nnnnnnnnnnnnnnnnn

Loyola University Chicago

gt Loyola eCommons
Computer Science: Faculty Publications and Faculty Publications and Other Works by
Other Works Department
5-19-2017

A Distributed Graph Approach for Pre-processing Linked RDF Data
Using Supercomputers

Michael J. Lewis
The University of lllinois at Chicago, mlewis3@uic.edu

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Venkatram Vishwanath
Argonne National Laboratory

Michael J. Papka
Argonne National Laboratory and Northern lllinois University

Andrew Johnson
The University of lllinois at Chicago

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

0 Part of the Computer Sciences Commons

Author Manuscript
This is a pre-publication author manuscript of the final, published article.

Recommended Citation

Michael J. Lewis, George K. Thiruvathukal, Venkatram Vishwanath, Michael E. Papka, and Andrew
Johnson, A Distributed Graph Approach for Pre-Processing Linked Data Using Supercomputers, In
Proceedings of International Workshop on Semantic Big Data 2017 (SBD 2017) at ACM SIGMOD 2017.

This Conference Proceeding is brought to you for free and open access by the Faculty Publications and Other
Works by Department at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty
Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please
contact ecommons@luc.edu.

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu

A Distributed Graph Approach for Pre-processing Linked RDF
Data Using Supercomputers’

Michael J. Lewis
University of Illinois at Chicago
Chicago, IL 60607
mlewis3@uic.edu

George K. Thiruvathukal
Loyola University Chicago
Chicago, IL 60660
gkt@cs.luc.edu

Venkatram Vishwanath
Argonne National Laboratory
Argonne, IL 60439
venkat@anl.gov

Argonne National Laboratory
Argonne, IL 60439
gkt@anl.gov

Michael E. Papka
Argonne National Laboratory
Argonne, IL 60439
papka@anl.gov
Northern Illinois University
Dekalb, IL 60115
papka@niu.edu

ABSTRACT

Efficient RDF, graph based queries are becoming more pertinent
based on the increased interest in data analytics and its intersection
with large, unstructured but connected data. Many commercial
systems have adopted distributed RDF graph systems in order to
handle increasing dataset sizes and complex queries. This paper
introduces a distribute graph approach to pre-processing linked
data. Instead of traversing the memory graph, our system indexes
pre-processed join elements that are organized in a graph structure.
We analyze the Dbpedia data-set (derived from the Wikipedia cor-
pus) and compare our access method to the graph traversal access
approach which we also devise. Results show from our experiments
that the distributed, pre-processed graph approach to accessing
linked data is faster than the traversal approach over a specific
range of linked queries.

CCS CONCEPTS

« Computing methodologies — Distributed algorithms;

KEYWORDS
RDF; High Performance Computing; Distributed Algorithms

ACM Reference format:

Michael J. Lewis, George K. Thiruvathukal, Venkatram Vishwanath, Michael
E. Papka, and Andrew Johnson. 2017. A Distributed Graph Approach for
Pre-processing Linked RDF Data Using Supercomputers. In Proceedings of
SBD’17, Chicago, IL, USA, May 19-19, 2017, 6 pages.

DOI: http://dx.doi.org/10.1145/3066911.3066913

“Produces the permission block, and copyright information

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SBD’17, Chicago, IL, USA

© 2017 Copyright held by the owner/author(s). 978-1-4503-4987-1/17/05...$15.00
DOI http://dx.doi.org/10.1145/3066911.3066913

Andrew Johnson
University of Illinois at Chicago
Chicago, IL 60607
ajohnson@uic.edu

1 INTRODUCTION

RDF query retrieval systems have been used to extract informa-
tion from data ontologies over areas covering pharmaceutical, bio-
medicine, social media, and network security just to name a few.
With larger datasets and the range of query complexities, it is im-
portant for query systems to keep up with the demanding workload,
not only in system architecture but improvements in query retriev-
ing algorithms.

Much of the evolution of RDF systems have focused on the
improvement of fast data access over increasingly large datasets,
and complex queries. Vertical partitioning applied in [11], [25], [19],
[2] to access groups of stored triple data. Compression techniques
have been used in systems RDF-3X [19], [2]. RDF store systems [12]
[1] [21] allow fast access to triple stores by outsourcing to large scale
key-value based database systems. Data scalable systems [9] [28]
use the map-reduce algorithm to query to scale large RDF datasets.
Graph partitioning RDF systems [5] [8] utilize graph partitioning
algorithms in order to create highly coupled subgraphs for the
purpose of reducing node to node communication type. RDF graph
retrieval systems [16] [17] [23] utilize a distributed memory graph
and traverse through connected nodes in order to retrieve query
results. Path representation models [6] [14] provide techniques to
represent and access paths of linked data within an index form.

1.1 Resource Descriptive Framework

RDF [13] is a language/data model used in the Semantic Web com-
munity to extract contextual relational and hierarchical data. The
core data unit is composed of a three term (subject,predicate,object-
value). Each term is a resource and can represent a URL. A literal
can only be used within the the object term. Statements, also re-
ferred to as triples, are able to link to each other like Lego blocks
over matching terms: subject-subject (s-s), predicate-predicate (p-p),
(object-object) (0-0), subject-object (s-0), and object-subject (o-s).
From these connections a dataset of triples can be transformed into
an RDF-graph as shown in Figure 1.

SBD’17, May 19-19, 2017, Chicago, IL, USA

can speak can speak

:University
1 _e Triple Ids
- typ-e 0 .Illinois 0 :UIC in State :Illinois
: In state —e 1 :UIC type :University
2 works at 2 :John works At :UIC
3 :English R
:John teaches —e@ 3 :John teaches :English
5 4 4 :John can speak :German
5

:John can speak :Spanish
:Spanish :German

Figure 1: An RDF graph and its join connections.

1.2 Queries

A typical RDF query is a collection of query statements. A query
statement can represent a URL, value, variable ?var or blank term
?. URL is a unique resource name that represents a query term. A
blank term: ? can represent any value as long as there is a exist a
triple for it. A query statement that has least one variable or blank
term is referred to as a pattern, to signify that multiple triples can
belong to it. For example in Figure 1, a query pattern :John can-
speak ? (sp?) would include the triples: :John can-speak :Spanish and
:John can-speak :German. Queries containing blank terms are more
complex in terms of its low selectivity. The extraction net is bigger
meaning that query results sizes are larger, however it does not
necessarily mean the query extractions came from a broad range
of locations within the dataset. Longer queries with low selectivity
have another type of complexity where large groups of intermediate
data have to be joined. Our query generation is focused on these
two aspects of complexity where other query generation systems
such as LUBM [7] also take in account the quality and completeness
of knowledge base extractions, which is not the focus of this paper.

1.3 SPARQL

SPARQL [20], an RDF compliant query language offers expressions
to satisfy graphical based extractions from linked triples.SPARQL
allows the user to use variables to represent unknown triple com-
ponents, as a way to provide an intersecting point on overlap-
ping triple patterns. A SPARQL compliant query system should
handle graph extractions from like terms (subject-subject, predict-
predicate, object-object) links as well from linked terms, subject-
object (s-0) and object-subject (0-s) connections. The script below
shows an example query s-s linked query using the rdf-graph from
Figure 1.

Select ?workers

Where {
(?workers work at :UIC).
(?workers teach :English).

}

Results: :John

1.4 Our Contribution

This paper introduces Mantona, an RDF query processing system,
written in C++ using the Message Passing Interface (MPI). Mantona
is able to pre-processes conjunctive triple-triple connections, and
utilize these store joins to expedite query retrievals. Our contribu-
tion is the following.

M. Lewis et al.

predicate-index

k

can-sp

subject-index

:John :John

:John can-speak :Spanish

:John teaches :English
:John can-speak :German

Pattern: ps?

Spanish German

L
:John can-speak :Spanish :John can-speak :German
Figure 2: PS? patterns stored within a PSO hierarchy.

(1) Our unique graph-generation algorithm, designed to pre-
processes conjunctive s-s, o-s, and s-o joins into a graph
structure.

(2) A graph-retrieval algorithm, designed to retrieve conjunc-
tive pattern based queries by indexing the join data from
the graph structure that match the query patterns.

(3) A graph traversal query matching algorithm to mimic the
query retrieval methods on RDF graph traversal access
based systems.

(4) Arandom query generator. This is used to generate random
pattern based queries of different complexity (based on the
number of blank nodes).

We compare query retrieval performances with different query
types using the Mantona graph-retrieval algorithm and the graph-
traversal algorithm. Results show faster retrieval times using the
Mantona graph-retrieval algorithm. We also compare build times
for graph construction and neighbor construction.

2 RELATED SYSTEMS

2.1 Vertical Partitioning

Vertical partitioning is used as a technique to facilitate data access
to a minimum of tables; grouping triple data from a common keyf(s).
If the key is based on a subject term for example, then all the triple
data from that index will be stored and sorted based on the subject
terms. RDF-3X [19], HexaStore [25], BitMat [2] and the key-store
DBMS based system [12] provide vertical access to triple stores
based on set of key(s) combinations over a query term(s). RDF-3X
and Hexastore use a B-tree index to access pattern data over 6 types
of hierarchies (SPO,SOP,0SP, OPS,PSO,POS).

2.2 Data Communication Tools

Hadoop [3] provides a communication efficient, scalable environ-
ment where a user can develop their own RDF query system. Hadoop
allows users to tap into the map-reduce [4] algorithm in order to
create data-scalable jobs. Shard [22] and Scalable Sparql [9] incor-
porates the Hadoop map-reduce as the data-flow framework in
order to process queries to scale big data. Spark [15], allows users
to transparently utilize memory components across processors, and
provides a graph engine and API: GraphX [26] that provide users
the capability to create their own data-graph. Mantona uses the
Message Passage Interface (MPI) for data communication. MPI is
a message communication systems for distributed systems, com-
monly used with supercomputers and highly coupled systems. It
provides function calls for node to node communication, 1 to many

communication, many to many communication where each proces-
sor can receive data information from every other processor , and a
many (all) to many (all) communication where each process knows
what data every other processor has.

2.3 Graph Partitioning Systems

Cluster based RDF systems [24] [8] [5] use partitioning algorithms
to store regions of triples based on its community of neighbor
nodes. Partout [5] uses the partitioning tool METIS [10] to find
the k number of partitions that created the least amount of edges
among each other. Linked queries however can be unpredictable to
predict, unlikely triples can be found to be connected to each other
through a series of s-0,0-s connections. An overlapping strategy of
duplicating triple nodes over processors is used in [9]. These nodes
represent a shared link of connections across processors, but this
technique can only offer a short range solution for pattern linked
queries.

2.4 Graph Access Systems

Distributed parallel RDF data systems: Trinity [23], Neo4] [16],
Cray Graph Engine [17] use their own tailored highly coupled com-
munication environment and effectively utilize memory storage to
reduce the data communication cost. Trinity has shown through
large scale experimentation using LUBM and DBpedia [18] gen-
erated datasets to outperform RDF-3X and BitMat. Trinity stores
its data in a memory graph where nodes are the individual triple
terms. Each node has an adjacency list of incoming and outgoing
neighbor nodes. The collection of graph nodes residing on an in-
dividual processor are grouped together based on a SPO or OPS
index.

2.5 Path Based Indices

The connection between path indices and pre-processed joins is
in the creation of an organizational structure to index paths of
connected data. Early research initially covered by Yamamotoa et
al. [27] created structures for generating path indices from XML
documents. Matono et al. [14] proposed a technique for translat-
ing RDF path expressions into suffix arrays using Directed Acyclic
graphs extracted from an RDF dataset and/or schema. In Groppe et
al. [6] joins were indexed in a hash-map over s-s,s-p,s-o,p-p,p-o and
0-o connections for one join, two triple patterns and multiple joins
over multiple triple patterns. With Grin [24] the RDF-graph is par-
titioned over center nodes, that adhere to a particular index. Using
a center indexing formula queries can be determined if component
lies within the radius of any center node.

3 MANTONA SYSTEM

Mantona name comes from the Sotho word meaning chiefs, where
a chief can be viewed as the implemented code within a processor.
Each chief governs their realm (graph) of linked RDF data. Mantona
pre-processes RDF data in the form of paths within the RDF-graph.
Mantona first processes an RDF-graph based on s-s,0-s,and s-o links
and partitions node assignments to each processor. Each of these
triples are referred to as a root-id. Each processor generates its own
set of sub-graphs we term root-graphs for each of its assigned root-
ids. A root-graph is composed of nodes termed path-nodes. Each

tree level

triple Id path-node 1-2
Triple Ids :John teaches :English
0 :UIC in-State :Illinois :John works-at :UIC

path-node 2-1 :UIC sype :University
-John reaches :l:'nglish/ signature: 3202 1 1

:John works-at :UIC

signature: 32 0 \

—_—

1 :UIC npe :University

4:John can-speak :German
5 :John can-speak :Spanish path-node 5-2
path-node 4-1
__——» :John teaches :English
3 :John can-speak :German
signature: 3 4 0

:John teaches :English
:John works-at :UIC
:John can-speak :Spanish
signature: 3202 5 0

root node
:John teaches :English

Parent-Child
Connection-Types
0 Subject - Subject
1 Object - Subject
2 Subject - Object

:John teaches :English
:John can-speak :German
:John can-speak :Spanish

signature: 3404 50

path-node 5-1
:John teaches :English
:John can-speak :Spanish
signature: 3 50

AN

connection
parent Id child Id type

Figure 3: Root-graph from root-id 3, from Figure 1.

path-node contains a list of connected triples : triple-product that are
generated from the resulting join operations stemming from from
the path of intermediate path nodes up to the ending path-node
starting from the root node. Figure 3 shows a root-graph from root
pattern id :john teaches :English.

3.1 Path-signature

Each list of triple-products coming from a path node is labeled based
on its connection signature. A connection signature is composed of
a series of id that specifies the triples that are being connected and
its type of link connection: <connected triple id> <in-coming triple
id> <connectionType>. A connection type : 0 specifies a s-s con-
nection, 1, o-s connection and 2 s-o connection. The triple-product
under path-node 1-2 in Figure 3, has the connection signature 3 2 0
21 1. Root id 3 :john teaches :English connects with triple id 2:john
works at :UIC based on the subject-subject type specification 0. The
next connection has id 1 UIC type University connecting with id 2
:;john works at :UIC based on a object-subject specification 1. Path
nodes are labeled by the ending connecting triple id and the graph
depth. Path-node 1-2 in Figure 3; the 2 specifies the depth and 1
is the end connecting triple id. Every triple-product within that
path-node will have the last connection to be :UIC type :University.

3.2 Graph-Cache Generation Algorithm

Here we show the root-graph generation algorithm and explain the
variables and basic functions within the algorithm. Each processor
has a set of root-graphs (rootGraphList). For each depth of the
growing root-graph the total list (tripleList) of triple ids (to be
potentially connected to the graph) are checked at the leaf nodes
fringe-nodes. The isIn function determines if there are any s-s, o-s,
s-o connections between the incoming id and the ids within each
of the triple products residing within the fringe-node. If there is
a connection, a join (applyJoin) is made at that connecting triple
within the triple-product to create the new linked triple product
and is added (insertInPathNode) to a new path-node. This path-node
will become the newest addition to the root-graph and it contains
all the the linked triple products of the common ending id. All new
path-nodes are put on a temporary fringe list addToList. When all
the fringe nodes have been visited, the new path-nodes become the
fringe nodes swapNodes and the same procedure continues at the
next depth (Algorithm 1).

procedure GRAPH-CACHE GENERATOR ;
for depth < 1 to maxDepth do
foreach rootGraph in rootGraphList do
foreach fringeNode in rootGraph do
foreach id in tripleList do
tId = IsIn(id, fringeNode) ;
if tId > 0 then
tp = applyJoin(tld, id) ;
insertInPathNode(tp);
addToGraph(pathNode);
addToList(pathNode);
end
end
end
swapNodes(pathNode, fringeNodes) ;
end
end
end procedure
Algorithm 1: Graph-Cache Generation Algorithm

Pattern 1 Pattern 2 Pattern 3

Input Query: ~ a? teaches :English a? works At ?b b? in state :Illinois
| - — —
s$ 0-§

Result :john teaches :English: - john works at :UIC - :UIC type :University

Figure 4: A sample input string to a Mantona job.

3.3 Node-Traversal Algorithm

Mantona has a node traversal algorithm that traverses through
all the paths that are represented in a linked query and returns
the results only from the matched paths. This is a recursive algo-
rithm, starting at the root-id from MatchedGraphList, in which the
root-id matches the the first pattern within the query pattern. A
tripleProduct tp at depth 0 is created from root-id, is inserted in a
list of triple products tpList and sent to traversePath(depth,tpList).
At each call, the depth is checked to see if it is at maxDepth. If so
the resultant output (triple matches) is printed out, otherwise the
traversal algorithm continues to expand the set of triple products
(like newly grown branches of a tree) newTpList that match with
the query pattern at the current depth. The list of neighbors are
retrieved from the last id of triple product which represents the
previous depth. The generatetps function generates a set of triple
products resulting from the join of the neighbor id to any of the ids
within the triple product (Algorithm 2).

3.4 Mantona Query Processing

Query processing starts with each processor taking from the Man-
tona random query generator, a linked query pattern string as
shown in Figure 4. Mantona parses this string to produce the list
of query patterns at each depth and determine the bounded and
unbounded terms in each of the patterns. Each process finds if
their root-ids match the first query pattern. MatchedRootGraphs
represents all root-graphs that have the matching root-id.

procedure NODE TRAVERSAL ALGORITHM ;
foreach root-id in matchedGraphList do
tp = generate(root — id) ;
insert(tp, tpList) ;
traversePath(1, tpList)
end
end procedure
procedure TRAVERSEPATH(depth, tpList) ;
if depth == queryDepth then
printResult(pathNodes) ;
return ;
end
instantiate(newtpList) ;
foreach tp in tpList do
foreach neighbor from tp[depth — 1] do
generatetps(neighbor, tp, newtpList) ;
end
end
deletetpList ;
traversePath(depth+1,newtpList) ;
end procedure
Algorithm 2: Mantona Node Traversal Algorithm

The getNodes function retrieves all qualifying path-nodes at the
queryDepth level. So if the the input string consists of 5 linked
patterns , Mantona will check all the path-nodes at tree level 4, and
will only accept the path-nodes where its ending connected triple
id matches the 5th pattern. Mantona iterates over all the triple-
products tp within the path-node(s) and compares each connecting
triple id and link type to the correlating pattern. If the triple product
matches all the patterns in the query in the right order, then its
results are printed out (Algorithm 3).

procedure GRAPH RETRIEVAL ;
foreach rootGraph in MatchedRootGraphs do
pathNodeList = get Nodes(queryDepth) ;
foreach pathNode in pathNodeList do
foreach tp in pathNode do
matchingTp = true;
foreach id,type,index in tp do
if id,type not in pattern[index] then
matchingTriple = false ;

end
end
if matchingTp == true then
printOutput(¢p);
end
end
end

end
end procedure
Algorithm 3: Mantona Graph-Cache Retrieval Algorithm

A Distributed Graph Approach for Pre-processing Linked RDF Data Using Supercomputers

Query Retrieval

1M Triples
4

Y B ettt
D35 tassssssssssssssssssssssssseessesssses
373
x 25
w2
B s
9 1
@ 0.5
“w o0

2048 4096 8192

Number of Processors

QO0-Graph-Cache -10 QO0-Graph-Traversal -10

Q1l-Graph-Cache - 3 Q1-Graph-Traversal -3

Q2-Graph-Cache -3~ +eeveee Q2-Graph-Traversal -3

(a) 1000000 Triples
Query Retrieval
.5M Triples
p 35 eeesssssssslsmesssssess
=)
-l
x 2.5 essne
§ 2
] 1.5
o 1
“ 0.5
2048 4096 8192

Number of Processors
= Q0-Graph-Cache - 10 QO-Graph-Traversal - 10
Q1-Graph-Cache- 3 Q1-Graph-Traversal -3

"""" Q2-Graph-Cache - 3 ++eeees Q2-Graph-Traversal - 3

(b) 500000 Triples
Figure 5: Query results a) 1M triples b) .5M triples. Index on legend
show result sizes.

4 RESULTS
4.1 Experimental Setup

We ran Mantona query jobs on the Argonne Supercomputer: Cetus
and Mira. Cetus was used as the preliminary test-bed. Cetus has
4096 nodes with 16 cores per node. Each core has a 1GB memory
capacity. Mira was used for larger scale experiments. Mira has
49,152 nodes with 16 cores per node. Each core has a 1GB memory
capacity. Both Cetus and Mira use PowerPC A2 1600 MHz processor
and are connected to the same GPFS file system that has a 24 PB
file storage capacity.

Our RDF data comes from the 2016 wiki-DBpedia datasets at
http://wiki.dbpedia.org at 5.8 GB. From this data-set we extracted 3
files that produced 500,000 and 1,000,000 triples respectively. We
used Cetus to test the 500,000 triples and Mira, the 1,000000 triple
using 2048, 4096, and 8192 processors. For each job we recorded
graph build time (for the graph-caching algorithm), neighbor build
time for the node traversing algorithm and query retrieval time for
both algorithms.

For each run we generated four types of queries based on ranges
of query selectivity. Q0: a two pattern two blank nodes query. Q1: a
two pattern, four blank nodes query. Q2: a three pattern, six blank
nodes query. Query Q3 used the Mantona graph cache algorithm

SBD’17, May 19-19, 2017, Chicago, IL, USA

Construction Time

2500

— 2000

(s

» 1500

1000

Second

500

2048 4096 8192
Number of Processors

Graph Construction Time - 1M Neighbor Construction Time -1M

Graph Construction Time - .5M Neighbor Construction Time -.5M

(a) Graph-store algorithm
Figure 6: Graph construction and neighbor times over 1M, .5M triple
dataset.

up to depth one, then used the node traversing algorithm for the
last depth.

Results show (Figure 5) from from both the 1M triple dataset
and the .5M triple dataset that the graph-cache algorithm has lower
retrieval times from every type of query. Query complexity did not
hold too much significance in retrieval timings. This mainly has
to do with the result size from the query types being small. Q0
revealed 10 results,Q1 and Q2 produced 3 results as shown on the
legend. With very fast results for both algorithms, the increase in
processor times did not affect the query times in comparison to the
extra time generated from processor synchronization.

Neighbor construction times (Figure 6) were significantly lower
than graph construction times. However graph construction times
scaled in direct proportion processor times.

5 CONCLUSIONS

The Mantona’s graph-cache retrieval achieves better query times
as compared to retrieving queries through path traversals within a
cached memory RDF-graph. There are limitations based on memory
size and triple count to how much depth of the graph can be pre-
processed, but the Q2 results show that there can be mix of the two
algorithms and still achieve better query times than the traversal
algorithm.

More experiments need to be done on a large scale triple level,
with varying processor sizes and query complexities to further
understand what types of query patterns give better retrieval results
for either algorithm. Even though the cache algorithm shows better
results from all the queries, the queries did not cover the breadth
and depth of the dataset. Queries that have OR cases and not just
the conjunctive AND should be considered in order to increase the
complexity level.

Further consideration of this work is to expand Mantona to
include query planning algorithms, based on dynamic programming
of triple binding sizes or frequency of terms, to determine what
query ordering produces a smaller amount of joins and thus reduce
query retrieval timings.

SBD’17, May 19-19, 2017, Chicago, IL, USA

6

ACKNOWLEDGMENTS

This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357. The author Lewis would like
to give acknowledgements to Dr. Vishwanath, Dr. Thiruvathukal,
and Dr. Papka for their mentor-ship and support.

REFERENCES

(1]

[10]
[11]
[12]

[13

[14]

[15]

[18]

[19]

[20

[21]

[22

[23]

Andrés Aranda-Andujar, Francesca Bugiotti, Jesus Camacho-Rodriguez, Dario
Colazzo, Frangois Goasdoué, Zoi Kaoudi, and Ioana Manolescu. 2012. AMADA:
web data repositories in the amazon cloud. In Proceedings of the 21st ACM interna-
tional conference on Information and knowledge management. ACM, 2749-2751.
Medha Atre, Vineet Chaoji, Mohammed] Zaki, and James A Hendler. 2010.
Matrix Bit loaded: a scalable lightweight join query processor for RDF data. In
Proceedings of the 19th international conference on World wide web. ACM, 41-50.
Milind Bhandarkar. 2010. MapReduce programming with apache Hadoop. In
Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on.
IEEE, 1-1.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107-113.

Luis Galarraga, Katja Hose, and Ralf Schenkel. 2014. Partout: a distributed engine
for efficient RDF processing. In Proceedings of the 23rd International Conference
on World Wide Web. ACM, 267-268.

Sven Groppe, Jinghua Groppe, and Volker Linnemann. 2007. Using an index of
precomputed joins in order to speed up SPARQL processing.. In ICEIS (1). 13-20.
Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark for
OWL knowledge base systems. Web Semantics: Science, Services and Agents on
the World Wide Web 3, 2 (2005), 158-182.

Katja Hose and Ralf Schenkel. 2013. WARP: Workload-aware replication and
partitioning for RDF. In Data Engineering Workshops (ICDEW), 2013 IEEE 29th
International Conference on. IEEE, 1-6.

Jiewen Huang, Daniel J Abadi, and Kun Ren. 2011. Scalable SPARQL querying of
large RDF graphs. Proceedings of the VLDB Endowment 4, 11 (2011), 1123-1134.
George Karypis and Vipin Kumar. 1995. METIS-unstructured graph partitioning
and sparse matrix ordering system, version 2.0. (1995).

Dave Kolas, Jan Emmons, and Mike Dean. 2009. Efficient linked-list rdf indexing
in parliament. SSWS 9 (2009), 17-32.

Giinter Ladwig and Andreas Harth. 2011. CumulusRDF: linked data management
on nested key-value stores. In The 7th International Workshop on Scalable Semantic
Web Knowledge Base Systems (SSWS 2011). 30.

Frank Manola, Eric Miller, and B McBride. 2004. Rdf primer w3c recommendation
10 february 2004. (2004).

Akiyoshi Matono, Toshiyuki Amagasa, Masatoshi Yoshikawa, and Shunsuke
Uemura. 2003. An indexing scheme for RDF and RDF schema based on suffix
arrays. In Proceedings of the First International Conference on Semantic Web and
Databases. CEUR-WS. org, 140-157.

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris
Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet
Talwalkar. 2016. MLIib: Machine Learning in Apache Spark. Journal of Machine
Learning Research 17, 34 (2016), 1-7. http://jmlr.org/papers/v17/15-237.html
Justin J Miller. 2013. Graph database applications and concepts with Neo4j.
In Proceedings of the Southern Association for Information Systems Conference,
Atlanta, GA, USA, Vol. 2324. 36.

David Mizell. 2016. How the Cray Graph Engine Man-
ages Graph Databases. (2016). http://www.cray.com/blog/
how-cray-graph-engine-manages- graph-databases/

Mohamed Morsey, Jens Lehmann, Séren Auer, and Axel-Cyrille Ngonga Ngomo.
2011. DBpedia SPARQL benchmark-performance assessment with real queries
on real data. In International Semantic Web Conference. Springer, 454-469.
Thomas Neumann and Gerhard Weikum. 2010. The RDF-3X engine for scalable
management of RDF data. The VLDB JournalaAT The International Journal on
Very Large Data Bases 19, 1 (2010), 91-113.

Eric Prud, Andy Seaborne, and others. 2006. SPARQL query language for RDF.
(2006).

Roshan Punnoose, Adina Crainiceanu, and David Rapp. 2012. Rya: a scalable
RDF triple store for the clouds. In Proceedings of the 1st International Workshop
on Cloud Intelligence. ACM, 4.

Kurt Rohloff and Richard E Schantz. 2010. High-performance, massively scalable
distributed systems using the MapReduce software framework: the SHARD triple-
store. In Programming Support Innovations for Emerging Distributed Applications.
ACM, 4.

Bin Shao, Haixun Wang, and Yatao Li. 2012. The trinity graph engine. Microsoft
Research (2012), 54.

[24]

[25]

[26]

[27]

M. Lewis et al.

Octavian Udrea, Andrea Pugliese, and VS Subrahmanian. 2007. GRIN: A graph
based RDF index. In AAAI Vol. 1. 1465-1470.

Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. 2008. Hexastore:
sextuple indexing for semantic web data management. Proceedings of the VLDB
Endowment 1, 1 (2008), 1008—1019.

Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013.
Graphx: A resilient distributed graph system on spark. In First International
Workshop on Graph Data Management Experiences and Systems. ACM, 2.

Yohei Yamamoto, Masatoshi Yoshikawa, and Shunsuke Umeura. 1999. On in-
dices for xml documents with namespaces. In Conference Proceedings of Markup
Technologies, Vol. 99. 127-135.

Xiaofei Zhang, Lei Chen, Yongxin Tong, and Min Wang. 2013. EAGRE: Towards
scalable I/O efficient SPARQL query evaluation on the cloud. In Data engineering
(ICDE), 2013 ieee 29th international conference on. IEEE, 565-576.

http://jmlr.org/papers/v17/15-237.html
http://www.cray.com/blog/how-cray-graph-engine-manages-graph-databases/
http://www.cray.com/blog/how-cray-graph-engine-manages-graph-databases/

	A Distributed Graph Approach for Pre-processing Linked RDF Data Using Supercomputers
	Author Manuscript
	Recommended Citation

	Abstract
	1 Introduction
	1.1 Resource Descriptive Framework
	1.2 Queries
	1.3 SPARQL
	1.4 Our Contribution

	2 Related systems
	2.1 Vertical Partitioning
	2.2 Data Communication Tools
	2.3 Graph Partitioning Systems
	2.4 Graph Access Systems
	2.5 Path Based Indices

	3 Mantona system
	3.1 Path-signature
	3.2 Graph-Cache Generation Algorithm
	3.3 Node-Traversal Algorithm
	3.4 Mantona Query Processing

	4 Results
	4.1 Experimental Setup

	5 Conclusions
	6 Acknowledgments
	References

