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Figure 3. Docked N-isoamyl indoline sulfonamide hit compound 4 (cyan). The majority of the active
site residues were contributed to by subunit I of the DapE dimer (green residues), but two residues
came from subunit II of the dimer (orange).
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Scheme 1. Synthesis of N-acetyl-5-bromo-6-sulfonamide indoline derivatives.
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The 5-chloro and 5-bromo N-acetyl indoline analogs 7a and 7b were then subjected to
chlorosulfonation at the 6-position by heating at 65–70 ◦C in neat chlorosulfonic acid. The reaction
mixture was quenched over ice to a� ord the corresponding sulfonyl chlorides 8a [29] and 8b, respectively,
in good purity based on nuclear magnetic resonance (NMR) spectroscopy, which were used directly in
the next step.

A variety of primary and secondary alkyl amines were reacted with the 5-halo-6-sulfonyl chloride
derivatives 8a or 8b in the presence of triethylamine base to a� ord a series of sulfonamide inhibitors
9a–n and 10a–f, respectively, according to general literature precedent [29,30]. In instances where
the reacting amine was secondary, a catalytic amount of DMAP was added to the reaction solution.
The sulfonamide products were isolated by extraction followed by passage through an activated carbon
plug and recrystallization from chloroform–ethyl acetate to a� ord the final inhibitors in high purity.
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2.4. DapE Enzyme Inhibition and Structure–Activity Relationships

The compounds synthesized along with their DapE inhibitory potencies measured using
the N-Me-SDAP substrate are summarized in Table 1. We kept the N-acetyl group as well as
the 5-halogen moiety constant in this first series while varying the sulfonamide N-substituent.
The 5-bromo-6-isoamylsulfonamide hit 4 was synthesized and tested first to confirm the activity
of the original hit, which was found to exhibit a modest but measurable 42% inhibition at 200 µM.
The corresponding isobutyl derivative 9a was less potent, with a 20% inhibition at 200 µM. Among other
secondary sulfonamides synthesized, N-cyclohexyl derivative 9b was somewhat more potent with an
IC50 of 162 µM, whereas N-benzyl and N-t-butyl derivatives 9c and 9d showed 56% and 39% inhibition
at 200 µM and 100 µM, respectively. Several derivatives had poor solubility, limiting the ability to
test inhibition at higher concentrations. The addition of more polar ester functionalities provided the
nearly inactive glycine ester 9e, while the β-alanine ester 9f was found to be moderately potent with
an IC50 of 118 µM. Valine ester 9g was more potent, with an IC50 of 82 µM, whereas the phenylalanine
ester 9h was less potent, with 61% inhibition at 200 µM.

Table 1. Inhibition of DapE enzyme by synthesized compounds 4, 9a–n, and 10a–f a.
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9d Br 

 
374.0 2.04 235.7–236.1 39% at 100 μM 

9e Br 
H
NMeO2C

 
390.0 0.79 179–182 17% at 200 μM 

9f Br 

 
404.0 1.1 190–193 118 

9g Br 

 
432.0 2.0 190.9–191.7 82 

9h Br 

 

480.0 2.5 184.0–184.8 61% at 200 μM 

9i Br 

 
386.0 2.1 212–214 133 

9j Br 
 

372.0 1.6 238–240 97 

9k Br 

 
420.0 2.6 215–218 86 

9l Br 

 
402.1 3.0 118–120 

5% at 20 μM, 
insol. at 200 μM 

9m Br 

 
434.1 1.5 110–111 26% at 100 μM 

9n Br 

 
374.0 2.0 195–196 99 

10a Cl 

 
344.1 2.8 179.1–180.4 54 

10b Cl 
 

356.1 2.9 230.0–230.5 58% at 200 μM 

10c Cl 

 
342.1 2.2 199.7–201.4 44 

374.0 2.04 235.7–236.1 39% at 100 µM

9e Br

Antibiotics 2020, 9, x FOR PEER REVIEW 6 of 15 

9d Br 

 
374.0 2.04 235.7–236.1 39% at 100 μM 

9e Br 
H
NMeO2C

 
390.0 0.79 179–182 17% at 200 μM 

9f Br 

 
404.0 1.1 190–193 118 

9g Br 

 
432.0 2.0 190.9–191.7 82 

9h Br 

 

480.0 2.5 184.0–184.8 61% at 200 μM 

9i Br 

 
386.0 2.1 212–214 133 

9j Br 
 

372.0 1.6 238–240 97 

9k Br 

 
420.0 2.6 215–218 86 

9l Br 

 
402.1 3.0 118–120 

5% at 20 μM, 
insol. at 200 μM 

9m Br 

 
434.1 1.5 110–111 26% at 100 μM 

9n Br 

 
374.0 2.0 195–196 99 

10a Cl 

 
344.1 2.8 179.1–180.4 54 

10b Cl 
 

356.1 2.9 230.0–230.5 58% at 200 μM 

10c Cl 

 
342.1 2.2 199.7–201.4 44 

390.0 0.79 179–182 17% at 200 µM

9f Br

Antibiotics 2020, 9, x FOR PEER REVIEW 6 of 15 

9d Br 

 
374.0 2.04 235.7–236.1 39% at 100 μM 

9e Br 
H
NMeO2C

 
390.0 0.79 179–182 17% at 200 μM 

9f Br 

 
404.0 1.1 190–193 118 

9g Br 

 
432.0 2.0 190.9–191.7 82 

9h Br 

 

480.0 2.5 184.0–184.8 61% at 200 μM 

9i Br 

 
386.0 2.1 212–214 133 

9j Br 
 

372.0 1.6 238–240 97 

9k Br 

 
420.0 2.6 215–218 86 

9l Br 

 
402.1 3.0 118–120 

5% at 20 μM, 
insol. at 200 μM 

9m Br 

 
434.1 1.5 110–111 26% at 100 μM 

9n Br 

 
374.0 2.0 195–196 99 

10a Cl 

 
344.1 2.8 179.1–180.4 54 

10b Cl 
 

356.1 2.9 230.0–230.5 58% at 200 μM 

10c Cl 

 
342.1 2.2 199.7–201.4 44 

404.0 1.1 190–193 118

9g Br

Antibiotics 2020, 9, x FOR PEER REVIEW 6 of 15 

9d Br 

 
374.0 2.04 235.7–236.1 39% at 100 μM 

9e Br 
H
NMeO2C

 
390.0 0.79 179–182 17% at 200 μM 

9f Br 

 
404.0 1.1 190–193 118 

9g Br 

 
432.0 2.0 190.9–191.7 82 

9h Br 

 

480.0 2.5 184.0–184.8 61% at 200 μM 

9i Br 

 
386.0 2.1 212–214 133 

9j Br 
 

372.0 1.6 238–240 97 

9k Br 

 
420.0 2.6 215–218 86 

9l Br 

 
402.1 3.0 118–120 

5% at 20 μM, 
insol. at 200 μM 

9m Br 

 
434.1 1.5 110–111 26% at 100 μM 

9n Br 

 
374.0 2.0 195–196 99 

10a Cl 

 
344.1 2.8 179.1–180.4 54 

10b Cl 
 

356.1 2.9 230.0–230.5 58% at 200 μM 

10c Cl 

 
342.1 2.2 199.7–201.4 44 

432.0 2.0 190.9–191.7 82


