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1  | INTRODUC TION

The vertebrate appendage demonstrates substantial diversity in 
form and function, having evolved into fins, wings, flippers, claws, 
hooves, and myriad other structures. Appendage reduction and 
loss is also a significant component of vertebrate appendage evo-
lution. Repeated, independent instances of appendage reduction 
and loss offer an opportunity to investigate the extent to which 
the developmental bases of phenotypic evolution are shared and 
unique (i.e., (non)parallel) across vertebrate lineages (Bolnick 
et al., 2018).

Here, we review molecular pathways involved in appendage 
development to ask whether shared or unique genetic and devel-
opmental mechanisms are involved in independent instances of ver-
tebrate appendage reduction and loss. For consistency, we chose to 

use the nomenclature rules usually reserved for mouse and rat (Gene 
and PROTEIN) throughout our review. Because there are no estab-
lished guidelines for the discussion of regulatory elements, enhancer 
symbols will be capitalized and italicized (ENHANCER) (Table 1).

Comparing the molecular drivers of appendage reduction and 
loss across vertebrate clades required that we find taxa that (a) show 
appendage loss or reduction and (b) have data on the molecular and 
developmental components driving reduction. Though there are 
hundreds of independent instances of lost or reduced appendage el-
ements reported for vertebrates, we found only a handful of taxa for 
which the molecular pathways involved are described even in part, 
likely limited by the difficulty of studying development in nonmodel 
organisms.

The cases we did find span 450 million years of vertebrate evo-
lution, from teleost fish to mammals (López et al., 2016). To address 
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generality in appendage loss and reduction across vertebrates, we 
therefore must discuss homology between teleost fins and tetrapod 
limbs.

Teleost fins and tetrapod limbs arose by modifications to the 
paired fins of their last common ancestor and are superficially sim-
ilar in position and function (Hall, 2007). Ancestral gnathostome 
fins were composed of long-bone segments arranged into three 
structures along the anteroposterior axis: the propterygium, the 
mesopterygium, and the metapterygium (Coates, 1994; Don et al., 
2013; Hawkins et al., 2021) (Figure 1). In teleosts, the propterygium 
and mesopterygium form the fins, whereas the metapterygium is 
lost (Coates, 1994; Don et al., 2013; Hawkins et al., 2021) (Figure 1). 
In contrast, only a modified metapterygium is retained in tetrapod 
limbs (Coates, 1994; Don et al., 2013; Hawkins et al., 2021). Thus, the 
teleost fin and the tetrapod limb are derived from distinct tissues.

However, despite originating from different tissues, a sort of 
“deep homology” underlies fin and limb development (Shubin et al., 
1997, 2009). That is, much of the genetic architecture controlling 
appendage development is shared between teleosts and tetrapods 
(Hall, 2007). For example, the Hedgehog pathway plays a role in an-
teroposterior appendage patterning and maintaining downstream 
gene expression in both fish and tetrapods (Chiang et al., 2001; 
Lettice et al., 2003; Ros et al., 2003; Sagai et al., 2005). Alterations 
to this signaling pathway result in aberrant appendage development 
and morphology in both clades: experimental loss of Shh expression 
resulted in truncated limbs in mice and in fin absence in the tele-
ost medaka (Oryzias latipes) (Chiang et al., 1996; Letelier et al., 2018; 
Sagai et al., 2005). Similarly, the expression and function of Gli3, a 
Shh antagonist, is conserved from fish to tetrapods (Letelier et al., 
2020). Gli3-knockout medaka grow extra fin elements; Gli3-deficient 
mice develop a similar polydactyl phenotype (Letelier et al., 2020; 
Litingtung et al., 2002; Lopez-Rios et al., 2012; te Welscher, Zuniga, 
et al., 2002).

Regulation of Hox genes, a gene family important for embryo 
patterning in most animals, is also shared in teleost fins and tetrapod 
limbs (Ahn & Ho, 2008; Cohn & Tickle, 1999; DuBuc et al., 2018; 
Hall, 2007; Parrish et al., 2009; Ramos et al., 2012; Ryan et al., 2007; 
Scott, 1993; Tanaka et al., 2005). For example, Hox genes are ex-
pressed in three phases in the pectoral appendage of zebrafish and 
chick; orthologous genes are expressed in similar regions of the ap-
pendage during each phase (Ahn & Ho, 2008).

For further examples, orthologs of Tbx5 and Tbx4 are required for 
formation of anterior and posterior appendage, respectively (Bickley 
& Logan, 2014; Garrity et al., 2002; Minguillon et al., 2005; Naiche 
& Papaioannou, 2003, 2007; Takeuchi et al., 2003). Pitx1 expression 
is similar in the developing posterior appendage of teleosts and tet-
rapods and induces Tbx4 expression in both clades as well (Figure 2) 
(Cole et al., 2003; Duboc & Logan, 2011; Infante et al., 2013; Logan 
& Tabin, 1999; Marcil et al., 2003; Tickle & Cole, 2004). Altogether, 
we suggest that there is sufficient homology between fins and limbs 
to assess (non)parallelism in the genetic basis of appendage loss and 
reduction across the vertebrate phylogeny.

Having supported homology between fins and limbs, we now 
define appendage reduction and loss, the main criteria for taxon 
inclusion for this review. Defining “loss” is straightforward: the 
absence of one or more bones from the appendage, from pel-
vic or pectoral girdles to fin rays or digits. “Reduction” has had 
a more varied definition over its study (Bickley & Logan, 2014; 
Brandley et al., 2008; Chiang et al., 2001; Greer, 1991; Klepaker 
et al., 2013; Kragesteen et al., 2018; Thompson et al., 2018; Wiens 
et al., 2006). For our review, we consider “reduction” to be a di-
minishment in the relative length or width of at least one bone in 
the appendage.

We now divide the rest of our review by clade, appendage, and 
modification type to allow for comparisons between taxa and es-
tablish if the same molecular mechanisms are used for appendage 
reduction or loss by distantly related vertebrates. While the complex 
gene regulatory networks dictating appendage development may 

TA B L E  1   Gene and enhancer abbreviations

Gene symbol Gene name

Shh Sonic Hedgehog

Gli3 GLI Family Zinc Finger 3

Hox a gene family comprising a subset of 
homeobox genes

Wnt8c Wingless-related integration site 8c

Wnt2b Wingless-related integration site 2b

Tbx5 T-box transcription factor 5

Tbx4 T-box transcription factor 4

Pitx1 Pituitary homeobox transcription 
factor 1

Fgf8 Fibroblast growth factor 8

Hand2 Heart and neural crest derivatives 
expressed 2

Ptch1 Protein Patched homolog 1

Gli1 GLI Family Zinc Finger 1

Grem1 Gremlin1

Msx2 Msh homeobox 2

Bmp4 Bone morphogenetic protein 4

Nkx2.5 Nkx2 homeobox 5

Cux1 Cut-like homeobox 1

Ihh Indian Hedgehog

Pthrp Parathyroid related protein

C2cd3 C2 Calcium Dependent Domain 
Containing 3

Metabolite symbol Metabolite name

RA Retinoic Acid

Enhancer symbol Enhancer name

PELA Pelvic enhancer A

PELB Pelvic enhancer B

ZRS Z(one of polarizing activity) Regulatory 
Sequence

GCR Global Control Region
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15486  |     SWANK et al.

offer numerous routes to reduction and loss, we found that these 
phenotypes most often resulted from modified regulation of the 
same of key developmental genes (Table 2).

2  | TELEOST PELVIC FIN REDUC TION AND 
LOSS

Threespine sticklebacks (Gasterosteus aculeatus) are small teleost 
fish with populations in saltwater ocean and estuarine habitats, as 
well as freshwater lake and stream habitats (Bell & Foster, 1994; 
Schluter & McPhail, 1992). Marine threespine sticklebacks have 
robust bony armor that includes lateral plates, dorsal spines, and 
a pelvic girdle with spines. However, likely due to differences in 
water chemistry and predation regimes, freshwater sticklebacks 
usually evolve armor reduction, including reduction and/or loss 
of pelvic appendages (Bell et al., 1993; Giles, 1983; Hoogland 
et al., 1957; Reimchen, 1980, 1983, 1992, 2000; Smith et al., 
2014; Spence et al., 2012, 2013; Zeller et al., 2012; Ziuganov & 
Zotin, 1995).

The stickleback pelvic appendage is a modified pelvic fin com-
prised of two articulated spines and a bony girdle that extends 
along the belly and up the sides of the fish. Over 100 geographi-
cally distinct freshwater populations of G. aculeatus have evolved 
reduction and/or loss of the pelvic spines and girdle (Bell et al., 
1993; Chan et al., 2010; Coyle et al., 2007; Klepaker et al., 2013; 
Shapiro et al., 2006, 2009; Shikano et al., 2013). Because these 
freshwater populations were independently colonized by ma-
rine ancestors at the end of the last glacial maximum (Schluter & 
McPhail, 1992), they represent repeated instances of evolution 

F I G U R E  1   The teleost pectoral fin is based on zebrafish fin morphology, while the tetrapod forelimb is based on human anatomy. 
Elements of the ancestral pectoral fin are retained and modified in extant vertebrates: Appendage structures are colored to reflect their 
evolutionary origins. The propterygium (yellow) and mesopterygium (red) were retained and modified in teleost evolution while the 
metapterygium (dark and light blues) makes up the tetrapod limb. The proximal portion of the metapterygium (dark blue) likely forms the 
stylopod, while the more distal elements (light blue) were likely elaborated into the distal limb structures (Ahn & Ho, 2008; Don et al., 2013; 
Freitas et al., 2007; Hawkins et al., 2021)

F I G U R E  2   A simplified gene regulatory network implicated 
in vertebrate appendage development. Genes symbols coded in 
magenta are unique to the hindlimb, while those in blue are unique 
to the forelimb (Butterfield et al., 2009; Charité et al., 2000; 
Delgado et al., 2021; Delgado & Torres, 2015; Fernandez-Teran 
et al., 2000; Hockman et al., 2008; Jin et al., 2019; Lafage-Proust, 
2015; McQueen & Towers, 2020; Minguillon et al., 2012; Ng et al., 
2002; Nishimoto et al., 2015; Tanaka et al., 2005; te Welscher, 
Fernandez-Teran, et al., 2002; Xu & Wellik, 2011; Zúñiga, 2015)
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and provide a good system for the study of genetic parallelism of 
appendage reduction and loss (Bolnick et al., 2018).

Many instances of pelvic reduction in G. aculeatus have been 
linked to Pitx1 (Bell et al., 2006; Coyle et al., 2007; Klepaker et al., 
2013; Shapiro et al., 2006; Thompson et al., 2018). Relative to 
the pelvic-complete morph, pelvic-reduced G.  aculeatus show 
no variation to their PITX1 amino acid sequences (Shapiro et al., 
2006). Instead, pelvic-complete and pelvic-reduced morphs vary 
in Pitx1 expression (Figure 3). Pitx1 is expressed in the pelvis of 
pelvic-complete larvae but is missing from the corresponding re-
gion of pelvic-absent fish (Chan et al., 2010; Shapiro et al., 2006; 
Thompson et al., 2018). Reduction of Pitx1 expression results in 
decreased transactivation of Tbx4 (Figure 3), a gene important for 
appendage bud initiation and outgrowth (Cole et al., 2003; Don 

et al., 2016; Infante et al., 2013; Minguillon et al., 2005; Naiche & 
Papaioannou, 2007; Takeuchi et al., 2003; Tickle & Cole, 2004).

Pelvic expression of Pitx1 in G. aculeatus is regulated by two 
pelvic-specific enhancers—PELA and PELB (Chan et al., 2010; 
Thompson et al., 2018; Xie et al., 2019). Pelvic-reduced stick-
lebacks have mutations in one or both enhancers and demon-
strated reduced Pitx1 expression in pelvic tissue (Chan et al., 
2010; Kragesteen et al., 2018; Thompson et al., 2018; Xie et al., 
2019). Genomic studies have shown that mutations to PELA arise 
de novo, likely because the enhancer is in a chromosomal region 
prone to double-strand breakages (Xie et al., 2019). The PELA en-
hancer is subject to strong positive selection that drives the null 
allele to fixation (Chan et al., 2010; Xie et al., 2019). The strong 
selection for modified Pitx1 regulation suggests a potential route 

TA B L E  2   Summary of molecular mechanisms of reduction and loss

Genus Reduction/Loss type Molecular modificationa

Gasterosteus Pelvic fin and girdle reduction/Loss Pitx1 (PelA, PelB), Tbx4b

Reduced or missing initiation signaling

Pungitius Pelvic fin and girdle reduction/Loss Pitx1Reduced or missing initiation signaling

Takifugu Pelvic fin and girdle loss HoxD9aMissing positional signaling

Python Hindlimb and pelvic girdle reduction & loss Shh (ZRS), Fgf8b

Attenuated outgrowth signaling

Hemiergis Digit loss ShhReduced signal duration

Stenella Hindlimb loss and pelvic girdle reduction Hand2, Shhb, Fgf8b

Missing outgrowth signaling

Trichechus Hindlimb loss and pelvic girdle reduction Pitx1†Missing initiation signaling

Sus Digit reduction and loss Ptch1, Gli1b, HoxDb, Grem1b, Fgf8b

Reduced outgrowth signaling

Bos Digit loss Ptch1 (LRM), Gli1b, HoxDb, Grem1b, Fgf8b

Missing outgrowth signaling

Camelus Digit loss Msx2, Bmp4
Apoptosis

Equus Digit loss Msx2, Bmp4Apoptosis

Dipus Digit loss Msx2, Bmp4Apoptosis

Carollia Forelimb reduction HoxD13, HoxD genes
Differential growth rate

Myotis Forelimb reduction HoxD13, HoxD genes (GCR, BAR116)
Differential growth rate

Rhinolophus Forelimb reduction HoxD genes (GCR)
Differential growth rate

Miniopterus Forelimb reduction ShhDifferential growth rate

Dromaius Forelimb and sternal reduction and digit loss Tbx5, Msx2, Gli3, Shhb, Grem1b, Nkx2.5
Reduced growth rate

Phalacrocorax Forelimb and sternal reduction Cux1c, Ihhb

Reduced cartilage differentiation

Gallus Hindlimb reduction Ihhd, PTHrPd; or C2CD3d

Attenuated proliferation; or loss of polarity

aGene modifications (top row) refer to expression changes unless otherwise noted. Resulting impact (bottom row) summarizes the suspected role of 
the gene modification(s) on development.
bAltered expression thought to result from changes upstream.
cCoding variant.
dUnconfirmed mechanism.
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to appendage reduction in other taxa if the lack of constraint is 
shared (Chan et al., 2010; Xie et al., 2019).

Indeed, more than thirty populations of the ninespine stickleback 
(Pungitius pungitius) have pelvic reduction and loss and show no dif-
ferences in the PITX1 amino acid sequence between pelvic-complete 
and pelvic-absent fish (Klepaker et al., 2013; Shapiro et al., 2004, 
2006). Instead, Pitx1 expression is missing from the pelvic region of 
pelvic-absent ninespines, as in threespine stickleback (Shapiro et al., 
2004, 2006). Hybrids of threespine and ninespine stickleback with 
one pelvic-complete parent and one pelvic-reduced parent have a full 
pelvis, while hybrids with two pelvic-reduced parents demonstrate 
pelvic spine and girdle reduction (Shapiro et al., 2006). These results 
indicate that pelvic reduction is controlled by regulation of the same 
locus, Pitx1, in threespine and ninespine sticklebacks, despite their 
26-million-year divergence (Shapiro et al., 2006; Varadharajan et al., 
2019). Moreover, modified Pitx1 expression has been implicated 
in pelvic reduction of G. doryssus, a 10-million-year-old threespine 
stickleback species from the Miocene (Stuart et al., 2020). This in-
ference stemmed from an observation of pelvic asymmetry in which 
left side vestiges were larger than right side vestiges in G. doryssus 
fossils—a similar phenotype to that found in extant pelvic-reduced 
stickleback (Nelson, 1971; Shapiro et al., 2004, 2006; Stuart et al., 
2020). As such, it appears that pelvic reduction and loss in more than 
100 populations across at least three stickleback species shares a 
genetic cause.

However, modified Pitx1 expression does not drive pelvic ap-
pendage loss in a different teleost, the fugu (or pufferfish) Takifugu 
rubripes. Pelvic loss in fugu results instead from the absence of po-
sitional signaling by HoxD9a in the pelvic region. HoxD9, an orthol-
ogous gene, is important for appendage positioning and initiation in 
vertebrates (Figure 3) (Cohn et al., 1997; Tanaka et al., 2005). For 
example, in stickleback embryos, HoxD9 expressed in pectoral and 
pelvic fin buds (Tanaka et al., 2005). In embryonic fugu, however, 
HoxD9a is expressed in the pectoral region but is absent from the 
pelvic region (Tanaka et al., 2005). Therefore, the absence of Hoxd9a 
expression in the pelvic region of fugu prevents fin and girdle 
formation.

3  | SQUAMATE HINDLIMB REDUC TION 
AND LOSS

Squamate reptiles have independently evolved reduced limbs 
dozens of times (Brandley et al., 2008; Greer, 1991), most no-
tably the snakes. No extant snake species retain forelimb or 
pectoral skeletal elements and most have no hindlimb or pelvic el-
ements (Bellairs & Underwood, 1951; Cohn & Tickle, 1999; Vitt & 
Caldwell, 2013). However, basal snakes like the python (Python re-
gius) have vestiges of the ilium and femur (Bellairs & Underwood, 
1951; Cohn & Tickle, 1999; Hall, 2003; Leal & Cohn, 2016; Vitt & 
Caldwell, 2013).

In typical tetrapods, SHH controls development along the antero-
posterior axis of the limb bud, specifies bud width, and influences 

the presence and identity of digits (Chang et al., 1994; Chiang et al., 
2001; Cohn & Tickle, 1999; López-Martínez et al., 1995; Riddle 
et al., 1993; Ros et al., 2003). FGF8 is essential for distal growth 
of the limb bud (Boulet et al., 2004; Cohn & Tickle, 1999; Laufer 
et al., 1994; Neubüser et al., 1997; Ohuchi et al., 1997; Provot et al., 
2008). Therefore, reciprocal regulatory interactions between SHH 
and FGF8 maintain gene expression and outgrowth in the develop-
ing limb (Figure 4) (Boulet et al., 2004; Cohn & Tickle, 1999; Leal & 
Cohn, 2016). In P. regius, development in hindlimb buds arrests early 
and then regresses because the feedback loop involving SHH and 
FGF8 is attenuated in the limb bud (Leal & Cohn, 2016).

Shh expression in the tetrapod limb is controlled by an enhancer 
called the ZRS (Galli et al., 2010; Lettice et al., 2003; Park et al., 2008; 
Riddle et al., 1993; Young & Tabin, 2017). The P. regius ZRS has three 
large deletion mutations relative to Anolis sagrei, a lizard with fully 
developed hindlimbs (Leal & Cohn, 2016). These mutations result in 
Shh expression that is reduced and terminates early (Leal & Cohn, 
2016). Loss of SHH signaling is followed by a decrease in Fgf8 ex-
pression, preventing limb and girdle growth in P.  regius (Figure 4) 
(Leal & Cohn, 2016). Notably, ZRS sequences are even more poorly 
conserved in advanced snakes, likely driving complete loss of the 
hindlimb and pelvis (Kvon et al., 2016; Leal & Cohn, 2016).

4  | SQUAMATE DIGIT LOSS

While less striking than the complete limb loss of snakes, digit loss 
in the fore- and hindlimbs of other nonsnake squamates has evolved 
over twenty separate times (Brandley et al., 2008; Greer, 1991). 
Scincidae, a squamate family with over 1700 described species, ac-
counts for nearly half of these instances of digit loss (Brandley et al., 
2008; Uetz et al., n.d.). For example, fore and hindlimb digit number 
varies between the seven species of the Australian genus Hemiergis 
(Shapiro et al., 2003; Uetz et al., n.d.). Hemiergis initialis retains five 
digits on each limb, whereas H. peronii has lost 2 digits on every limb 
and H. quadrilineata has lost three digits on every limb (Shapiro et al., 
2003). Variation in Hemiergis digit number correlates with the du-
ration of Shh expression in the limb bud: shorter expression corre-
sponds to fewer digits (Figure 5) (Shapiro et al., 2003).

5  | MAMMAL HINDLIMB LOSS AND 
PELVIC GIRDLE REDUC TION

Sirenians (manatees and dugongs) and cetaceans (dolphins, por-
poises, and whales) are aquatic mammal lineages that have inde-
pendently evolved hindlimb loss and pelvic reduction (Adam, 2009; 
Senter & Moch, 2015; Springer et al., 2004; Thewissen et al., 2001, 
2006). In the spotted dolphin (Stenella attenuatus), HAND2, an ac-
tivator of Shh, is absent from the embryonic hindlimb bud (Charité 
et al., 2000; Fernandez-Teran et al., 2000; Galli et al., 2010; Ros 
et al., 2003; Thewissen et al., 2006). This prevents Shh initiation 
which in turn diminishes Fgf8 expression (Figure 6) (Ros et al., 2003; 
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Thewissen et al., 2006). As noted in P. regius, FGF8 is initially pre-
sent in the cetacean hindlimb bud but is not sustained without Shh 
expression (Richardson & Oelschläger, 2002; Sedmera et al., 1997; 
Thewissen et al., 2006; Zhu et al., 2008). This results in the attenua-
tion of limb outgrowth, regression of the limb bud, and reduction to 
a vestigial pelvis (Bejder & Hall, 2002; Cooper, 2009; Sedmera et al., 
1997; Thewissen et al., 2006; Zhu et al., 2008).

The molecular origins of sirenian loss and reduction have yet 
to be explored, but their pelvic morphology offers some insight. 
In mice, humans, and stickleback, reduction in PITX1 level or 
function results in pelvic appendage vestiges that are, on aver-
age, larger on the left side than the right (Alvarado et al., 2011; 
Chan et al., 2010; Gurnett et al., 2008; Kragesteen et al., 2018; 

Lanctôt et al., 1999; Marcil et al., 2003; Shapiro et al., 2004, 2006; 
Shiratori et al., 2014; Szeto et al., 1999; Thompson et al., 2018). 
Reduction or loss of Pitx1 in the posterior appendage unmasks 
the asymmetrical expression of Pitx2, one of only six genes known 
to generate left-larger directional asymmetry in limb bud (Palmer, 
2004). Pelvic vestiges of the manatee (Trichechus manatus lat-
irostris) demonstrated this characteristic asymmetry: out of 114 
skeletal specimens, 93 had larger left side pelvic vestiges, thus 
implicating Pitx1 in hindlimb loss and pelvic reduction in manatee 
(Figure 6) (Shapiro et al., 2006).

6  | MAMMAL DIGIT REDUC TION

The number and size of digits is variable among mammals; more 
than half of mammalian orders demonstrate some form of digit 
reduction (Sears et al., 2011). The first digit in all adult even-toed 
ungulates (order Artiodactyla) is absent, and digits II and V are re-
duced in length or lost in many species (Lopez-Rios et al., 2014; 
Sears et al., 2011). For example, in the pig (Sus scrofas), digits II and 
V are reduced to vestigial dewclaws while in cow (Bos taurus) and 
camel (Camelus dromedarius) these digits are absent (Cooper et al., 
2014; Lopez-Rios et al., 2014; Sears et al., 2006; Tissières et al., 
2020). Digit reduction and loss in pig and cattle develop similarly. 
In both pig and cow, expression of Ptch1, an important SHH signal 
transducer, is restricted and symmetrical relative to the pentadac-
tyl limb (Lopez-Rios et al., 2014; Tissières et al., 2020). In cow, two 
insertions in an enhancer called the LRM drive restricted Ptch1 
expression (Lopez-Rios et al., 2014); similar modifications might 
restrict Ptch1 expression in pigs. As a result, SHH targets like Gli1, 
Grem1, and HoxD genes are expressed in a more symmetrical pat-
tern compared to the mouse limb (Cooper et al., 2014; Lopez-Rios 
et al., 2014; Tissières et al., 2020). Following the loss of asymme-
try, Fgf8 expression is reduced at the distal tip of digits II and V and 
results in the reduced length of the dewclaws in pigs (Cooper et al., 
2014; Lopez-Rios et al., 2014; Tissières et al., 2020). Similarly, Fgf8 

F I G U R E  3   Gene regulatory network showing genes modified 
in stickleback* and fugu†. Gene symbols in red lettering mark the 
absence of expression in the appendage bud, while alternating red 
and orange gene names indicate that expression is either reduced 
or absent from the appendage bud depending on the individual. An 
orange arrow indicates decreased transactivation

F I G U R E  4   Gene regulatory network showing genes modified in 
P. regius hindlimb development. Gene symbols labeled in alternating 
red and orange letters indicate that expression is reduced and 
eventually terminates earlier than in typical tetrapod development. 
The alternating red and orange arrow indicates that the interaction 
between diminished Shh and Fgf8 results in arrested limb 
development

F I G U R E  5   Gene regulatory network showing genes modified 
in digit loss of Hemiergis skinks. The duration of expression of Shh, 
shown in orange, varies between species
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expression is absent from digits II and V in cow, leading to digit loss 
(Cooper et al., 2014; Lopez-Rios et al., 2014; Tissières et al., 2020).

Unlike pig and cow, loss of digits II and V in camels proceeds by 
apoptosis in the digit forming regions of the limb bud (Cooper et al., 
2014; Lopez-Rios et al., 2014; Sears et al., 2011). Msx2 and Bmp4, 
markers of apoptosis, are upregulated in digits II and V (Cooper et al., 
2014). Accordingly, the rate of cell death is elevated relative to cow 
and pig (Cooper et al., 2014). Therefore, camel digit reduction pro-
ceeds via sculpting of the limb bud by cell death. (Cooper et al., 2014; 
Lopez-Rios et al., 2014; Sears et al., 2011). A similar apoptotic mech-
anism is involved in the loss of digits I and V in the hindlimb of the 
three-toed jerboa (Dipus sagitta) and digits II and IV of horse (Equus 
ferus caballus) (Cooper et al., 2014; Zúñiga, 2015).

7  | MAMMAL FORELIMB REDUC TION

The order Chiroptera contains over 1400 species of bats, the only 
mammals capable of powered flight (Lei & Dong, 2016; “Mammal 
Diversity Database (Version 1.5),” 2021; Simmons et al., 2008). 
Flight evolved early in the bat lineage and was facilitated by sub-
stantial changes to forelimb and pectoral girdle structure, including 
reduction in bone size (Hockman et al., 2008; Simmons et al., 2008). 
Specifically, the length and width of the ulna are reduced relative to 
the radius, with the distal tip of the ulna fused to the radius (Sears, 
2008; Sears et al., 2007). Ulnar reduction decreases wing weight 
without compromising its function (Sears, 2008).

Ulnar width reduction in bats results from differential growth 
rates between the radius and the ulna (Sears et al., 2007). In the 
short-tailed fruit bat (Carollia perspicillata) and the little brown bat 

(Myotis lucifugus), the cartilage condensations that will form the ra-
dius and ulna are initially similar in width (Adams, 1992; Sears et al., 
2007). The relative width of the ulna begins to decrease with the 
onset of ossification, and it continues to narrow as the distal tip fuses 
to the radius (Adams, 1992; Sears et al., 2007). Two processes have 
been suggested to cause ulnar width reduction: (a) abnormal mor-
phology of differentiating cartilage cells or (b) a lower rate of bone 
deposition (appositional growth) (Biga et al., n.d.; Sears et al., 2007).

Ulnar length reduction likely results from modified regulation 
of essential limb patterning genes. In C.  perspicillata, M.  lucifugus, 
and Miniopterus schreibersii (the common bent-wing bat), posterior 
HoxD gene expression is upregulated and prolonged in the develop-
ing wing relative to the hindlimb or mouse limbs (Chen et al., 2005; 
Ray & Capecchi, 2008; Wang et al., 2014). Additionally, the ante-
rior edge of HoxD13 expression is shifted distally, and the posterior 
edge is shifted proximally in the bat forelimb bud (Chen et al., 2005; 
Ray & Capecchi, 2008). HoxD cis-regulatory elements have bat-spe-
cific changes that are not shared with other mammals (Booker et al., 
2016; Ray & Capecchi, 2008). For example, the GCR is a regulatory 
region that drives HoxD gene expression in the mammalian forelimb 
(Ray & Capecchi, 2008). Compared to mouse or human GCRs, the 
Chiropteran GCR has several lineage-specific sequences and drives 
altered expression of HoxD genes when compared to mouse or 
human GCRs (Ray & Capecchi, 2008). Altered expression of HoxD 
genes results in aberrations in ulnar length (Boulet & Capecchi, 
2004; Chen et al., 2005; Hérault et al., 1997; Peichel et al., 1997; Ray 
& Capecchi, 2008; Sears, 2008).

In the Natal long-fingered bat (Miniopterus natalensis), Shh ex-
pression is delayed but spatially expanded in the forelimb bud, 
relative to mouse (Hockman et al., 2008). In experimental studies, 
Shh-knockout mice showed reduced cell proliferation and increased 
cell death in forelimb buds, resulting in a mutant phenotype similar 
to the batwing—a normal radius and a reduced ulna (Ahn & Joyner, 
2004; Chiang et al., 2001; Hockman et al., 2008; Sears, 2008). This 
change in Shh expression might also contribute to the expanded Hox 
gene expression that shrinks the ulna, discussed above (Chiang et al., 
2001; Hockman et al., 2008).

8  | BIRD FORELIMB AND STERNAL 
REDUC TION

The emu, Dromaius novaehollandiae, is a flightless bird with reduced 
sternum, humerus, radius, ulna, and autopodial elements (Bickley & 
Logan, 2014; Farlie et al., 2017; Kawahata et al., 2019; Maxwell & 
Larsson, 2007; Smith et al., 2016; Vokes et al., 2008). Wing mor-
phology is highly variable between and even within individuals. Digit 
III is the only digit retained across individuals, though vestigial dig-
its II and/or IV are commonly fused to digit III (Farlie et al., 2017; 
Kawahata et al., 2019; Maxwell & Larsson, 2007; Vokes et al., 2008). 
The variable forelimb reduction and digit loss suggests that emu 
wing morphology is not constrained (Farlie et al., 2017; Kawahata 
et al., 2019; Maxwell & Larsson, 2007; Vokes et al., 2008).

F I G U R E  6   The gene regulatory network modified in the 
reduction of hindlimb and pelvic elements in cetaceans† and 
sirenians*. Gene symbols in red are not expressed in the hindlimb 
bud. Alternating red and orange lettering indicates that gene 
expression is reduced and terminates earlier than in typical limb 
development. The alternating red and orange arrow indicates that 
the interaction between diminished Shh and Fgf8 results in arrested 
limb development. Modified expression of Pitx1, written in orange, 
is suspected to underlie hindlimb loss and pelvic reduction in 
manatee
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Expression of Tbx5 in the emu wing bud is delayed relative to 
chick, reducing recruitment of progenitor cells in sternal and fore-
limb tissues (Bickley & Logan, 2014; Minguillon et al., 2005; contra 
Farlie et al., 2017). With fewer progenitor cells, rates of proliferation 
and outgrowth are reduced, and the emu wings grow 64% slower 
than chicken wings (Bickley & Logan, 2014; Farlie et al., 2017; Faux & 
Field, 2017; Smith et al., 2016). Notably, the emu wing bud emerges 
after and develops more slowly, than the hindlimb bud (Ahn & Joyner, 
2004; Bickley & Logan, 2014; Butterfield et al., 2009).

Shh expression in the wing is also delayed and decreased relative 
to the emu hindlimb and the chick wing. Two Shh repressors, Msx2 
and Gli3, are upregulated in the emu forelimb relative to its hind-
limb (Figure 7) (Bakker et al., 2013; Smith et al., 2016). Experimental 
expression of Msx2 in the chick wing bud led to a reduction in the 
number and length of wing elements and produced an emu-like 
wing (Ferrari et al., 1998; Smith et al., 2016; Welscher et al., 2002; 
te Welscher, Zuniga, et al., 2002). Gli3 is important for regulating 
digit number, so overexpression could result in digit loss (Litingtung 
et al., 2002; Lopez-Rios et al., 2012; Paese et al., 2021; te Welscher, 
Zuniga, et al., 2002; Zúñiga & Zeller, 1999). Grem1, another gene 
important for digit patterning, is repressed by GLI3 but upregu-
lated and maintained by SHH and HAND2 (Kawahata et al., 2019; 
Litingtung et al., 2002; Panman & Zeller, 2003; Vokes et al., 2008; te 
Welscher, Fernandez-Teran, et al., 2002; te Welscher, Zuniga, et al., 
2002; Zúñiga et al., 1999) (Figure 7). Restriction of Shh expression 
and upregulation of Gli3 in the emu forelimb reduces Grem1 expres-
sion relative to chick, thereby decreasing digit number (Figure 7) 
(Farlie et al., 2017; Kawahata et al., 2019; Lopez-Rios et al., 2012; 
Smith et al., 2016; Vokes et al., 2008).

Nkx2.5 is expressed in the forelimb of early emu embryos but 
not in the chicken, zebra finch, or ostrich wing buds which develop 
into typical three-digit wings (Farlie et al., 2017). Experimental ex-
pression of Nkx2.5 in chick wing buds resulted in reduced distal wing 
elements and emu-like wings (Farlie et al., 2017). Nkx2.5 might also 
influence forelimb reduction in the kiwi and cassowary (Farlie et al., 
2017), two wing-reduced species closely related to the emu (Farlie 
et al., 2017; Faux & Field, 2017; Harshman et al., 2008; Mitchell et al., 
2014; Phillips et al., 2009; Sackton et al., 2019).

The flightless Galápagos cormorant (Phalacrocorax harrisi) has 
a short radius and ulna relative to its humerus (Bickley & Logan, 
2014; Burga et al., 2017). Compared to flying cormorant species, the 
Galápagos cormorant has a deletion of four amino acids in the CUX1 
coding sequence (Burga et al., 2017). In experiments with mouse cell 
lines, the resultant protein was less effective in activating Ihh, a gene 
important for the proliferation and differentiation of cartilage cells 
(Burga et al., 2017; Kronenberg, 2003; Peckham et al., 2003).

9  | BIRD HINDLIMB REDUC TION

In all extant birds and their recent ancestors, the fibula is splinter-
like and reduced, usually around 2/3 length of the tibia (Botelho 
et al., 2016; Paese et al., 2021). Initially, the two cartilaginous 

elements that form the tibia and fibula are approximately equal 
in size (Botelho et al., 2016; Paese et al., 2021). In one pos-
sible explanation, the fibula is reduced because it lacks a distal 
growth plate (Botelho et al., 2016). Without the growth plate, 
the fibula does not maintain a population of immature, proliferat-
ing cartilage cells that drive distal growth because the feedback 
loop between IHH and PTHrP is disrupted. Indian Hedgehog 
encourages the formation of bone from cartilage and the produc-
tion of PTHrP (Botelho et al., 2016). Conversely, PTHrP delays 
cartilage maturation and inhibits IHH production (Botelho et al., 
2016). The distal portion of the fibula does not maintain PTHrP 
expression, but the fibulare acts as a surrogate growth plate early 
in bone development. While the fibulare is appressed to the fib-
ula, it provides PTHrP signaling that inhibits IHH production and 
allows for continued cartilage growth (Botelho et al., 2016). Over 
the course of bone development, the fibulare separates from 
the fibula and PTHrP signaling no longer reaches distal cartilage 
of the fibula (Botelho et al., 2016). Without PTHrP to maintain 
the feedback loop with IHH, the growth of the fibula is slow and 
terminates early, resulting in a short, splinter-like bone (Botelho 
et al., 2016).

Another explanation is that altered Hedgehog signaling dis-
rupts anteroposterior polarity in the developing bird hindlimb 
(Paese et al., 2021). The talpid2 mutant chicks, a 19-bp deletion in 
C2cd3 prevents formation of the repressive form of GLI3 (Paese 
et al., 2021). This mutation leads to ectopic SHH signaling, poly-
dactyly, degradation of digit identity and autopod asymmetry, and 
fibular extension (Paese et al., 2021). That is, in talpid2 chicks, the 
lengths of the tibia and fibula remain similar throughout develop-
ment, while the tibia extends significantly relative to the wild-type 
fibula (Botelho et al., 2016; Paese et al., 2021). Thus, evolutionary 
changes in the regulation of Hedgehog signaling might drive de-
velopment of the reduced fibula in normal birds. This model could 
also explain digit loss in the bird hindlimb (Litingtung et al., 2002; 
Lopez-Rios et al., 2012; Paese et al., 2021; te Welscher, Zuniga, 
et al., 2002; Zúñiga & Zeller, 1999).

F I G U R E  7   Gene regulatory network modified in the reduction 
in the emu forelimb and sternum. Expression of genes in orange 
is reduced while genes in green are upregulated. Orange arrows 
demonstrate decreased activation of Grem1 by Shh while increased 
inhibitory activity is shown in green
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10  | CONCLUSION

Convergence on appendage reduction and loss across vertebrates 
suggests that natural selection has repeatedly favored this pheno-
type. We found that appendage reduction and loss are underlain by 
a mix of shared and unique molecular mechanisms, depending on 
taxon and limb position (Table 2). Sears et al. (2007) noted a simi-
lar pattern in mammalian zeugopod reduction: while the timing and 
mechanism of fibula width reduction is shared between the bat 
C.  perspicillata and mouse, the mechanisms underlying additional 
convergent morphological characteristics vary. For another exam-
ple, Pitx1 expression is repeatedly modified within and among stick-
leback species, suggesting parallel evolution within that lineage. On 
the other hand, altered regulation of Pitx1 does not influence pelvic 
reduction in fugu, nor in any of the other vertebrate groups surveyed 
here (except possibly manatee).

The mechanism most often shared among taxa was modulation 
of Shh expression and signal transduction, which was associated with 
limb reduction in squamates, cetaceans, artiodactylans, bat, and emu. 
The central role of SHH in limb patterning and outgrowth likely in-
fluences in its parallel modification in distantly related vertebrate 
clades. However, the specific molecular mechanisms by which SHH 
levels were altered vary by taxon and limb type. For example, cis-reg-
ulatory mutations attenuated Shh expression in the python hindlimb 
while altered activator (Hand2) and repressor (Msx2 and Gli3) expres-
sion reduced Shh in the cetacean hindlimb and emu forelimb, respec-
tively. Hox genes were similarly implicated in multiple instances of 
appendage reduction or loss, though again modifications differed 
between taxon and appendage type. For example, fugu pelvic fin loss 
resulted from a lack of HoxD9a expression in the pelvic region while 
altered HoxD cis-regulation likely drove bat ulnar reduction.

Perhaps it is unsurprising that vertebrate appendage reduction 
and loss is underlain by both shared and unique molecular mecha-
nisms. Appendage development is controlled by spatially and tem-
porally regulated expression of dozens of interacting genes—a 
complexity that creates potential for numerous routes to appendage 
reduction and loss. However, many key developmental genes have 
pleiotropic effects across the body plan, so evolution could be con-
strained to only a handful of pathways. Such constraint may explain 
the most salient finding of our review: in all cases but one, append-
age reduction and loss resulted not from changes in protein coding 
DNA but from changes to enhancer sequences and limb-specific 
gene expression patterns. The evolutionary importance of regulatory 
mutations is contentious, especially for gain-of-function adaptations 
(Hoekstra & Coyne, 2007). However, our findings support the asser-
tion that regulatory changes represent a major mode of evolution 
because of their repeated role in loss-of-function phenotypes that 
are likely adaptive (Chan et al., 2010; Hoekstra & Coyne, 2007).
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