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Abstract

Semiclassical methods provide important tools for approximating solutions in quantum mechan-

ics. In several cases these methods are intriguingly exact rather than approximate, as has been

shown by direct calculations on particular systems. In this paper we prove that the long-conjectured

exactness of the supersymmetry-based semiclassical quantization condition for broken supersym-

metry is a consequence of the additive shape invariance for the corresponding potentials.

I. INTRODUCTION

Semiclassical methods such as WKB provide an important tool to approximate eigenval-

ues of one-dimensional quantum mechanical problems, or the radial equation for systems

with spherical symmetry [1]. While these approximate values asymptotically converge to

the exact values for large quantum numbers [2], in particular cases these methods result in

exact, rather than approximate spectra [3–7]. Exact solutions are rare in quantum mechan-

ics and hence of great interest when possible. The conditions under which this occurs, if

understood, could provide important insights into semiclassical methods.

In the context of Supersymmetric Quantum Mechanics (SUSYQM), the supersymmetric

WKB approximation (SWKB) is exact for a class of potentials known as conventional po-

tentials, for cases of unbroken supersymmetry [8]. This was recently shown to follow from

the shape invariance of these potentials [9]. In this manuscript, we prove that the exact-

ness of the modified broken supersymmetric WKB condition (BSWKB) conjectured almost

three decades ago by Inomata et al. [10–12], and Eckhardt [13], follows directly from shape

invariance of the corresponding conventional potential.

This paper is organized as follows. In subsection I A, we briefly review the basic tenets of

SUSYQM and distinguish between broken and unbroken supersymmetry. We then present

shape invariance in subsection I B and conclude the section with an introduction to the

BSWKB condition in I C. In section II, we summarize previously derived results and elab-

orate on the theoretical methods we employ to prove the exactness of BSWKB. Finally, we

prove in section III that BSWKB exactness follows from shape invariance.

∗ agangop@luc.edu
† jbougie@luc.edu
‡ crasinariu@luc.edu
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A. Supersymmetric Quantum Mechanics and Broken Supersymmetry

A potential V−(x) in SUSYQM [14–20] is related to a function W (x), known as the

superpotential, such that

V−(x) = W 2(x)− ~√
2m

dW (x)

dx
. (1)

We define two differential ladder operators A± = ∓ ~√
2m

d
dx

+ W (x) that are hermitian

conjugates of each other. Their product yields the hamiltonian

H− = A+A− =

(
−~ d

dx
+W (x)

) (
~
d

dx
+W (x)

)
= −~2 d

2

dx2
+ V−(x) , (2)

where we have set 2m = 1. The product A−A+ yields a “partner” hamiltonian H+ =

−~2 d2

dx2
+V+(x), with potential V+(x) = W 2(x)+~dW

dx
. The two hamiltonians are intertwined

by A+H+ = H−A+ and A−H− = H+A−.

The eigenvalues E±n cannot be negative since the hamiltonians H± are semi-positive def-

inite. If either E−0 = 0 or E+
0 = 0, the system is said to have unbroken supersymmetry[21].

The intertwining of hamiltonians then yields the following relationships between their eigen-

values and eigenfunctions:

E−n+1 = E+
n , where n = 0, 1, 2, · · · , (3)

A−√
E+
n

ψ
(−)
n+1 = ψ(+)

n , and
A+√
E+
n

ψ(+)
n = ψ

(−)
n+1 . (4)

Additionally, E−0 = 0 leads to A−ψ(−)
0 = 0, and hence ψ

(−)
0 (x) ∝ exp

[
−1

~

∫ x
W (y) dy

]
.

Thus, the normalizability of the zero-energy groundstate requires that ψ
(−)
0 (±∞) = 0; i.e.,∫ ±∞

W (y) dy =∞, and hence the superpotential W (x) must have opposite signs at the left

and right boundaries of the domain.

If neither groundstate energy is zero, supersymmetry is broken. For broken SUSY, the

superpotential W (x) must have the same sign at the left and right boundaries of the domain.

For example, the 3-D harmonic oscillator superpotential is given by

W (r, ω, `) =
ωr

2
− `

r
; 0 < r <∞ . (5)

The supersymmetry is unbroken for ` > 0 and broken for ` < 0. In Fig. 1 we illustrate the

two phases. Hence the zero-energy groundstate for the broken phase is not normalizable,

3
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FIG. 1. Broken (` = −3) vs. unbroken (` = 3) phases of the 3-D oscillator superpotential. We

have chosen units such that ω = 1.

and E−0 = E+
0 > 0. In this case, the intertwining relations give

EB
n ≡ E−n = E+

n , where n = 0, 1, 2, · · · , (6)

A−√
E+
n

ψ(−)
n = ψ(+)

n , and
A+√
E+
n

ψ(+)
n = ψ(−)

n . (7)

For example, the eigenvalues for the 3-D oscillator in its unbroken phase are the familiar

E−n = 2n~ω, but in the broken phase they are given by [22] EB
n = (2n+ 1)~ω− 2`ω. In Fig.

2, we illustrate the 3-D oscillator potentials V± and their eigenvalues.
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E = 00        
-      

E = E0         0
-       +

E = E1         1
-       +

E = E2         2
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Unbroken SUSY

Broken SUSY

FIG. 2. The potentials V+ (dashed curve) and V− (solid curve) along with their eigenenergies for

the 3-D oscillator for the unbroken (` = 3) and broken (` = −3) phases. We have chosen units

such that ~ = ω = 1.

If we know the eigenvalues and eigenfunctions of one hamiltonian, then we can find the

same for the partner hamiltonian using Eqs. (3 - 4) in the unbroken phase, or Eqs. (6 - 7) in

the broken phase. For superpotentials that have a property known as “shape invariance,” we
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can use the ladder operators to generate the entire spectra for a pair of partner potentials in

the unbroken supersymmetric phase, beginning from the zero-energy groundstate of V−(x),

as discussed in Sec. I B.

B. Shape Invariance

A superpotential W (x, ai) is shape invariant [23–26] if

W 2(x, ai) + ~
dW (x, ai)

dx
+ g(ai) = W 2(x, ai+1)− ~

dW (x, ai+1)

dx
+ g(ai+1) , (8)

for a set of parameters ai, where the relationship between parameters is given by a function

f(a) such that ai+1 = f(ai) and the function g(a) gives the difference between energy levels.

We then have

E(+)
n (a0)− E−n (a1) = g(a1)− g(a0), (9)

ψ(+)
n (x, a0) = ψ(−)

n (x, a1) . (10)

For shape invariant superpotentials with unbroken supersymmetry, the existence of a

groundstate with E
(−)
0 = 0 allows us to use Eqs.(9 , 10) to construct the entire spectra of

H− and H+ from this ground state. For unbroken SUSY, therefore,

E(−)
n (a0) = g(an)− g(a0), (11)

ψ(−)
n (x, a0) =

A+(a0) A+(a1) · · · A+(an−1)√
E

(−)
n (a0)E

(−)
n−1(a1) · · ·E

(−)
1 (an−1)

ψ
(−)
0 (x, an) . (12)

Therefore shape invariance leads directly to the exact solvability of quantum mechanical sys-

tems. This result reflects the fact that shape invariance is a symmetry condition intrinsically

connected to an underlying potential algebra [27–32].

In this paper we consider two types of shape invariance: an additive shape invariance

described by ai+1 = ai + ~, and a discrete shape invariance, to be described later, that leads

to a change of phase between broken and unbroken supersymmetry. As shown in Ref. [22],

the combination of such shape invariances allows us to determine the spectrum of additive

shape invariant systems in the broken SUSY phase.

Additive shape invariant superpotentials W (x, ai) that do not depend on ~ are called

5



[33, 34] “conventional.”[35] They satisfy the following set of partial differential equations:

W
∂W

∂a
− ∂W

∂x
+

1

2

dg(a)

da
= 0 , (13)

∂3

∂a2∂x
W (x, a) = 0 . (14)

This idea was first noted in Ref. [36] and fully developed in Refs. [33, 34], where it was

demonstrated that Ref. [37] provided the complete list of conventional superpotentials.

Additional “extended” shape invariant superpotentials have been found [38–47], that each

consist of a conventional superpotential along with an additive extension that depends ex-

plicitly on ~ [33, 34].

C. The BSWKB Condition

The following supersymmetric WKB (SWKB) condition was proposed in 1985 by Comtet

et al. [8] ∫ x2

x1

√
En −W 2(x, a) dx = nπ~ , where n = 0, 1, 2, · · · , (15)

where En is the energy of the system and the limits x1 and x2 are solutions of W (x, a) =

±
√
En. The exactness of SWKB for all conventional potentials was recently proven to follow

from shape invariance for cases in which supersymmetry is unbroken [9].

In the 1990s, Inomata and Junker [10–12, 20], and Eckhardt [13] proposed a modified

SWKB condition for broken supersymmetry (BSWKB):∫ x2

x1

√
EB
n −W 2(x, a) dx =

(
n+

1

2

)
π~ , where n = 0, 1, 2, · · · . (16)

In this paper we prove that Eq.(16) follows from additive shape invariance of the unbroken

phase for all conventional superpotentials that have two solutions of W (x, a) = ±
√
EB
n in

their broken phase so that the limits of the integral are properly defined.

II. METHODS

In this section, we elaborate on the theoretical methods we will use to prove the exactness

of BSWKB, Eq. (16). We begin by defining a function I(a, n, ~) by

I(a, n, ~) ≡
∫ x2

x1

√
EB
n −W 2(x, a) dx =

1

2

∮ √
EB
n −W 2(x, a) dx , (17)

6



where EB
n represents the energy in the broken phase, and the last integral is carried out on

the complex x-plane enclosing the cut from x1 to x2.

Unlike the unbroken case, for broken SUSYQM, the groundstate energy EB
0 is unknown.

Therefore, additive shape invariance combined with isospectrality of the partner hamiltoni-

ans given by Eqs. (3) and (4) is not sufficient to determine EB
n .

Hence, following Ref. [22], we first carry out a change of parameter that takes the system

from the broken to an associated unbroken phase, and then use additive shape invariance

to determine its spectrum. We then use the isospectral relations of Eqs. (3) and (4) to

determine the eigenvalues and eigenfunctions for the broken phase, as illustrated by Fig. 3.

Broken SUSY Unbroken SUSY

Discrete SI

transformation
Additive SI
transformation

V+ V−

V+

FIG. 3. Schematic illustrating the transformations used to determine the spectra for the systems

in their broken phases.

To show the exactness of BSWKB for conventional superpotentials, we now divide the

conventional potentials into three classes and use properties of each class that were identified

in [9]. We then examine the integral I from Eq. 17 for each class. Since these classes are

exhaustive for conventional superpotentials, we thus prove that the BSWKB condition is

exact for all cases in which the integral is properly defined.

The general solution [33, 34] to Eq. (14) is

W (x, a) = a f1(x) + f2(x) + u(a) . (18)

This form was suggested by Infeld et al. [23], further studied in [48, 49], and proven as the

general solution in [9, 33, 34].

Since both f1(x) and f2(x) cannot be simultaneously constants (otherwise W (x, a) would

be a constant), the following three classes encompass all possible conventional superpoten-

tials. Class I: f1 = α, a constant; Class II: f2 = µ, a constant; Class III: f1 and f2 are both

7



functions of x. In Table I, we list key properties for each of these classes that were shown

in [9] to follow from their additive shape invariance.

Class Form of W Constraints from Subclasses E−n for

shape invariance unbroken SUSY

Class I f2(x) + αa αf2 − f ′2 = ε ≡ −ω/2

{
IA: α = 0 nω~

IB: α 6= 0 α2 a2 − α2(a+ n~)2

Class II af1(x) +B/a f21 − f ′1 = λ

{
IIA: λ = 0 B2

a2
− B2

(a+n~)2

IIB: λ 6= 0 B2

a2
− B2

(a+n~)2 + λ
[
a2 − (a+ n~)2

]

Class III af1(x) + f2(x)
f21 − f ′1 = λ,

{
IIIA:λ = 0 2nω~

f1f2 − f ′2 = ε ≡ −ω IIIB:λ 6= 0 λ
[
a2 − (a+ n~)2

]

TABLE I. Three classes of conventional shape invariant superpotentials and their properties as

shown in [9]. The following are all constants: α, ε, ω, λ, and B.

III. THE EXACTNESS OF BSWKB

At this point, we are positioned to prove the exactness of BSWKB. Since Classes I-III

represent all possible conventional superpotentials, we will examine each class separately.

A. Class I

For this class, W (x, a) = f2(x) + α a, where f ′2 = αf2 − ε. For α = 0, f ′2 = −ε and for

α 6= 0, ε = 0, so f ′2 = αf2. [50] In either case, W ′ = f ′2 cannot cross zero and therefore has

a definite sign. Hence W is a monotonic function. Since for the broken SUSY phase the left

and right limits must have the same signs, we see that W (x) is never zero.

This then implies that (W 2)′ = 2WW ′ is monotonic and cannot vanish at any point, and

hence W 2(x) has no minimum within the domain. Consequently, EB
n = W 2 has only one

intersection point, not two.

8



B. Class II

For this class, W (x, a) = af1(x) + B/a and f ′1 = f 2
1 − λ. Thus W ′(x, a) = af ′1(x). For

λ = 0, f ′1 = f 2
1 > 0. For λ < 0, f ′1 = f 2

1 + |λ| > 0. For λ > 0, we must have either (f1)
2 > λ

or (f1)
2 < λ, as f 2

1 6= λ at any point in the domain, or it would yield a constant W which

is a trivial solution. Hence in all cases W ′ = f ′1 has a fixed sign and W is a monotonic

function. Since in the broken phase W must have same signs at both ends, it cannot have a

zero within the domain of x. Consequently, EB
n = W 2 has only one intersection point, not

two.

C. Class III

For this class, W (x, a) = af1(x)+f2(x). Here f ′1 = f 2
1 −λ and f ′2 = f1f2−ε, where λ and

ε are constants. In this case, since W depends on both f1 and f2, it could have a minimum

and therefore W 2 = EB
n could indeed have two intersection points. This class further splits

into two cases: λ = 0 and λ 6= 0. Next we examine each of these two cases separately and

prove that the BSWKB condition is exact.

1. Class IIIA: λ = 0

For this subclass W = af1 + f2 and λ = 0. Therefore f ′1 = f 2
1 , and f1 must be nonzero

everywhere. The function f2 satisfies

f ′2 = f1 f2 − ε . (19)

The homogeneous equation of (19) is solved by f2 = γf1, which can be absorbed into the

first term of W with a redefinition of a. A particular solution of (19) is f2 = 1
2
ε/f1, so the

superpotential reduces to W = af1 + 1
2
ε/f1. Since the BSWKB integral (17) is invariant

under W → −W , we can choose the sign of ε without loss of generality. Substituting

W = af1 + 1
2
ε/f1 into Eq. (13), we get dg/da = −2ε which should be positive to avoid level

crossing. Therefore we choose ε < 0.

If a < 0, W will never cross zero, so we must have broken SUSY. However, if a > 0, W

will have opposite signs as f1 → 0 and |f1| → ∞, so this corresponds to unbroken SUSY.

Therefore, the potential in its broken phase corresponds to its counterpart in the unbroken

9



phase through the discrete shape invariance transformation a to −a, which we can use to

find the energy spectrum in the broken phase.

The partner potentials are given by

V±(x, a) = a2f 2
1 +

1

4
ε2/f 2

1 + aε ± ~
(
af 2

1 −
1

2
ε

)
= a(a± ~)f 2

1 +
1

4
ε2/f 2

1 + aε ∓ 1

2
~ε . (20)

They are shape invariant under two distinct parameter changes

• Additive Shape Invariance: V+(x, a)− V−(x, a+ ~) = −2~ε ,

• Discrete Shape Invariance: V+(x, a)− V−(x,−a) = (2a− ~)ε .

Since the discrete shape invariance transforms the broken into the unbroken phase and the

energy for the unbroken phase is g(a+ n~)− g(a) = −2~nε, the energy in the broken phase

is given by EB
n = (2a− ~)ε− 2~nε = (2a− ~(1 + 2n)) ε.

We will now compute

I(a, n, ~) ≡
∫ x2

x1

√
EB
n −W 2 dx =

∫ x2

x1

√
EB
n −

(
af1 +

1

2
ε/f1

)2

dx. (21)

To calculate the integral, we move to the complex x-plane, as illustrated in Fig. 4.

C

x1 x2

FIG. 4. Complex integration. Since the integration contour C travels across x1 and x2 twice,

I(a, n, ~) ≡
∫ x2
x1

√
EBn −W 2 dx = 1

2

∮ √
EBn −W 2 dx.

We obtain

I(a, n, ~) =
1

2

∮ √
4EB

n f
2
1 − (2af 2

1 + ε)
2
dx

2f1
=

1

4

∮ √
4EB

n f
2
1 − (2af 2

1 + ε)
2
df1

f1f ′1

=
1

8

∮ √
4EB

n f
2
1 − (2af 2

1 + ε)
2

(2f1df1)

f 4
1

. (22)

10



Setting f 2
1 = z, we get

I(a, n, ~) =
1

8

∮ √
4EB

n z − (2az + ε)2 dz

z2
. (23)

In addition to having a second order pole at z = 0, the expression inside the integral sign

approaches |z dz/z2| = dθ for large values of |z|. Hence, the contribution from the outer

circle I∞, generated by a singularity at infinity, is nonzero. The integral gives

I(a, n, ~) =
2πi

8

(
∂

∂z

√
4EB

n z − (2az + ε)2
)∣∣∣∣

z→0

+ I∞

= −1

2
π(a− h(2n+ 1)) + I∞

=

(
n+

1

2

)
π~− 1

2
πa+ I∞. (24)

To determine I∞, we set t = 1/z in Eq. 23. This gives

I∞ =
1

8

∮ √
−4a2 + 4a t ε− 4EB

n t+ t2ε2

t
dt

=
2πi

8

√
−4a2 + 4a t ε− 4EB

n t+ t2ε2
∣∣∣
t→0

=
1

2
πa, (25)

where we have used a < 0 for the broken phase. Combining results of Eqs. (24) and (25),

we get

I(a, n, ~) =

(
n+

1

2

)
π~− 1

2
πa+

1

2
πa =

(
n+

1

2

)
π~ .

2. Class IIIB: λ 6= 0

In this case we have W (x, a) = af1(x) + f2(x), where f ′1 = f 2
1 − λ and f ′2 = f1f2 − ε,

where λ and ε are constants. Without loss of generality (WLOG), we introduce a parameter

B which is independent of a, so that f2 → Bf2. Thus, the partner potentials are given by

V±(a,B, r) =
(
a2 ± a~ +B2

)
f1

2 +B(2a± ~)f1(x)f2(x) + λ
(
∓ a~−B2

)
=
[
a(a± ~) +B2

]
f1

2 + 2B (a± ~/2) f1(x)f2(x) + λ
(
∓ a~−B2

)
. (26)

In addition to additive shape invariance generated by a → a + ~, these two potentials also

satisfy a phase changing discrete shape invariance via a→ B + ~/2, B → a+ ~/2 as shown

in the Appendix. [51] That is,

11



• Additive Shape Invariance: V+(a,B, r)− V−(a+ ~, B, r) = λ [a2 − (a+ ~)2] ,

• Discrete Shape Invariance: V+(a,B, r)− V−(B + ~
2
, a+ ~

2
, r) = λ

(
a2 − (B + ~

2
)2
)

.

We now use the corresponding unbroken phase to find the spectrum in the broken phase.

From additive shape invariance for the potential V−(a,B, r) with unbroken SUSY, the energy

eigenvalues are given by En = λ [a2 − (a+ n~)2]. The proper hierarchy of eigenvalues:

En+1 > En > En−1 requires

λ(a+ n~) < 0 . (27)

Let EB
n be the energy for the system with potential V+(a,B, r) with broken SUSY, and En

be the energy for V−(B+~/2, a+~/2, r) with unbroken SUSY. Then from the discrete shape

invariance condition we have

EB
n = En + λ

[
a2 −

(
B +

~
2

)2
]

= λ

[
(B +

~
2

)2 − (B +
~
2

+ n~)2
]

+ λ

[
a2 − (B +

~
2

)2
]

= λ

[
a2 − (B + n ~ +

~
2

)2
]
. (28)

The next step in computing the BSWKB integral is to note that the homogeneous and

particular solutions of f ′2 = f1f2 − ε are
√
|f 2

1 − λ| and ε
λ
f1, respectively [52]. Thus, a

redefinition of the parameter a yields W = af1 +B
√
|f 2

1 − λ|.

Since[53] f 2
1 6= λ, we follow a similar procedure as [9] and introduce a function y(x) ≡

√
λ−f1√
λ+f1

. Thus, y′ = 2y
√
λ and f1 =

√
λ
(
y−1
y+1

)
. Then the functions S(x) ≡ y1/2−y−1/2

2
√
λ

, and

C(x) ≡ y1/2+y−1/2

2
satisfy the identities:

dC/dx = λS , dS/dx = C , C2(y)− λS2(y) = 1 ,

2 C(y)S(y) = S(y2) , C2(y) + λS2(y) = C(y2) .

Writing f1 and f2 in terms of S and C yields f1 = −λSC and f2 = B
√
f 2
1 − λ = B

C . Thus,

the superpotential becomes

W (x, a) = −a λS
C

+
B

C
.

We now compute the BSWKB integral

I(a, n, ~) =

∫ x2

x1

√
EB
n −

(
−λSa
C

+
B

C

)2

dx =
1

2

∮ √
EB
n −

(
−λSa
C

+
B

C

)2

dx .
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After some algebra, we get

I(a, n, ~) =
1

2

∮ √
EB
n (1 + λS2)− λ2a2S2 + 2λSBa−B2

(1 + λS2)
dS , (29)

where we used dx
C = dS

C2 = dS
(1+λS2) . The integrand in Eq. (29) has poles at S = ± i√

λ
and has

a singularity at infinity as shown in Fig 5. Hence, the integral is given by

C

S1 S2

i
λ

i
λ

FIG. 5. BSWKB complex integration. S1 and S2 are the zeroes of the numerator of Eq. (29).

I(a, n, ~) =
(2πi)

2

√
EB
n (1 + λS2)− λ2a2S2 + 2λSBa−B2(

1 + i
√
λS
)

∣∣∣∣∣∣
S→ −i√

λ

+
(2πi)

2

√
EB
n (1 + λS2)− λ2a2S2 + 2λSBa−B2(

1− i
√
λS
)

∣∣∣∣∣∣
S→ i√

λ

+ I∞

= −1

2
π
(
B + ia

√
λ
)
− 1

2
π
(
B − ia

√
λ
)

+ I∞ (30)

To determine I∞, we set t = 1/S and dS = −dt/t2 in Eq. (29).

I∞ = − 1

2

∮ √
EB
n (λ+ t2)− (Bt− aλ)2

t (λ+ t2)
dt

= −(−2πi)

2

√
EB
n (λ+ t2)− (Bt− aλ)2

(λ+ t2)

∣∣∣∣∣
t→0

=
πi

λ

√
EB
n λ− (aλ)2

∣∣∣
t→0

= π (B + n~ + ~/2) , (31)

13



where [54] we have used λ (B + n~ + ~/2) < 0. The negative sign of the second equality

comes from the clockwise contour. Collecting contributions from Eqs. (30) and (31), we

find

I(a, n, ~) = −1

2
π
(
B + ia

√
λ
)
− 1

2
π
(
B − ia

√
λ
)

+ π (B + n~ + ~/2) =

(
n+

1

2

)
π~ .

IV. CONCLUSION

In conclusion, we proved that the BSWKB semiclassical quantization condition is exact,

and that this exactness follows from the underlying additive shape invariance of the systems.

Our work differs from previous results because we did not tie our calculations to any

particular case. Instead, we used the general form of the superpotential W arising from

the additive shape invariance condition for conventional potentials to arrive at our result.

Fundamental to our approach was the connection between the unbroken and broken phases

of SUSY which allowed us to find the energy spectrum and to compute the BSWKB integral

for the broken phase.

In Ref. [9], the authors demonstrated that the exactness of SWKB results from the

additive shape invariance condition for conventional potentials in the unbroken phase. In

this paper we prove that BSWKB exactness is a consequence of the same condition for the

broken phase. Together, these papers highlight the essential role played by the additive

shape invariance and related algebraic symmetries in both phases. These symmetries are

relevant not only to the exactness of these semiclassical methods, but also to the exact

solvability of quantum mechanical systems [27–32].

Appendix: Changes of parameters and corresponding phase transformations for

Class IIIB (λ 6= 0)

In this case, we have W (x, a) = af1(x) + f2(x), where f ′1 = f 2
1 − λ and f ′2 = f1f2 [55]

This yields f2 = B
√
f 2
1 − λ and W = af1 +B

√
f 2
1 − λ. Note that f 2

1 cannot equal λ at any

point in the domain, or all derivatives of f1 would be zero and W would be a constant. This

case breaks up in three sub-cases:

1. λ < 0.

14



In this case f ′1 = f 2
1 + |λ| ≥ |λ|. Therefore, f1 is monotonic and unbounded. Let x0

be the point where f1 = 0. The derivative of f1 increases to the left and right of x0.

Furthermore, at x0, all even derivatives are zero and all odd derivatives are positive.

Thus f1 is antisymmetric about x0. Since f2 = B
√
f 2
1 + |λ| → B |f1(x)| as x →

xL or xR, broken SUSY requires a ≤ B so that W ≈ af1(x) + B |f1(x)| has the same

sign at xL and xR; unbroken SUSY requires a > B so that these signs are opposite.

Thus, when we swap the ordered set of parameters {a,B} → {B + ~/2, a+ ~/2}, the

system goes through a change of supersymmetric phase, for a 6= B. For the case a = B,

we note that neither W nor W ′ can be zero, since these would require f1 = −
√
f 2
1 − λ,

which is not possible for λ 6= 0. Therefore (W 2)′ = 2WW ′ cannot be zero, so W 2 has

no minimum and there is only one intersection point.

2. λ > 0 and f 2
1 < λ.

In this case f1 is bound between ±
√
λ. The derivative f ′1 = f 2

1 − λ < 0 approaches

zero only as f1 → ±
√
λ so f1 asymptotically approaches ±

√
λ at xL and xR which

must be ±∞, respectively [56]. Similar to the case of item (1) above, the derivative f1

is negative at point x0 where f1 = 0. All even derivatives are zero and odd derivatives

are non-zero at this point. Thus, the resulting function f1 is antisymmetric about x0.

Since f1 is an odd function and f2 vanishes at both ends of domain, the superpotential

does not go into a broken supersymmetric phase for any value of the parameter.

3. λ > 0 and f 2
1 > λ.

In this case f1 >
√
λ or f1 < −

√
λ. If f1 > 0 and aB > 0, then W 2 has no minimum

and there is only one intersection point. If f1 > 0, aB < 0, and a 6= −B, then SUSY

cannot be broken. If f1 > 0 and a = −B, then similar to the case a = B for λ < 0

above, there is only one intersection point.

If f1 < 0 and {aB < 0 or a = B} then W 2 has no minimum and the BSWKB condition

does not apply. If aB > 0, then SUSY is unbroken for a > B and broken for a < B.

Therefore the transformation a → B + ~/2, B → a + ~/2 changes from broken to

unbroken SUSY.
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