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REVIEW Open Access

Inhibitory or excitatory? Optogenetic
interrogation of the functional roles of
GABAergic interneurons in epileptogenesis
Hui Ye* and Stephanie Kaszuba

Abstract

Alteration in the excitatory/inhibitory neuronal balance is believed to be the underlying mechanism of epileptogenesis.
Based on this theory, GABAergic interneurons are regarded as the primary inhibitory neurons, whose failure of action
permits hyperactivity in the epileptic circuitry. As a consequence, optogenetic excitation of GABAergic interneurons is
widely used for seizure suppression. However, recent evidence argues for the context-dependent, possibly “excitatory”
roles that GABAergic cells play in epileptic circuitry. We reviewed current optogenetic approaches that target
the “inhibitory” roles of GABAergic interneurons for seizure control. We also reviewed interesting evidence that supports
the “excitatory” roles of GABAergic interneurons in epileptogenesis. GABAergic interneurons can provide excitatory effects
to the epileptic circuits via several distinct neurological mechanisms. (1) GABAergic interneurons can excite postsynaptic
neurons, due to the raised reversal potential of GABA receptors in the postsynaptic cells. (2) Continuous activity in GABAergic
interneurons could lead to transient GABA depletion, which prevents their inhibitory effect on pyramidal cells. (3) GABAergic
interneurons can synchronize network activity during seizure. (4) Some GABAergic interneurons inhibit other interneurons,
causing disinhibition of pyramidal neurons and network hyperexcitability. The dynamic, context-dependent role that
GABAergic interneurons play in seizure requires further investigation of their functions at single cell and circuitry level.
New optogenetic protocols that target GABAergic inhibition should be explored for seizure suppression.

Keywords: Epilepsy, GABAergic interneurons, Optogenetics

Background
One out of every 26 people is diagnosed with epilepsy
during their lifetime, making it one of the most preva-
lent neurological disorders. 30% of these patients con-
tinue to have seizures despite the exhaustion of current
pharmacological methods. Despite significant advances
made in new pharmacological treatments, traditional
anti-epileptic drugs show insufficient specificity in
targeting particular cell types in the epileptic neural
circuitry. The hyper-excitability of many neurons during
a seizure is dynamic, demanding acute, precise temporal
control of neuronal activities for effective treatment.
Optogenetic techniques are particularly suited to

explore mechanisms of epileptogenesis, and could be

used for future clinical treatment of seizures. The intro-
duction of light-activated opsins can be made cell type
specific, and their optical activation can be restrained
precisely within a neural circuit. Optical excitation in
cells can be achieved on a timescale of milliseconds,
similar to that of seizure-like events. Recent studies have
implemented this tool to reveal the neuronal mecha-
nisms underlying seizures. It is possible to completely
suppress seizure by optogenetic control of certain popu-
lations of neurons [1–3]. However, due to the largely
unsolved complexity of seizure mechanisms, many issues
still need to be addressed, including the selection of
targeted cell types, its temporal precision, and optimized
light stimulation parameters.
This review will focus on the functional implication of

GABAergic interneurons in epileptogenesis, and current
optogenetic approaches in seizure suppression with
these types of neurons as the primary targets.
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Excitatory/inhibitory balance in epileptogenesis
Interactions between inhibitory and excitatory elements
in a neural network shape its activity [4]. The unpredict-
able, synchronized firing of large populations of neurons
is regarded as a consequence of an alteration in the exci-
tatory/inhibitory balance within the neural circuitry. In
support of this notion, mutations in at least 25 different
human epilepsy-associated genes have been described,
many of which encourage excitatory shifting [5]. Previ-
ous research indicates that hyper-excitability occurs dur-
ing the transition to seizure when excitatory glutamatergic
activity increases, while the inhibitory GABAergic synaptic
input is weakened [6–9]. In global ischemia, both morpho-
logical and functional reorganizations happen in the CA3
network in the hippocampus. The excitatory-inhibitory bal-
ance shifts toward excitation, which leads to post-ischemic
epileptiform activities [6]. In a low-Mg2+ model, both inter-
neurons and pyramidal neurons in the CA1 area experience
a change in intracellular signal integration during seizure
transition. This is featured by the start of dominant inhibi-
tory synaptic activity, followed by dominant excitatory
synaptic activity prior to a seizure [7]. Recent studies also
demonstrate alterations in various aspects of GABAergic
neurons as inhibitory factors in seizure [10], which will be
further discussed in the following sections.

Traditional view of GABAergic interneurons in providing
inhibitory effects to the epileptic circuitry
A frequently studied cell type in epileptogenesis is the
GABAergic interneuron. By releasing the neurotransmit-
ter gamma-aminobutyric acid (GABA), these neurons
are traditionally regarded as inhibitory to network activ-
ity. Interactions between interneuron populations and
principal cells determine the neuro-mechanism of seiz-
ure. A well-received hypothesis is that during a seizure,
the ability for GABA inhibition to counterbalance mem-
brane depolarization and action potential firing is
decreased, and this modification within the interneur-
onal network facilitates the synchronization of the prin-
cipal cells. In support of this notion, abnormalities in
inhibitory GABAergic function were found in several
genetic and experimental epilepsy models [11, 12]. In
addition, De Lanerolle [13] reported the loss of hippo-
campal interneurons in human temporal lobe epilepsy
(TLE). However, these anatomical changes during epilepsy
alone are insufficient in determining whether GABA
changes are adaptive or causal [14].
Functionally, altered GABAergic interneuron activity

has been related to the synchronization and hyperexcit-
ability of network activities in seizures [11, 15–17]. When
the excitability of both parvalbumin- and somatostatin-
expressing interneurons was impaired in mouse neocor-
tex, it led to a disinhibition of the cortical network [18].
Similarly, the action potential initiation mechanism was

impaired in GABAergic interneurons of a mouse model
that expresses mutated human Na (V)1.1 gene, resulting in
a hyperexcitable network [17]. When the functions of
voltage-dependent sodium channels are impaired in
GABAergic interneurons, it leads to reduced threshold
and accelerated propagation in febrile seizures, and
reduced threshold in flurothyl-induced seizures [19]. As a
consequence, enhancement of GABAergic function has an
anticonvulsant effect, as exhibited by the mechanism of
action and efficacy of many antiepileptic drugs (AEDs).

Optogenetic excitation of GABAergic interneurons for
seizure suppression
In accordance with the concept that the excitatory/inhibi-
tory balance shifts towards the excitatory regime in
epilepsy, recent optogenetic studies aim to enhance the
inhibitory function of GABAergic interneurons to suppress
seizures. Amongst these works, Ledri et al. [3] selectively
activated interneuron populations in hippocampal slices,
suppressing epileptiform activity induced by 4-aminopyridine
(4-AP) or by zero Mg2+. Interestingly, selective activation of
only a subpopulation of GABAergic interneurons was not as
effective in suppressing seizures. In contrast, closed-loop
optogenetic activation of a subtype of GABAergic neurons,
the parvalbumin (PV)-containing cells (representing 5% of
hippocampal neurons) eliminated seizures in the hippo-
campus [1]. Ladas et al. [20] found that activating GAD-
expressing interneurons with low frequency laser stimula-
tion can attenuate epileptiform activity in the hippocampus.
A few studies combined optogenetics and stem cell

transplantation technology to apply inhibitory input to
the hyper-excitatory circuits. Activation of GABAergic
interneuron grafts led to a suppression of pharmacore-
sistant seizures in the dentate gyrus (DG), due to the
enhancement of synaptic inhibition in this area [21].
Cunningham et al. [22] demonstrated that human pluri-
potent stem cell (hPSC)-derived maturing GABAergic
interneurons (mGINs) could migrate and integrate into
the dysfunctional circuity of mouse brain. Using
optogenetics, they found that the grafted mGINs could
cause postsynaptic inhibitory responses in the host
hippocampal neurons. Interestingly, these grafted neu-
rons were already effective in suppressing seizures and
ameliorating abnormalities, including cognitive deficits,
aggressiveness, and hyperactivity, prior to full electro-
physiological maturation.

New view: context-dependent roles of GABAergic cells in
controlling postsynaptic excitability and seizure
The traditional view that GABAergic neurons are always
“inhibitory” in epilepsy is consistently challenged. The
most striking evidence comes from reports suggesting
that instead of being quiescent during seizure, GABAer-
gic interneurons may be active. Interneurons (such as
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the somatostatin-positive subtype) can be activated in
response to a 4-AP-induced seizure [23, 24]. The excit-
ability of somatostatin-positive interneurons is higher
than that of regular spiking pyramidal neurons in re-
sponse to various activating stimuli, including extracellu-
lar current, low-Mg2+/Ca2+ artificial cerebrospinal fluid,
metabotropic glutamate receptor agonists, and choliner-
gic agonists [25]. In addition, spontaneous GABAergic
inhibition is increased in the soma of pyramidal neurons
in temporal lobe epilepsy (TLE), although it is reduced
in the dendritic regions of the pyramidal cells [26].
Thind et al. [27] further described an initial loss and later
an excess growth of GABAergic synapses in dentate gran-
ule cells in a rat model of temporal lobe epilepsy. In
addition, Marchionni and Maccaferri [28] showed that
GABAA receptor-mediated perisomatic input is enhanced
during seizure. These results suggest that epilepsy might
be associated with not fewer but rather abundant dysfunc-
tional GABAergic synapses. Some authors hypothesized
that these GABAergic inputs are essential in the gener-
ation of pathological, epileptic network activity [28].
At the single cell level, emerging evidence also demon-

strates that functional output of GABAergic interneurons
could be context dependent. GABAergic neurons can
excite as well as inhibit postsynaptic neurons, depending
on the states of presynaptic and postsynaptic cells. There
are at least four different ways through which GABAergic
interneurons could apply “excitatory” effects on network
activity. (1) Raising of reversal potential. GABAergic inter-
neurons apply excitatory input to postsynaptic principal
neurons, due to an increase in the reversal potential in the
principal neurons. (2) Exhaustion of presynaptic GABA.
High frequency firing of the GABAergic interneurons-
exhausts the presynaptic neurotransmitter GABA, which
prevents the postsynaptic principal neurons from being
inhibited, instead allowing for their hyper-excitability. (3)

Desynchronization of the principal cells. GABAergic inter-
neurons are responsible for the synchronized firing of
principal neurons. (4) Some GABAergic interneurons
inhibit other interneurons, causing disinhibition of pyram-
idal neurons and network hyperexcitability.

Raising of reversal potential (Fig. 1)
GABAergic interneurons can excite and inhibit postsynap-
tic neurons, depending on the GABA reversal potential in
the postsynaptic cells [29, 30]. It is well known that GABA
transmission depolarizes neonatal neurons owing to the
high concentration of intracellular Cl- at this stage [8, 23,
31–35]. The depolarizing action of GABA is not limited to
neonates but can happen whenever Cl- levels increase
inside a segment of a mature cell [36]. For example, termi-
nals from GABAergic axo-axonic cells contact with
cortical principal neurons at their axon initial segments
(AIS). They produce excitatory input to the AIS. However,
there is an increased Cl- gradient along the axo-somato-
dendritic direction, and the reversal potential for GABA
(EGABA) values decrease from the AIS to the soma and
dendrites [37]. This heterogeneity of the GABA reversal
potential in postsynaptic cell segments renders the
spatially-distinct presynaptic inputs to generate postsyn-
aptic responses with different magnitudes and polarities.
Intracellular Cl- concentration can be mediated by

many cellular/molecular mechanisms. During early mam-
malian embryonic development, the level of Na+/K+ chlor-
ide cotransporter 1 (NKCC1) is high, and the level of
potassium chloride cotransporter 2 (KCC2) expression is
low [38]. This causes a high concentration of intracellular
Cl- and depolarization of EGABA. An increase in KCC2
expression is associated with a reduction in intracellular
Cl- and hyperpolarization of EGABA. Both NKCC1 and
KCC2 play significant pathological roles in regulating
Cl- homeostasis in epileptogenesis within neonatal

Fig. 1 Epileptogenesis via raised reversal potential to GABAergic current. GABAergic interneurons (Int) apply excitatory synaptic input to the
principal neurons (Pr) via raised GABA reversal potential in the principal neurons, which in turn increase the whole network activity and induce
seizure. (+) excitatory; (−) inhibitory. Downward deflection trace: inhibitory postsynaptic potential (IPSP). Vertical line: action potential
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brain, and are proposed as potential targets for neo-
natal seizures [39, 40].
NKCC1 and KCC2 also play significant pathological

roles in adult epileptogenesis. In drug-resistant temporal
lobe epilepsy patients, up-regulation of NKCC1 mRNA
was observed in the hippocampal subiculum, which
contributed to the depolarized EGABA [41]. Similarly,
over-activation of NKCC1 in neurons of animal models
was responsible for depolarizing EGABA, an impairing
cortical inhibitory network, and triggering seizure in the
presence of ammonia [42]. Following status epilepticus,
upregulation of NKCC1 was observed in the deep ento-
rhinal cortex, which contributed to the depolarizing shift
of the inhibitory postsynaptic potential reversal in layer
5 neurons [43]. Genetic deletion or inhibition of NKCC1
were found to be neuroprotective against epileptogenesis
[42]. NKCC1 inhibition with bumetanide prevented
seizure-induced neuronal Cl- accumulation and the con-
sequent facilitation of recurrent seizures in neonatal rats
[44]. Bumetanide also prevented granule cell ectopia in
the dentate gyrus after febrile seizures, and the develop-
ment of epilepsy [45].
In contrast to the upregulation of NKCC2 in the

epileptic brain, reduction of KCC2 is another important
reason for Cl- accumulation in experimental [46] and
human epilepsy [41, 47, 48]. In humans, KCC2 is down
regulated in intractable epilepsy caused by focal cortical
dysplasia [49]. Subicular pyramidal cells in patients from
mesial temporal lobe epilepsy exhibit depolarizing
GABAAR-mediated postsynaptic events, which are asso-
ciated with decreased KCC2 expression [48]. In animals
models, decreased KCC2 expression and impaired Cl-

extrusion were also found in pyramidal neurons of
injured epileptogenic rat neocortex [50]. Diminished ex-
pression of KCC2 in dentate granule (DG) cells persisted
for weeks in pilocarpine-induced epilepsy. This caused
reduction in the inhibitory efficacy and enhancement in
DG cell excitability [51]. In a mouse glioma model, the
amount of parvalbumin-positive GABAergic interneurons
was significantly reduced [52]. The remaining peritumoral
neurons displayed elevated intracellular Cl- levels and con-
sequently, excitatory GABA responses. In these remaining
neurons, KCC2 was significantly decreased. The reduced
KCC2 immunoreactivity and mRNA expression [46] were
associated with more positive EGABA in epileptic tissue. The
molecular mechanism for the loss of KCC2 function is
related to N-Methyl-D-aspartic acid (NMDA) receptor
activity and Ca2+ influx that dephosphorylate the KCC2
residue Ser940 [53].
Unbalanced NKCC1/KCC2 is not the only mechanism

for intracellular Cl- accumulation. When firing at high
frequency, interneurons can activate the postsynaptic
neurons excessively and cause chloride accumulation to
depolarizing concentrations in the postsynaptic neurons,

making GABAA synapses excitatory [29, 54–56]. As
such, GABA can provide the main post-tetanic excita-
tory drive to pyramidal neurons in the CA1 area of an
adult hippocampus [54]. Lillis et al. [14] reported that
intracellular Cl- concentration largely increases in
pyramidal neurons in mouse hippocampal slices during
ictogenesis. Excitatory GABAergic interneurons can
form a “positive feedback circuit” with the glutamatergic
pyramidal cells within the strata oriens and/or pyrami-
dale of the hippocampal CA1 region, resulting in neur-
onal synchronization and epileptic afterdischarge [55]. In
CA3 pyramidal cells, a large depolarization in the
GABAA reversal potential occurs when the network
enters an interictal state in a low Mg+/high K+ recurrent
seizure model [57]. Clinically, the excitatory effects of
GABAergic interneurons have contributed to tumor
associated epilepsy [52].

Exhaustion of presynaptic GABA (Fig. 2)
Continuous activity in GABAergic interneurons could
lead to transient GABA depletion, preventing their ability
to inhibit pyramidal cells. By recording inhibitory postsyn-
aptic currents (IPSCs) from rat CA3 pyramidal neurons in
10 mM KCl, Shin et al. [58] found that hyper-excitability
in pyramidal neurons is related to the diminish of IPSCs
mediated by GABAA receptors. Recently, we found that
high frequency firing in GABAergic interneurons could
cause the exhaustion of the presynaptic neurotransmitter
GABA in a low Mg2+/high K+ seizure model, therefore
leading to the transition of network activity to seizure
[57]. Computer simulation predicted that certain focal
seizures could be triggered by GABA depletion [59]. It
remains to be seen if depletion of presynaptic GABA is
presented in in vivo animal models of seizure.
Depletion of presynaptic GABA could be monitored by

the frequency of asynchronous release. Jiang et al. [60]
reported that asynchronous GABA release occurs at all
GABAergic synapses in fast-spiking interneurons. Asyn-
chronous GABA release results in tonic inhibition at
interneuron-principal neuron synapses in the hippocampus
[61, 62]. In a genetic mouse model of epilepsy, asynchron-
ous GABA release is found to protect the postsynaptic cell
by extending the length of inhibition. Depletion of pre-
synaptic GABA could suppress spontaneous IPSCs [63]. A
substantial decrease in asynchronous GABA release results
in the loss of tonic inhibition in the hippocampus of
Synapsin II−/− mice, prompting hyperexcitability and epi-
leptogenesis [64]. In summary, GABA depletion decreases
the inhibitory strength that interneurons apply on the
principal cells.

Synchronization of principal cells (Fig. 3)
GABAergic interneurons can synchronize network activ-
ity during seizure [16]. First, GABAergic interneurons
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themselves are synchronized by gap-junctions or long-
range-projections. It is likely that one individual inter-
neuron can electrically couple to 20-50 others [65], a
significant number implying that each interneuron
participates in a large, continuous syncytium. Indeed,
somatostatin-positive interneurons are electrically coupled
via gap-junctions [25, 65, 66], which synchronize activities
between coupled neurons [66] in the neocortex. Alterna-
tively, interneurons could be synchronized by long-range-
projecting GABAergic neurons from cortical areas.
GABAergic neurons provide long-range, bidirectional
hippocampal-entorhinal connectivity [67]. A group of
long-range GABA neurons, the hippocamposeptal neurons,
excite the hippocampal interneurons at the onset of epilepti-
form activity in immature septohippocampal formation [68].
Secondly, interneurons play a notable role in syn-

chronizing principal cell activity and overall neural
network behavior. It is found that principal cells fire syn-
chronously with the interneurons during epileptiform
discharges [69, 70]. Since each GABAergic interneuron

can have contact with over 1000 pyramidal neurons in
the hippocampus, these pyramidal cells may share a
common temporal reference established by the same
interneuron [71]. Indeed, firing of principal cells is
synchronized by interneurons during high-frequency
oscillation in the hippocampal network [71–74]. Further-
more, it has been shown that inhibitory interneurons
synchronize the large principal neuronal population in
seizure [8, 70, 75–77].

Disinhibition by other interneurons (Fig. 4)
GABAergic interneurons are capable of targeting other
inhibitory neurons, and release these neurons’ inhibitory
effects to principal cells [78, 79]. For example, when
optogenetic techniques are used to activate vasoactive
intestinal peptide (VIP) interneurons, it is found that
VIP interneurons inhibit somatostatin and some parval-
bumin interneurons, which in turn releases these neu-
rons’ inhibition to pyramidal and principal cells [80, 81].
Owen et al. [82] demonstrated that depolarizing fast-

Fig. 3 Epileptogenesis via synchronization of the principal cell (Pr) activity through GABAergic interneurons (Int). (−) inhibitory

Fig. 2 Epileptogenesis via depletion of presynaptic neurotransmitter GABA. Postsynaptic principal cell firing is enhanced due to the depletion of
the presynaptic GABA and release of inhibition. (−) inhibitory
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spiking interneurons elevates the rate of GABA release,
which leads to the short-term depression of inhibitory
connections onto the excitatory cells in the hippocampus.
In layer IV of the neocortex, fast spiking parvalbumin in-
terneurons control pyramidal cell activity. Stimulation of
somatostatin-expressing GABAergic interneurons inhibits
these fast spiking interneurons, which, in turn, disinhibits
pyramidal cells [79].
The “disinhibition” hypothesis for epileptogenesis

implies that removal of inhibition to the pyramidal cell
could cause excitability and seizure susceptibility [83, 84].
For example, deficits in δ-subunit expression in the
GABAA receptor of GAD65-positive interneurons result
in a reduction of the tonic inhibition to these neurons.
Disinhibition of interneurons results in decreased seizure
susceptibility [84]. It is unknown if one can initiate seizure
by enhancing GABAergic inhibition to certain interneu-
rons, and in turn, removing these interneurons’ inhibitory
effects on the principal cells. Furthermore, it is unknown
if optogenetics can be used to subdue seizure, by sup-
pressing GABAergic interneuron activity, which permits
the inhibitory effects of other interneurons be fully applied
to principle cells.

Optogenetic inhibition of GABAergic interneurons for
seizure suppression
The context-dependent, excitatory roles that GABAergic
interneurons can play, suggest a novel optogenetic strat-
egy for seizure suppression. The widely used protocol
that aims at “exciting” GABAergic neurons, is probably
not optimal. Instead, this evidence begs for the investiga-
tion of seizure suppression by inhibiting these neurons.
Using vGAT:ChR2-eYFP mice (expressing ChR2 under
the interneuron-specific mouse vesicular GABA trans-
porter (vGAT) promotor) and a local 4-AP microinjec-
tion seizure model (performed in the somatosensory

cortex), Dufour and Valiante [85] found that optical acti-
vation of GABAergic interneurons could lead to seizure.
The researchers speculated that the effects of the
GABAergic interneurons are context dependent, contin-
gent on the brain activity state. This observation started
to challenge the traditionally accepted inhibitory effects
of GABAergic interneurons in seizure. Unfortunately,
the authors have not tested if optogenetic inhibition of
GABAergic interneurons can suppress seizure.
We utilized a Gad2-Cre recombinase mouse line and

injected an adeno-associated viral vector (AAV5-EF1α-DIO-
NpHR3.0-eYFP, University of North Carolina vector core
facility) into the CA3 area in the hippocampus (2 months
old), resulting in expression of the light-sensitive chloride
pump halorhodopsin (NpHR) in GABAergic interneurons.
The functional role of GABAergic interneurons is investi-
gated in a 4-AP seizure model (6 mg/Kg i.p. injection, five
animals) by optically inhibiting these neurons. Seizure-like
activity was observed 10-15 min after 4-AP injection. In
early approaches, we applied continuous laser inhibition
(1 min in duration, adapted from [86]) to the GABAergic
interneurons. We observed subtle but quantifiable suppres-
sion of electroencephalogram (EEG), which can only be
identified through a complicated EEG detection algorithm
[87]. To improve the success rate of seizure suppression, we
used a high-frequency stimulation (HFS) protocol [88] to
inhibit GABAergic interneurons in the CA3 area during 4-
AP seizure. We found that 10 ms laser pulses are effective
in seizure suppression. In total, we applied 43 HFS (laser
train duration 20 s, frequency 20 Hz, pulse width 10 ms,
intensity 15 mW/mm2) in 5 different Gad 2 mice. We found
that 31 (72.1%) of these HFS trains were effective or partially
effective in suppressing seizure EEG. 11 (25.6%) of the trials
were not effective, and 1 (2.3%) corresponded with
enhanced seizure activity. Figure 5 shows several examples
when seizure EEG was suppressed when GABAergic

Fig. 4 Epileptogenesis via imbibition of GABAergic interneurons. Some interneurons are inhibited by others, causing dis-inhibition of the principle
cells and hyper-excitability. (−) inhibitory
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interneurons were inhibited with HFS. We are currently
exploring the optimal parameters to further improve the
success rate for seizure suppression, and investigate the
cellular mechanism of such suppression.

Conclusion
GABAergic neurotransmission has been traditionally
regarded as inhibitory to neural network activity, and
the idea that failure of GABA inhibition contributes
to seizure has been dominant, and sometimes pre-
sumable. The context-dependent, possibly “excitatory”
roles that the GABAergic interneurons can play in
epileptic tissue, begs for the reassessment of their
contribution using optogenetic tools, which can pro-
vide precise spatial and temporal control of neuronal
activity with excellent resolutions. New optogenetic
protocols aimed at “inhibiting” GABAergic interneu-
rons should be explored to investigate the possibility
of seizure suppression.
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