lations [35–37, 53]. In these lower-dimensional examples, the charges are not just finite at
the asymptotic boundary, but fully independent of the coordinate r used to implement the
limiting procedure. One major advantage of this approach is that it reduces ambiguities
in Iyer-Wald covariant phase space methods. A (finite) ambiguity remains, which is to be
expected in any formulation that accommodates an open system where the boundary dy-
namics is not specified. We also show that the corner terms in the presymplectic potential
provide important information needed to construct a well-defined variational principle on
spacetimes where components of the boundary intersect at corners.

A notable feature of our analysis is that the fields are not fully on shell. Some equations
of motion are enforced, while others — constraints conjugate to gauge-fixed quantities —
are relaxed. Nevertheless, even with the fields only “partially on-shell,” diffeomorphism
invariance implies the existence of a codimension-2 form which receives contributions from
both the presymplectic current and the weakly vanishing Noether current. When the fields
are fully on-shell it reduces to the usual result, but with our weaker conditions it captures
charges which are not otherwise accessible. This formalizes some of the assumptions in
the analysis of [62], where on-shell conservation of the Casimir must be relaxed before the
off-shell conformal symmetry is recovered in the dilaton gravity dual of the SYK model.

The examples in sections 3 and 4 are lower-dimensional theories without local degrees
of freedom in the bulk. A natural next step is to apply the procedure to higher dimen-
sional theories with dynamical degrees of freedom that might radiate across the asymptotic
boundary. The proof outlined in section 2 will still apply if the fields fall off sufficiently
fast as r → ∞. The question now is whether those fall-off conditions are physically ac-
ceptable. One starting point is four-dimensional gravity in the partial Bondi gauge studied
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in [76], which is closely related to the three-dimensional Bondi gauge used in section 4.
The expectation is that the components Θa at large r will then consist of a leading part
fixed by the boundary conditions and kinematics, along with a sub-leading part where the
dynamical degrees of freedom appear. The Iyer-Wald ambiguity would presumably be used
to shift the former into corner contributions appearing in Θr

ren. This may be sufficient to
define charges which satisfy an appropriate flux-balance law [10, 16, 17, 83]. However, it
is also possible that the remaining, dynamical part of ωu

ren does not fall off fast enough
at large r for the arguments of section 2 to apply. In that case, one would have to either
relax the boundary conditions, or else modify our prescription. Since a number of possible
complications are expected to appear in four dimensions, it might instead be helpful to
start by coupling additional fields to the simple models treated in this paper. One could
then focus on just the issue of extracting corner terms when dynamical degrees of freedom
appear in the relevant components of the presymplectic potential.

Even without adding new fields, there are still important results to recover in the
lower-dimensional models we consider. For three dimensional gravity, one expects as many
as six charges [84, 85]. The Bondi-Weyl gauge employed in section 4 leads to four charges.
Relaxing the grϕ = 0 condition would bridge the Bondi-Weyl [37] and covariant Bondi [35]
gauges, enlarging the space of field configurations and possibly increasing the number of
charges. As shown in sections 3 and 4, contributions from the variation of the weakly
vanishing Noether current in (2.23) are essential for obtaining the charges when the fields
are only partially on-shell. Removing the gauge condition grϕ = 0 would allow variations
δgrϕ, and therefore the Erϕ = 0 component of the equation of motion would presumably
need to be enforced to completely fix the r-dependence of the fields. This will change how
the weakly vanishing Noether current contributes to the charges.

There are other extensions and refinements of this work that we would like to ex-
plore. The focus here has been on asymptotic symmetries generated by diffeomorphisms.
It would be useful to generalize our analysis to incorporate other gauge symmetries [63, 86–
90]. Even the addition of a simple U(1) gauge field would be interesting, since unlike a
scalar it would contribute to the weakly vanishing Noether current. Another avenue of in-
vestigation involves the choice of spacelike coordinate r that is singled out when specifying
the boundary conditions and constructing the charges. For some theories, such as asymp-
totically AdS gravity, the boundary conditions can be formulated in a completely covariant
manner [91, 92]. It seems reasonable that the procedure for extracting the corner terms in
the presymplectic potential could also be specified in a covariant manner for such theories.
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A “Einstein-Hilbert” contribution to kµν
ξ in 2d dilaton gravity

The last line in (3.30) has been simplified. It is proportional to the product of the dilaton
X and the codimension-2 form kµν

ξ,EH for Einstein-Hilbert gravity, which is given by

2κ2
√
−g

kµν
ξ,EH = ξν ∇µδg − ξµ ∇νδg + ξµ ∇λ(δg)λν − ξν ∇λ(δg)µλ (A.1)

+ ξλ (∇ν(δg)µ
λ −∇µ(δg)λ

ν)+ 1
2 δg

(
∇νξµ −∇µξν)

+ (δg)µλ ∇λξν − (δg)λν ∇λξµ .

The terms in the last line of (3.30) (with a factor of
√
−g/κ2) are equal to X kµν

ξ,EH in
two dimensions. This is not immediately apparent when the two expressions are compared
in covariant form, and the condition (3.29) satisfied by kµν

ξ is most easily verified by re-
placing the last line of (3.30) with X kµν

ξ,EH . We include it here for completeness. In any
case, this part of the codimension-2 form does not contribute to our charge calculation.
Evaluating (A.1) in linear dilaton Bondi gauge gives

kur
ξ,EH = 1

2κ2 δ
(√

−g grr) ∂rξu . (A.2)

This vanishes for diffeomorphisms that preserve the gauge condition grr = 0, which requires
∂rξu = 0.

B Counterterms for dilaton gravity

In this appendix we generalize the results of [54] to dilaton gravity models where spatial
infinity is the rc → ∞ limit of a regulating boundary B that is not an isosurface of the
dilaton. Under certain assumptions the resulting terms can be organized in a derivative
expansion on B, with the zeroth-order term reproducing the boundary counterterm given
in [54]. Depending on the potentials U and V , additional terms in this expansion may be
necessary for a well-defined variational problem and a finite action.

The approach of [54] identified a boundary counterterm for the dilaton gravity action
by solving the radial Hamiltonian constraint. That analysis assumed the fields were fully
on-shell, and used coordinates r̃ and t adapted to the Killing vector ξX . Curves of constant
r̃, including spatial infinity at r̃ → ∞, are then isocurves of the dilaton X(r̃). Here we
relax this condition and repeat the analysis for a more general foliation. The starting point
is a “radial ADM” decomposition of the 2D metric17

ds2 = N2 dr2 + γuu
(
du + Nu dr

)2
. (B.1)

17The linear Bondi gauge is obtained by taking γuu = 2B, Nu = −eA/(2B), N = eA/
√
−2B.
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The bulk Lagrangian (3.1) can be written as

κ2 LM =
√
−γ

1
2N

γuu(∂rγuu − 2γuuDuNu)(∂rX − NuDuX
)

(B.2)

−
√
−γ

1
2N

U
(
∂rX − NuDuX

)2 −√
−γ N

(1
2 U (DX)2 + D2X + V

)
+ ∂u

(
−
√
−g nu X K +

√
−γ γuu (N ∂uX − X ∂uN

))
+ ∂r

(
−
√
−g nr X K

)
,

where K is the extrinsic curvature of a constant r curve, γuu is the induced metric on that
curve, and Du is the (1D) covariant derivative compatible with that metric. The last term
cancels the GHY term on B so we drop it henceforth.18 The momenta conjugate to ∂rγuu

and ∂rX are

πuu = ∂LM

∂(∂rγuu)
=

√
−γ

2κ2N
γuu(∂rX − NuDuX

)
(B.3)

πX = ∂LM

∂(∂rX) =
√
−γ

2κ2N
γuu(∂rγuu − 2 γuuDuNu)− 2U πu

u . (B.4)

Now we construct the Hamiltonian HM = πuu ∂rγuu + πX ∂rX − LM . Using the above
expressions, this is

HM = N H+ Nu Hu + ∂uT u , (B.5)

with

H = 2κ2
√
−γ

(
πXπu

u + U (πu
u)2
)
+

√
−γ

κ2

(1
2 U (DX)2 + D2X + V

)
(B.6)

Hu = πX ∂uX − 2 ∂uπu
u + πuu∂uγuu (B.7)

T u = Nu
(
2(1− X U)πu

u − X πX

)
−

√
−γ

κ2 γuu
(
N ∂uX − X ∂uN

)
. (B.8)

Now consider a boundary term LCT(γuu, X) that is a function of the induced metric and
dilaton on B. Defining

pX = δLCT
δX

puu = δLCT
δγuu

, (B.9)

the goal is to determine LCT by solving H(pX , puu) = 0 order-by-order in a derivative
expansion. The Hamilton-Jacobi equation for LCT is

H(pX , puu) = 2κ2
√
−γ

(
pXpu

u + U (pu
u)2
)
+

√
−γ

κ2

(1
2 U (DX)2 + D2X + V

)
= 0 . (B.10)

Since LCT is a scalar on B, the first few terms in the derivative expansion should take the
form

LCT = 1
κ2

√
−γ

(
F0(X) + F2(X) γuu (∂uX)2 + . . .

)
. (B.11)

18That term potentially gives another contribution if the boundary has a component at some interior
value of r, like a horizon. But that is not relevant here, as we are only interested in terms on B.
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Taking the functional derivatives of LCT and plugging the resulting pX and pu
u into H,

the zero-derivative term in the equation is solved by the counterterm found in [54]:

F0 = −
√

e−Q(X) w(X) , (B.12)

where Q(X) and w(X) were defined in (3.9). Using this result for F0 in (B.11), the two-
derivative term in H = 0 becomes

0 =
(
1 + 2F2(X)

√
e−Qw

)
D2X (B.13)

− 1
2(DX)2e−Q

(
− 2∂X

(
F2(X)eQ

√
e−Qw

)
− ∂XeQ

)
,

which is solved by
F2(X) = − 1

2
√

e−Q(X)w(X)
. (B.14)

Subsequent terms in the derivative expansion of H involve contributions from terms in
LCT with four or more derivatives. So, to second order in the derivative expansion, LCT
is given by

LCT = − 1
κ2

√
−γ

(√
e−Qw + 1

2
√

e−Qw
γuu(∂uX)2 + . . .

)
, (B.15)

where . . . denotes terms with four or more derivatives. This generalizes the result of [54]
and reproduces, for instance, the boundary counterterm used for the Jackiw-Teitelboim
model [55, 56] in [62].

Under what conditions can terms with four or more derivatives in (B.15) be neglected?
In linear dilaton Bondi gauge, consider models for which w(X) dominates the ∂uX term
in the metric function B as r → ∞. This condition, (∂uX)/w → 0 as r → ∞, ensures
that the two-derivative term in (B.15) is sub-leading compared to the zero-derivative term.
Then the r → ∞ expansion of the counterterm is

κ2LCT ∼ −w(X)ea+q − ∂uX + ea+qM+ (∂uX)2

ea+qw(X) + . . . . (B.16)

The last term in this expression vanishes as r → ∞ if the potentials U and V give w(X)
that grows faster than X2. In that case, only the zero-derivative term in (B.15) contributes
to the action and its first variation in this limit. However, for the Jackiw-Teitelboim
model [55, 56] and related theories [93] with w(X) ∼ X2 as r → ∞, the last term in (B.16)
is finite and non-zero as r → ∞. In that case the two-derivative term in (B.15) is not
needed to address r → ∞ divergences in the analysis of the variational principle. But
for Jackiw-Teitelboim gravity this term’s finite contribution to the action is necessary for
reproducing the Schwarzian action of the dual theory [62]. For this reason, we include its
contribution in our analysis.

Finally, one can construct models such that (∂uX)/w → 0 but (∂uX)2/w diverges
as r → ∞. These tend to involve unusual potentials (for example, U = 0 and V ∼ Xα

with 0 < α < 1) so we will not consider them further. Such models require additional
terms in the derivative expansion of LCT, which can be determined using the prescription
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above. In models where (∂uX)/w remains finite as r → ∞, all terms in the derivative
expansion (B.15) have similar leading behavior and must be retained. And if (∂uX)/w

diverges in this limit then subsequent terms in the expansion are more divergent than
previous terms. In that case the derivative expansion (B.11) is not a useful organizing
principle. Such models may be of interest, but they require a different approach to finding
LCT and will not be considered here.

C Foliations of B

Let B be a two-dimensional surface with coordinates xa and Lorentzian metric γab.

γabdxadxb = V e2β du2 +W2 (dϕ − U du
)2

. (C.1)

The two-dimensional covariant derivative compatible with the metric is Da, the volume
element is

√
−γ = eβ W

√
−V , and the Ricci scalar is 2R(γ).

Foliating B with curves of constant u, the future-directed timelike vector ρa normal to
these curves is

ρa = 1
eβ
√
−V

(
δa

u + U δa
ϕ

)
, (C.2)

with acceleration Aa = ρbDbρ
a given by

Aa = 1
W2 ∂ϕ log

(
eβ
√
−V

)
δa

ϕ . (C.3)

The extrinsic curvatures of these curves embedded in B is

(Kc)ab =
1
2
(
Daρb + Dbρa + ρa Ab + ρb Aa

)
. (C.4)

The trace Kc = Daρa takes the simple form

Kc =
1√
−γ

(
∂uW + ∂ϕ(W U)

)
. (C.5)

The constant-u curves are one dimensional, so they have no intrinsic curvature and their
the extrinsic curvature satisfies K2

c = (Kc)ab (Kc)ab. As a result, the only Gauss-Codazzi
identity for the two-dimensional curvature is

2R(γ) = Da
(
2 ρa Kc

)
− 2DaAa . (C.6)

In the coordinates (C.1), and including a factor of the volume element, this can be written as

√
−γ 2R(γ) =

√
−γ Da

(
2 ρa Kc

)
− ∂ϕ

( 2
W

∂ϕ

(
eβ

√
−V

))
. (C.7)

Using this to rewrite the Kc corner term in the action (4.36), the proposed action is

Γ = 1
2κ2

∫
M

d3x
√
−g

(
R + 2

ℓ2

)
+ 1

κ2

∫
B

d2x
√
−γ

(
K − 1

ℓ

)
− 1

κ2

∫
∂B

d1x
√

σ (C.8)

+ 1
κ2

∫
B

d2x
√
−γ

(
ℓ

2 K2
c − ℓ

2
2R(γ)

)
. (C.9)
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A total ϕ-derivative in the integral over B has been discarded. The terms on the first line
establish a well-defined variational principle with Dirichlet boundary conditions on the
fields at r → ∞, while the terms on B in the second line are an additional functional of the
Dirichlet boundary data which must be included for the action to have a finite flat-space
limit ℓ → ∞.

D Renormalization of the phase space in Fefferman-Graham gauge

In section 2 we showed that the variation of the bulk action alone is sufficient to define
a finite codimension-2 form at the asymptotic boundary that leads to integrable charges.
This was applied to three dimensional gravity with a negative cosmological constant in
section 4, working in Bondi-Weyl gauge. In this appendix we obtain similar results in
Fefferman-Graham (FG) gauge [20]. First, we show that components of the presymplectic
potential parallel to the conformal boundary can be written as total (normal) derivatives.
These shift the component normal to the conformal boundary by corner terms. The shifted
presymplectic potential contains terms which diverge at the conformal boundary, but they
are δ-exact and hence do not contribute to the presymplectic current or codimension-2
form. A quick calculation shows that they are canceled in δΓ by the usual boundary terms,
including a non-trivial cancellation in the presence of corners.

Solution space. The line element in Fefferman-Graham gauge is

ds2 = ℓ2

ρ2dρ2 + 1
ρ2 γab(ρ, xa)dxadxb (D.1)

with xa = (t, ϕ). The metric on a two-dimensional surface of constant ρ is γab, and the
covariant derivative compatible with this metric is Da. The conformal boundary is at
ρ → 0, and the outward-pointing, spacelike unit vector normal to a constant-ρ surface is

nµ = − ℓ

ρ
δµ

ρ nµ = −ρ

ℓ
δµ

ρ . (D.2)

Many of the calculations in this appendix involve quantities that diverge at ρ → 0. We
regulate these calculations by introducing a cut-off ρ = ϵ with 0 < ϵ ≪ 1, addressing any
divergent terms, and then taking the limit ϵ → 0.

Partially on-shell fields satisfy Eµν δgµν = 0 by fixing δgρρ = δgρa = 0 and imposing
the components Eab = 0 of the equations of motion. This fixes the ρ-dependence of γab

19

γab = γ(0)
ab + γ(2)

ab ρ2 + γ(4)
ab ρ4 (D.3)

with
γ(4)

ab = 1
4γ(2)

ac γcd
(0)γ

(2)
db . (D.4)

19In 3 dimensions, the expansion is finite and there are no subleading log terms consistent with the
equations of motion Eab = 0.
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The remaining components of the equations of motion, which we do not enforce, place
constraints on the trace and covariant divergence of γ(2)

ab . It is convenient to define

Tab =
1
ℓ

γ(2)
ab + ℓ

2 γ(0)
ab R , (D.5)

where R is the Ricci scalar of the metric γ(0)
ab . Then the equations Eρρ = 0 and Eρa = 0

enforce respectively the conditions

T a
a = ℓ

2 R , DbT
ab = 0 . (D.6)

Indices are raised and lowered in these expressions with the metric γ(0)
ab , and D is the

covariant derivative compatible with γ(0)
ab .

Renormalized symplectic potential. Field variations that preserve the FG gauge
satisfy

δgρρ = δgρa = 0 δgab =
1
ρ2 δγab . (D.7)

So the components of the presymplectic potential are

Θρ = 1
2κ2

√
−g

(
∇ν(δg)ρν −∇ρ(δg)ν

ν

)
(D.8)

Θa = 1
2κ2

ℓ

ρ

√
−γ

(
Db(δγ)ab − Da(δγ)b

b

)
. (D.9)

Only the leading part of Θa as ρ → 0 will be relevant when we consider terms in the first
variation of the action at ρ = ϵ. This is

Θa = 1
2κ2

ℓ

ρ

√
−γ(0)

(
Db(δγ(0))ab −Da(δγ(0))b

b

)
+ . . . . (D.10)

The trailing . . . indicate terms that vanish as ρ → 0. This can be written as a total
ρ-derivative Θa = ∂ρY aρ with

Y aρ = 1
2κ2 ℓ log

(
ρ

ℓ

) √
−γ(0)

(
Db(δγ(0))ab −Da(δγ(0))b

b

)
+O(ρ2) (D.11)

Thus, the total derivative term in the variation of the bulk Lagrangian, for partially on-shell
fields, is given by

δLM = ∂µΘµ = ∂ρ (Θρ + ∂aY aρ) =: ∂ρΘρ
ren (D.12)

with

∂aY aρ = 1
2κ2 ℓ log

(
ρ

ℓ

) √
−γ(0)

(
DaDb(δγ(0))ab −D2(δγ(0))b

b

)
+O(ρ2) (D.13)

= δ

[ 1
2κ2 ℓ log

(
ρ

ℓ

) √
−γ(0) R

]
+O(ρ2) . (D.14)

Combining this with Θρ, the shifted form of the presymplectic potential is

Θρ
ren = − 1

2κ2 ℓ

√
−γ(0)

(
γab

(2) − γab
(0) γ(2)

)
δγ(0)

ab (D.15)

+ 1
κ2 δ

[
ℓ

2 log
(

ρ

ℓ

) √
−γ(0) R+ 1

ℓ

1
ρ2
√
−γ(0)

(
1− 1

2γ(2)ρ2
)]

+O(ρ2) (D.16)
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Taking Θρ
ren as the starting point leads to a finite (as ρ → 0) codimension-2 form that

yields charges. The δ-exact terms in the second line identify boundary terms, including
the holographic renormalization counterterms, needed for a well-defined variational prin-
ciple [25, 26].

Renormalized action. The full action for Einstein gravity with AdS3 boundary condi-
tions requires various boundary terms on the regulating surface ρ = ϵ.

Lb = LGHY + LCT . (D.17)

The first of these is the Gibbons-Hawking-York term

LGHY = 1
κ2

√
−γ

ρ2 K , (D.18)

with K = ∇µnµ the trace of the extrinsic curvature. The second is a boundary counterterm,
which includes a log term proportional to the Ricci scalar for γ(0)

ab

LCT = 1
κ2

√
−γ

ρ2

(
− 1

ℓ
+ ℓ

2 R ρ2 log
(

ρ

ℓ

))
. (D.19)

One can easily check that the variation of these boundary terms cancels the ρ = ϵ contri-
bution to δΓ coming from the δ-exact term in (D.16). Accounting for both the bulk and
boundary terms, the terms on ρ = ϵ in the first variation of the action are finite as ϵ → 0

δΓ = 1
2κ2

∫
B

d2x
√
−γ(0)

1
ℓ

(
γab

(2) − γab
(0) γ(2)

)
δγ(0)

ab (D.20)

= 1
2κ2

∫
B

d2x
√
−γ(0)

(
T ab − γab

(0) T c
c +

ℓ2

2 γab
(0) R

)
δγ(0)

ab . (D.21)

When the Eρρ = 0 constraint is enforced, the last two terms cancel and the integrand
reduces to the boundary stress tensor times the metric variation — precisely the expected
result. The main observation here is that the corner term (D.14), which comes from ex-
pressing Θa as a total ρ-derivative, precisely cancels the variation of the log-divergent part
of the counterterm (D.19). This detail is not important when ∂B = 0, since the log diver-
gence in δLCT is a total derivative. But when B has corners this cancellation is necessary.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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