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MusMorph, a database of 
standardized mouse morphology 
data for morphometric meta-
analyses
Jay Devine et al.#

Complex morphological traits are the product of many genes with transient or lasting 
developmental effects that interact in anatomical context. Mouse models are a key resource 
for disentangling such effects, because they offer myriad tools for manipulating the genome 
in a controlled environment. Unfortunately, phenotypic data are often obtained using 
laboratory-specific protocols, resulting in self-contained datasets that are difficult to relate 
to one another for larger scale analyses. To enable meta-analyses of morphological variation, 
particularly in the craniofacial complex and brain, we created MusMorph, a database of 
standardized mouse morphology data spanning numerous genotypes and developmental 
stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adulthood. To standardize data 
collection, we implemented an atlas-based phenotyping pipeline that combines techniques 
from image registration, deep learning, and morphometrics. Alongside stage-specific atlases, 
we provide aligned micro-computed tomography images, dense anatomical landmarks, and 
segmentations (if available) for each specimen (N = 10,056). Our workflow is open-source to 
encourage transparency and reproducible data collection. The MusMorph data and scripts are 
available on FaceBase (www.facebase.org, https://doi.org/10.25550/3-HXMC) and GitHub 
(https://github.com/jaydevine/MusMorph).

Background & Summary
Understanding how genes, development, and the environment produce variation in complex morphological 
traits is a core challenge in biology with evolutionary and clinical implications. Explanations for the generation 
of variation tend to cohere around the genotype-phenotype map concept. Genetic variation and genetic effects, 
like epistasis and pleiotropy, drive variation in developmental processes that act at different times and scales 
in anatomical context1–3. Specific developmental and genetic mechanisms then operate alongside embedded 
mechanisms, such as nonlinearities4,5 and gene redundancy6, to modulate these effects to express a phenotype7–9. 
Despite recent insights into these phenomena, the developmental-genetic basis for morphological variation 
remains largely unknown, as there are likely many overlapping and coordinated mechanisms involved, each 
with relative contributions10. To help disentangle these mechanisms, it is important to build and integrate large 
phenotypic databases for model organisms11–14. In this work, we present MusMorph, a database of standardized 
mouse morphology data for meta-analyses of morphological variability and variation, particularly in the cran-
iofacial complex and brain.

The laboratory mouse is a useful model organism for studying the mechanisms of morphological variation 
because of the high genetic homology with humans, short gestation, and rich set of tools for manipulating the 
genome in a controlled environment. Unfortunately, phenotypic data are often biased by laboratory-specific data 
collection protocols. The International Mouse Phenotyping Consortium (IMPC, www.mousephenotype.org) was 
born out of a need to determine the relationship between genotype and phenotype with standardized phenotypic 
data. Using micro-computed tomography (µCT) and optical projection tomography, the consortium has studied 
the anatomy of mouse lines heterozygous or homozygous for a single gene mutation, particularly at embryonic 

#A full list of authors and their affiliations appears at the end of the paper. 
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day E9.5, E14.5-15.5, and E18.515–20. Less emphasis has been placed on µCT imaging and analysis of adults and 
mid-gestation (E10 to E11) mutants, where critical developmental events, like fusion of the craniofacial promi-
nences, occur. Mouse lines with normal (non-pathological) levels of variation, such as recombinant inbred strains 
and outbred strains with high heterozygosity21–23, have also been poorly characterized. Quantifying such varia-
tion is important, because it drives disease susceptibility and course of disease in humans.

Recently, model organism phenotyping has transitioned from manual linear measurements to fully auto-
mated computational pipelines. One common approach is voxel-based morphometry24,25. Voxel-based 
morphometry is based on the analysis of deformation fields obtained via image registration. After spatially 
aligning images to an average atlas, the deformation fields can be quantitatively compared between groups on 
a voxel-wise basis to identify differences in morphology. Voxel-based morphometry remains a pillar of shape 
analysis, because it can localize small regions of shape change without any a priori knowledge of the anatomy, 
but it is prone to the multiple testing problem26,27. Another approach is atlas-based geometric morphometrics, 
which instead uses registration fields to automatically derive landmarks, or Cartesian coordinate points that are 
homologous across samples. Geometric morphometrics is central to evolutionary biology and developmental 
biology, among other fields, because landmarks allow for statistically tractable quantifications of morphological 
variation, as well as intuitive visualizations28. These advantages continue to fuel development of novel geometric 
morphometric pipelines and extensions29–33. Yet large-scale morphometric analyses remain rare due to the spar-
sity of standardized landmark data.

Here, we introduce MusMorph, a database of standardized mouse morphology data generated with an 
open-source, atlas-based phenotyping pipeline that integrates techniques from image registration, deep learn-
ing, and morphometrics. We compiled the database (N = 10,056) using µCT scans of mice from a variety of 
strain/genotype combinations and developmental stages, including E10.5, E11.5, E14.5, E15.5, E18.5, and adult-
hood. Most of MusMorph is composed of head morphology data, but there are also whole-body embryo data 
for different integrative analyses. We provide (1) a developmental atlas for each timepoint; (2) a rigidly aligned 
and preprocessed µCT scan, dense anatomical landmarks, and segmentations (if available) for each specimen; 
(3) a set of scripts for transforming and comparing an input scan to an atlas; (4) an approach to validate the 
transformed landmark data and optimize it, if needed. To ensure reproducibility and data sharing, we make the 
data freely accessible from FaceBase34 (www.facebase.org, https://doi.org/10.25550/3-HXMC)35 and our code 
from GitHub (https://github.com/jaydevine/MusMorph). By incorporating substantial developmental and 
genetic variation alongside a rich set of metadata, MusMorph will enable standardized morphometric analyses 
of genotype-phenotypes to better understand the mechanistic basis for morphological variation.

Methods
Mice. We compiled mouse embryos and adults from numerous sources. The mouse lines for the E15.5 and 
E18.5 datasets were generated by the IMPC. These mice were produced and maintained on a C57BL/6N genetic 
background, with support from C57BL/6NJ, C57BL/6NTac or C57BL/6NCrl. More details about husbandry prac-
tices can be found at https://www.mousephenotype.org/impress. The mouse lines for the E10.5, E11.5, E14.5, and 
adult datasets were produced on a variety of genetic backgrounds at different institutions for studies of cranio-
facial variation. We hereafter refer to these lines as the Calgary mice, because they were ultimately imaged at the 
University of Calgary. Specific information about study protocols, such as husbandry practices and genotyping, 
should be gleaned from the MusMorph dataset summaries on FaceBase or the original studies themselves. Each 
dataset within the MusMorph project35 on FaceBase represents a study or set of studies defined by a common 
study design that yielded similar mouse lines. Details about the experimental design were obtained from the 
original studies listed in the “Publication(s)” section of each dataset. In addition, we provide a supplementary 
comma-separated values (CSV) file (Study_Metadata.csv) in the project-wide metadata dataset36 on FaceBase 
that lists the associated studies.

Micro-computed tomography. Sample preparation. Each IMPC embryo underwent a hydrogel stabiliza-
tion protocol37 to prepare for diffusible iodine-based contrast-enhanced µCT (diceCT)38. This involved incubat-
ing the embryo in a hydrogel solution composed of 4% (wt) paraformaldehyde, 4% (wt/vol) acrylamide (Bio-Rad, 
USA), 0.05% (wt/vol) bis-acrylamide, 0.25% VA044 Initiator (Wako Chemicals, USA), 0.05% (wt/vol) saponin 
(Sigma-Aldrich, Germany), and phosphate-buffered saline at 4 °C for 3 days. Following incubation, the air in the 
specimen tube was replaced with nitrogen gas and the tube was immersed in a 37 °C water bath for 3 h. The whole 
embryo was then stained with a 0.025 N to 0.1 N Lugol’s iodine (I2KI) solution (Sigma-Aldrich, Germany) for 
24 h and mounted in agarose for diceCT. This approach has become a popular alternative to magnetic resonance 
imaging because it is faster, cheaper, and still offers remarkable contrast, allowing for high-throughput phenotyp-
ing of soft and hard tissue38.

The Calgary embryos were subjected to different fixation and staining protocols. Each embryo acquired prior 
to 2017 was fixed in a solution of 4% (wt) paraformaldehyde and 5% (wt) glutaraldehyde. The specimen was 
next submerged in the CystoCon Ray II (iothalamate meglumine) contrast agent for one hour to stain external 
morphology. Embryos obtained after 2017 were put through a nucleic acid stabilization protocol that allows 
for examination of RNA in embryos scanned via µCT39. Each embryo was fixed with the PAXgene Tissue FIX 
solution (Qiagen, PreAnalytics, cat #765312), incubated overnight (17 h + /- 1 h) at room temperature, then 
transferred to a solution of PAXgene Tissue STABILIZER prepared to manufacturer specification (Qiagen, 
PreAnalytics, cat #765512). For diceCT, each specimen was placed in a solution of PAXgene Tissue STABILIZER 
and 1% to 3.75% (wt/vol) Lugol’s iodine for 24 h. The head of every embryo was dissected before being mounted 
in either agarose or soft wax, which was covered by a microcentrifuge tube and infused with 50-100 µl of tissue 
stabilizer.

https://doi.org/10.1038/s41597-022-01338-x
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Each Calgary adult was set up with a standardized storage and mounting protocol. The mouse carcass was 
stored at −20 °C after euthanasia. Prior to the day of scanning, the mouse was retrieved and thawed overnight at 
4 °C. The carcasses were then wrapped in foam and placed into a 37 mm diameter sample holder for µCT.

Imaging. The IMPC embryos were imaged at six centers, including the Baylor College of Medicine, Czech 
Center for Phenogenomics, MRC Harwell, Toronto Centre for Phenogenomics, The Jackson Laboratory, and 
University of California, Davis. A 3-D image of each iodine-stained whole embryo was acquired with a Skyscan 
1172 µCT scanner (Bruker, Kontich, Belgium) at 100 kVp and 100 µA. The raw images were initially obtained 
with isotropic voxels but variable spatial dimensions and resolutions, ranging between 0.002 mm to 0.04 mm. 
Image projections were reconstructed into a digital stack using the Feldkamp algorithm40.

The Calgary mice were imaged in the 3-D Morphometrics Center at the University of Calgary. A 3-D 
image of each stained embryo head was obtained with either (a) a Scanco µCT 35 scanner (Scanco Medical, 
Brütisellen, Switzerland) at 45 kV and 177 µA or (b) a ZEISS Xradia Versa 520 X-ray microscope (Carl Zeiss AG, 
Oberkochen, Germany) at 40–50 kV, 4-5 W, and 2 s exposure time. A 3-D image of each adult skull was acquired 
with either (a) a Scanco vivaCT 40 µCT scanner (Scanco Medical, Brütisellen, Switzerland), (b) a Scanco vivaCT 
80 µCT scanner (Scanco Medical, Brütisellen, Switzerland), or (c) a Skyscan 1173 v1.6 µCT scanner (Bruker, 
Kontich, Belgium) at 55–80 kV and 60–145 µA. Like the IMPC data, these original images were obtained with 
isotropic voxels but variable spatial dimensions and resolutions. Embryo image resolutions ranged between 
0.007 mm and 0.027 mm, whereas adult resolutions ranged between 0.035 mm and 0.044 mm. Image projections 
were reconstructed with the integrated Scanco software, the ZEISS XMReconstructor software, or the Skyscan 
NRecon v1.7.4.2 software.

image preprocessing. We preprocessed each image to account for differences in image acquisition that 
would interfere with the atlas-based registration workflow described below (Fig. 1). The preprocessing scripts 
are provided in the MusMorph GitHub repository (https://github.com/jaydevine/MusMorph/tree/main/
Preprocessing). In this preprocessing step, we first converted the reconstructed imaging data (.nrrd, .aim, .tiff) to 
the Montreal Neurological Institute (MNI) .mnc format using file conversion scripts written in Bash and Python 
(see AIM_to_MNC.sh, NII_to_MNC.sh, TIFF_to_MNC.sh, DCM_to_MNC.sh, and NRRD_to_MNC.py). As 
part of the open-source MINC library (http://bic-mni.github.io/man-pages/), the .mnc format is implemented 
using HDF5 (Hierarchical Data Format, version 5), which supports hierarchical data structure, internal compres-
sion, 64-bit file sizes, and other modern features41.

Staining artifacts, such as extreme intensity gradients and variable penetrance, can bias the image registra-
tion process. To minimize intensity inhomogeneities, we applied the N3 method42. Since many of the E15.5 
images had background noise, where the stained scanning medium was indistinguishable from the anatomy, 
we employed a thresholding script in Bash (see Threshold.sh). This script computes a lower anatomical density 
threshold, masks the voxels above this bound and those in proximity via dilation, and equates all voxels outside 
the mask to 0. To ensure the image resolutions and dimensions were consistent with the atlas, we implemented 
an image resampling script in Bash (see Downsample_and_Correct.sh). We also used this script to control for 
differences in bit depth among scanners by including a min-max normalization, which scaled the embryo inten-
sities between 0 and 1. Table 1 outlines the source of the image data, developmental stage, voxel dimensions, 
image resolutions, stage-specific sample sizes, and the presence or absence of atlas anatomical labels. Note that 
the E14.5 images were solely used to create another stage-specific atlas, as they are from a smaller, unpublished 
dataset.

Another essential step to all image registration workflows is the initialization, or a rigid alignment between 
an image pair. Using initialization scripts written in Bash (see Preprocessing.md) and R (Tag_Combine.R), we 
rigidly transformed each image to a stage-specific atlas or, if an atlas did not exist, an arbitrary but stage-specific 
reference image. To determine the rigid transformation matrices, we utilized a semi-automated or strictly auto-
mated approach, depending on anatomical orientation. If the mouse was scanned in a random orientation, we 
rendered a minimum threshold surface in MINC, then manually placed five homologous three-dimensional 
(3-D) landmarks at anatomical extrema (e.g., ears, nose, top of the head, and back of the head), resulting in an 
MNI tag point file (.tag) with landmark coordinates. Next, we concatenated the reference and arbitrary land-
mark matrices, and minimized their 3-D Euclidean distances via least squares. If the specimen was already 
roughly aligned to the reference image, we performed an automated, intensity-based rigid alignment using 
the full registration process outlined below (see the “Image Registration and Label Propagation” section). This 
intensity-based rigid alignment was also repeated for the manually aligned volumes to ensure consistency. With 
the rigid transformation matrices, we resampled each image into their stage-specific reference coordinate space 
using tri-linear interpolation.

reference atlases. We generated a population average atlas for each stage, excluding E15.5 and adulthood, by 
spatially normalizing 25 µCT images of wildtype mice with a group-wise registration workflow43,44 (Figs. 2 and 3). 
A nearly identical workflow was used to create the existing E15.5 and adult atlases. The atlas construction script is 
available in the MusMorph GitHub (https://github.com/jaydevine/MusMorph/tree/main/Processing) and is writ-
ten in Python (see HiRes_Atlas.py or LoRes_Atlas.py). This script produces Bash scripts that can be executed auto-
matically and in parallel on a compute cluster to maximize computational efficiency. Without massively parallel 
computing, the volumetric registrations would need to be performed sequentially, each requiring hours of compu-
tation and a large amount of memory. Before executing the workflow, the user must upload the initialized images 
and registration scripts to a compute cluster. In addition, the user needs to install a MINC Toolkit module onto 
the cluster via Docker (https://bic-mni.github.io/) or GitHub (https://github.com/BIC-MNI/minc-toolkit-v2), or 
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define a pre-existing module, because the scripts utilize the open-source MINC software. An atlas can also be  
generated locally, but it will be significantly slower without massively parallel computing.

Spatial normalization involves an initial affine transformation for global alignment, followed by a deformable 
transformation for non-linear alignment. To account for global variation in location, orientation, and scale, we 
computed a series of multi-resolution (coarse to fine) affine transformations among the images by optimiz-
ing a cross-correlation objective function45. Given that sample-wide pairwise registrations yield an improved 
affine template46, or intensity average, we completed all possible (N = 25*24) pairwise affine registrations, 
then averaged the resulting transformation for each specimen. Using the averaged transformations, we res-
ampled each initialized image into the affine coordinate space with tri-linear interpolation and averaged the 
resulting images to produce an affine template. To correct for local variation in shape, we computed a series of 
multi-resolution non-linear transformations with the ANIMAL (Automatic Nonlinear Image Matching and 
Anatomical Labelling) algorithm47, again optimizing for cross-correlation. This iterative, four-step process 
involves non-linearly deforming each mouse to an evolving template at increasingly higher resolutions, with the 
first template being the affine average and the next three being improved versions of the non-linear average48. 
The final product is a stage-specific average with excellent contrast and a high signal-to-noise ratio.

Fig. 1 Schematic overview of the phenotyping pipeline. Specimens were staged, prepared (fixed/stored), 
stained, and imaged with different but standardized lab-specific protocols. While the E10.5, E11.5, E14.5, and 
adult specimens were obtained in Calgary, the E15.5 and E18.5 specimens were acquired from the IMPC. To 
account for differences in image acquisition (e.g., intensity artifacts, image resolution and dimensions, and 
position), each image was subjected to a series of preprocessing steps. Next, each preprocessed image was non-
linearly registered to a stage-specific reference atlas with a detailed set of landmarks and segmentations. We 
recovered deformation fields, landmarks, and segmentations (if available) for each specimen. To optimize the 
landmark predictions of poorly registered specimens, as measured by cross-correlation similarity, a downstream 
neural network was used.

Source Stage Anatomy X Y Z Resolution (mm) N Landmarks Segmentations

Calgary E10.5 Head 220 295 350 0.012 434 ✓ ×

Calgary E11.5 Head 502 503 390 0.012 531 ✓ ×

Calgary E14.5 Head; Body 486 567 723 0.027 84 (84) ✓ ×

IMPC E15.5 Head; Body 486 567 723 0.027 1426 ✓ ✓

IMPC E18.5 Head; Body 293 414 667 0.054 1657 ✓ ×

Calgary Adult Skull 642 586 979 0.035 6000 (154) ✓ ✓

Table 1. Summary of imaging data. Source is where the image was acquired. Stage is the age of the specimen 
at sacrifice. Anatomy is the labelled and scanned anatomy. X, Y, and Z are the voxel lengths of each atlas axis. 
Resolution is the isotropic resolution of each scan. N is the sample size, with the number of scans awaiting 
publication of primary research in parentheses. Landmarks and segmentations indicate the presence (✓) or 
absence (×) of labels on the stage-specific atlas.

https://doi.org/10.1038/s41597-022-01338-x
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Since the goal of MusMorph was to aggregate landmark data for morphometrics, and our primary imaging 
data are head scans, we focused on labelling each atlas head surface with a standardized landmark configuration 
(Figs. 2 and 3). Specific information about the number of landmarks and their anatomical definitions can be 
found below in the “Data Records: Landmarks” section. To generate the landmarks, we first rendered a mini-
mum density isosurface in MINC, which uses ITK’s marching cubes algorithm, and saved the 3-D rendering as 
a Stanford PLY (.ply) file. We then used 3D Slicer49 or the MINC Toolkit to acquire a landmark configuration on 
each surface that provided a comprehensive representation of shape50. For the embryos, we used 3D Slicer and 
the SlicerMorph extension32 to identify sparse landmarks and interpolate landmark patches of variable density 
in between, depending on the size of the area, resulting in dense coverage of the head. This also ensured that the 
semilandmark patches were equivalent, allowing for a morphospace into which all specimens may be superim-
posed. Note that we privilege the term equivalent over homologous here, because the developmental origin of 
dense tissue regions between fixed landmarks is more ambiguous. Because semilandmark patch equivalence 

Fig. 2 Embryo reference atlases. Sagittal cross-sections of the E10.5 (www.facebase.org/id/6-F00W), E11.5 
(www.facebase.org/id/6-F012), E14.5 (www.facebase.org/id/6-F016), E15.5 (www.facebase.org/id/6-F6SE), 
and E18.5 (www.facebase.org/id/6-F6T4) atlas volumes are shown to display the stained internal anatomy. 
Each head surface was labelled with a dense landmark configuration to capture global and local aspects of 
morphology. Lateral, superior, and anterior views of each head isosurface are shown. The equivalent semi-
landmark patches (small, color-coded points) were interpolated between a set of sparse homologous landmarks 
(large, red points). They can be slid and resampled for morphometric analyses.
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was not a consideration for the adults, we landmarked the adult atlas in MINC using built-in display tools, again 
ensuring sparse and dense landmark coverage.

Shared developmental pathways lead to correlated morphological variation, or morphological integra-
tion51–57. To enable analyses of integration, we added landmark configurations and segmentations to different 
regions of the adult skull atlas. Specifically, we manually segmented the adult cranium, mandible, and cranial 
endocast (i.e., a proxy for the brain) in MINC, then rendered these segmentations as isosurfaces before land-
marking them with a dense configuration. Once again, the landmark details are described below in the “Data 
Records: Landmarks” section. The segmentations may be used for surface-based analyses58, measures of size 
(e.g., volume or surface), or as masks to reduce the shape dimensionality of a voxel-based morphometry anal-
ysis. Unlike the adult atlas, the embryo atlases do not come with segmentations due to the scope of this work, 
apart from the pre-existing E15.5 atlas, which has 48 manually segmented structures (http://www.mouseimag-
ing.ca/technologies/mouse_atlas/mouse_embryo_atlas.html).

image registration and label propagation. We pairwise registered each image to their stage-specific 
atlas to obtain a composite (affine and non-linear) transformation for label propagation (Fig. 1). Like the atlas 
workflow described above, the registration scripts are available in the MusMorph GitHub (https://github.com/
jaydevine/MusMorph/tree/main/Processing) and are written in Python (see HiRes_Pairwise.py or LoRes_
Pairwise.py). The purpose once more is to produce Bash scripts en masse for massively parallel computing on a 
compute cluster due to the computational requirements of volumetric deformable registration and anatomical 
labelling. Only the initialized images and registration scripts need to be uploaded to the cluster to execute the 
workflow. While the pairwise registrations involved the same multi-resolution affine alignment described above, 
the non-linear alignment differed. Here, we implemented the geodesic SyN (Symmetric Normalization) algo-
rithm59, because it was previously validated for atlas-based landmarking and morphometrics of mouse models44. 
The SyN registrations were optimized using cross-correlation. After registration, we used labelling scripts written 
in Bash and produced via Python (see Label_Propagation.py) to recover the non-linear transformations, concat-
enate them with the affine transformations, invert them, and propagate the atlas labels to the rigid space of each 
image.

Neural network shape optimization. Although top-performing registration algorithms provide an 
effective and generalizable way to automatically label anatomy, there are instances where outliers and problem-
atic landmarks can alter shape representations. This is particularly true for model organisms, where mutant 
phenotypes may show little to no resemblance with an atlas. To demonstrate how biological signal can be 
restored, we implemented a supervised deep learning workflow available in the MusMorph GitHub (https://
github.com/jaydevine/MusMorph/tree/main/Postprocessing), which employs scripts written in R and Julia (see 
GPA_and_Projection.R and Landmark_Optimization.jl)60. Using a subset of 68 sparse adult craniofacial land-
marks (N = 2,000) described in previous work61–65, we trained a deep feedforward neural network to learn a 
domain-specific loss function that minimizes automated and manual shape differences. The sparse landmark 

Fig. 3 Adult reference atlas. Cranium (top), mandible (middle), and endocast (bottom) surfaces were 
segmented from the skull atlas (www.facebase.org/id/6-F6VC), then labelled with a dense landmark 
configuration to capture global and local aspects of morphology. Lateral, superior, and anterior views of each 
segmentation isosurface are shown. There are sparse landmarks (red) as well as surface (blue) and curve (green) 
semi-landmarks that can be slid and resampled for morphometric analyses.

https://doi.org/10.1038/s41597-022-01338-x
http://www.mouseimaging.ca/technologies/mouse_atlas/mouse_embryo_atlas.html
http://www.mouseimaging.ca/technologies/mouse_atlas/mouse_embryo_atlas.html
https://github.com/jaydevine/MusMorph/tree/main/Processing
https://github.com/jaydevine/MusMorph/tree/main/Processing
https://github.com/jaydevine/MusMorph/tree/main/Postprocessing
https://github.com/jaydevine/MusMorph/tree/main/Postprocessing
http://www.facebase.org/id/6-F6VC


7Scientific Data | (2022) 9:230 | https://doi.org/10.1038/s41597-022-01338-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

numbers amenable to optimization (see Optimization_Order.csv)36 are available on FaceBase. We focused on 
the adults because that was the only stage with a large existing set of homologous manual landmarks for training.

We tested the network predictions on a random subset (N = 500) of adult skulls described further in the 
“Technical Validation” section. To help others initialize the network without having to retrain it, we provide the 
adult network model (Calgary_Adult_Cranium_Model.bson) and weights (Calgary_Adult_Cranium_Weights.
bson) in the Binary JSON (.bson) file format on GitHub. We also make available the optimized sparse shape pre-
dictions for the entire adult crania dataset (Adult_Cranium_Sparse_Landmarks.csv)36. Although we focused on 
adults, this optimization strategy is generalizable, so other research groups with manual landmark data on any 
structure of the atlases may use the network architecture to improve outlier predictions.

Data records
Specimen metadata. Each specimen in the MusMorph database35 is associated with a rich set of identifiers to 
accommodate morphometric analyses using multiple factors and/or covariates. Alongside detailed metadata descrip-
tions in FaceBase, we provide the specimen metadata as a supplementary CSV file (MusMorph_Metadata.csv)36 for 
convenience and to include auxiliary fields. Table 2 enumerates the metadata and Table S1 summarizes the metadata 
distributions for each dataset on FaceBase.

Figure 4a,b illustrates the distributions of sex, strain type, and genotype across the embryo and adult data-
sets. Sex is well-annotated for the E15.5, E18.5, and adult datasets, but is missing (“NA”) for many of the E10.5 
and E11.5 specimens. While most of the embryo mouse models were produced on an isogenic inbred back-
ground, particularly C57BL/6N, strain diversity is a focal point of the adult datasets. Among the nine adult 
strain types provided, there are 98 unique background strains. The majority are recombinant inbred lines (e.g., 
the Collaborative Cross dataset66), wild-derived crosses (e.g., the Hybrid dataset67), and outbred lines (e.g., the 
Diversity Outbred dataset68). We have included 459 unique genotypes for the embryo datasets, most of which 
derive from the IMPC dataset69, as well as 179 genotypes for the adult datasets. A minority of specimens, includ-
ing several embryos in the Ap270, B9d71, and Bulgy72 datasets as well as a few adults in the Brain-Face73 dataset, 
have unknown genotypes (e.g., “-/-;NA” and “ + /-;NA” in double knockout designs or “NA” and “ + / + or + /-” 
in single knockouts) due to genotyping complications in the past. Specimens homozygous for a single gene muta-
tion predominate the embryo datasets, whereas normal wildtype variants comprise the bulk of the adult datasets. 
Figure 4c shows the developmental stages represented in MusMorph. Of the 10,056 specimens processed, 40% 
are embryos and 60% are adults, many of which have just finished maturing around postnatal day 90. All speci-
mens without a recorded stage (“NA”) are mature adults.

It is often desirable to compare mutants to their wildtype counterparts from the same sample because back-
ground strains vary. To preserve sample provenance where possible, specimens that are wildtype for a given 
mutation will have the same gene symbol as their heterozygote and homozygote littermates. For wildtype spec-
imens without litter information, like the IMPC dataset, their genotypes are equated to background strain. 
Mouse strain nomenclature follows the MGI guidelines, except when the strain design is unknown and has no 
MGI ID (e.g., novel hybrid backcrosses). We also abbreviate genotypes for complex strain designs using MGI 
synonyms if available. Furthermore, while most wildtype specimens fall within the control experimental group, 
there are cases where they can exhibit mutant-like phenotypes and be categorized as such. One example in 
MusMorph is the artificial selection Longshanks dataset74, which through many generations of artificial selec-
tion produced wildtype specimens with extreme tibia and craniofacial phenotypes75,76.

We selected the above identifiers, because they tend to explain a significant amount of morphological vari-
ation in morphometric analyses. For instance, many structures in the mouse are sexually dimorphic, including 
the shape of the brain77 and craniofacial complex78, cortical bone size and strength79, adipose tissue distribu-
tion80, and feto-placental growth81,82, to name a few. It is also known that classical laboratory strains, such as 
those in the Strain Comparison dataset83, exhibit naturally occurring craniofacial phenotypes84. Moreover, gene 
mutations can interact with a background strain via epistasis to produce different phenotypes85–87, like those in 
the Spry dataset88. Another key driver of variation is developmental stage, as differences in age often define a 
principal axis of allometric variation via correlations with size and/or shape89–93. Given the ubiquity of allome-
try, these correlations can be found across most MusMorph datasets (Fig. 4d). Finally, numerous studies have 
reported the phenotypic outcomes of single gene mutations, environmental perturbations, and how zygosity 
modulates these effects94–96. These identifiers have corresponding images, landmarks, segmentations, and defor-
mation fields for morphological analyses (Fig. 4d,e).

images. We provide the atlases and initialized images for each specimen in the MNI .mnc format. The nam-
ing convention for the atlas volumes is < Source > _ < Stage > _ < Anatomy > _Atlas .mnc. They are categorized 
as “Imaging Data” in the project-wide dataset36 on FaceBase. The naming convention for the initialized vol-
umes is < Biosample > .mnc, where Biosample is the name of the specimen in the metadata (see the “Specimen 
metadata” section). One exception is the naming convention for the subset of thresholded E15.5 images, which 
is < Biosample > _Thresh.mnc. These volumes are also categorized as “Imaging Data” across the MusMorph data-
sets on FaceBase. Each .mnc file has four key attributes: 1) a named dimension (xspace, yspace, zspace), 2) length 
(number of voxels on each dimension), step (resolution), and start (origin). MINC defines a voxel and world 
coordinate system, so one can move between them with the simple “voxeltoworld” and “worldtovoxel” MINC 
commands. If users want to convert between .mnc and different file formats (e.g., raw data, DICOM, NIfTI, 
Analyze, ECAT, TIFF, Concorde, VFF), there are a variety of other Bash commands available (http://bic-mni.
github.io/man-pages/). While the raw IMPC images are freely accessible in the NRRD (.nrrd) format at https://
www.mousephenotype.org/data/embryo, the raw Calgary images are available upon request in the AIM (.aim) 
or TIFF (.tiff) formats.

https://doi.org/10.1038/s41597-022-01338-x
http://bic-mni.github.io/man-pages/
http://bic-mni.github.io/man-pages/
https://www.mousephenotype.org/data/embryo
https://www.mousephenotype.org/data/embryo
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Transformations. For each pairwise registration, we recovered an inverted non-linear and compos-
ite (affine and non-linear) transformation. Given the file sizes of the non-linear deformation fields (~3 GB 
on average × 10,000 = 30 TB), we make the transformations available upon request. The deformation fields 
and composite transformations are in the MNI .mnc and .xfm formats. Each .mnc file shares the same image 
attributes described above with an additional named dimension called vector_dimension which describes the 
non-linear displacement vectors. Each .xfm file contains a header and affine transformation matrix. The naming 
convention for the deformation fields is < Biosample > _ANTS_nl_inverted_grid_0.mnc and < Biosample > _
ANTS_nl_inverted.xfm, whereas the composite transformations are called < Biosample > _origtoANTS_nl_
inverted_grid_0.mnc and < Biosample > _origtoANTS_nl_inverted.xfm. “ANTS” denotes the algorithm and “nl” 
stands for “non-linear”. Much like the images, the transformations for the subset of thresholded E15.5 volumes 
have “Thresh” appended to the < Biosample > name.

Non-linear deformation fields describe the displacements of each target image voxel to each reference image 
voxel97. By calculating the Jacobian determinant J for every point p x y z( , , ) in the deformation field,
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one can quantify the magnitude of morphological change at each voxel (Fig. 4e). A Jacobian determinant of 
1 indicates no volume change, whereas determinants greater than 1 indicate volume expansion and determi-
nants between 0 and 1 indicate volume shrinkage. These determinants can also be scaled and sheared with a 
composite transformation to examine voxel-wise differences in form. Jacobian determinants can be analyzed 
with voxel-wise tests, such as an ANOVA with a false-discovery rate correction, to map statistics onto the anat-
omy, a technique otherwise known as statistical parametric mapping (see VBM_Example.R). For example, in 
Fig. 4e, we use the RMINC R package (https://github.com/Mouse-Imaging-Centre/RMINC) to show significant 
voxel-wise changes (shrinkages) in form between Ghrhr mutants98 and wildtype specimens, as well as voxel-wise 
variances in form associated with this mutation.

Landmarks. We labelled each atlas, and thus every registered mouse embryo and adult, with a standardized 
landmark configuration (Figs. 2 and 3). The atlas landmark files are named < Source > _ < Stage > _ < Anatomy 
> _Atlas_Landmarks.tag. They are stored as “Imaging Data” alongside the atlas volumes on FaceBase36. The indi-
vidual specimen landmark files are named < Biosample > _ < Anatomy > _Landmarks.tag and are similarly cate-
gorized as “Imaging Data” across FaceBase. The MNI.tag file format is an ASCII file which stores the coordinates 
of each landmark in the millimetric world space of the volume. Each .tag file has a header above an array of p 
landmarks (rows) in k dimensions (columns). These files can be imported into R individually or collectively as a 
3-D array using the tag2array function in the custom morpho.tools.GM package99. Alternatively, the user can 
employ the read.csv function in R to import a vectorized .csv file. For every developmental stage and anatomical 
region, we provide a landmark .csv file in the “Supplementary Files” section of the project-wide dataset on 
FaceBase36, each of which contains a matrix of n specimens (rows) and ×p k landmark coordinate dimensions 

Identifier Description

Biosample The name of the specimen, which corresponds to the image and label names.

Strain The background strain of the specimen.

Strain_MGI_ID The MGI ID for the strain.

Strain_Type An attribute of strain that describes whether it is inbred or outbred and lab-derived or wild-derived.

Gene The gene symbol as provided by MGI.

Gene_MGI_ID The MGI ID for the gene.

Zygosity Whether the specimen is homozygous, heterozygous, wildtype, or otherwise (e.g., flox/null) for a given 
gene mutation.

Genotype A concatenation of the gene symbol and zygosity symbol.

Anatomy The region of anatomy that has been scanned and labelled.

Treatment An environmental effect that the specimen has been treated with.

Experimental Group An identifier derived from genotype that denotes whether the specimen is a control or mutant.

Sex The sex of the specimen.

Stage The age of the specimen in days, either embryonic (E) or postnatal (PN).

Life_Phase An identifier derived from stage that indicates life phase (e.g., gestation vs. adulthood).

Dataset The published or unpublished study (see Study_Metadata.csv) the sample is associated with.

Availability Whether the images and phenotypic data are available or pending publication of a primary research article.

Table 2. Summary of metadata identifiers.

https://doi.org/10.1038/s41597-022-01338-x
https://github.com/Mouse-Imaging-Centre/RMINC
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Fig. 4 Summary of metadata. (a) Distribution of sex, strain type, and genotype for the embryo datasets.  
(b) Distribution of sex, strain type, and genotype for the adult dataset. (c) Sample sizes of each developmental 
stage included in the database. All “NA” specimens are mature or middle-aged adults. (d) Left: Example 
landmarks and segmentations of the adult skull and endocast (brain). Middle/Right: Morphological analyses, 
such as PCA and allometry regressions, that one might perform with a dense landmark dataset. Each color 
in the plot represents a different mouse genotype. (e) Left: Slice visualization of a non-linear deformation 
grid. Middle/Right: Morphological analyses, such as statistical parametric mapping, that one might perform 
with a deformation field. The t values show significant (p < 0.05) voxel-wise differences in form (i.e., volume 
shrinkage) in Ghrhr homozygous mutants relative to wild type, whereas the variance heatmap shows voxel-wise 
variances in Ghrhr mutants.

https://doi.org/10.1038/s41597-022-01338-x
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(columns). Importantly, there are dense semi-landmarks and sparse fixed landmarks for local and global geomet-
ric morphometric analyses of craniofacial, endocast (brain), and mandible morphology. In Fig. 4d, for instance, 
we show craniofacial shape morphs along the first principal component (PC) in an adult subsample, as well as 
allometry regressions which relate craniofacial shape to size.

The embryo landmarks are equivalent across stages. Table S2 describes the sparse embryo landmarks and 
their biological definitions. Table S3 lists the embryo semi-landmark patches and their density, both of which are 
based on the sparse landmarks. The stage-specific semi-landmark patch files can also be found as tab-separated 
value (TSV) files on GitHub (https://github.com/jaydevine/MusMorph/tree/main/Postprocessing/Data/
Atlases). Each embryo has 22 sparse homologous landmarks within their larger dense configuration. To per-
form a sparse landmark shape analysis, users may subset the first 22 rows of each 3-D array. Since there are three 
additional sparse landmarks for the E15.5 and E18.5 specimens, rows 23 to 25 may be included for stage-specific 
analyses or excluded for ontogenetic analyses.

The adult landmarks are simply equivalent within stage (i.e., all postnatal ages). Tables S4, S5, and S6 describe 
the sparse adult craniofacial, endocast, and mandible landmarks, respectively, as well as their biological defi-
nitions. While the adult curve semi-landmarks and surface semi-landmarks are not patch based, they can be 
slid and resampled using the R scripts on GitHub (see Calgary_Adult_Cranium_Sliding_Semis.R, Calgary_
Adult_Mandible_Sliding_Semis.R, and Calgary_Adult_Endocast_Sliding_Semis.R) to mimic patches or any 
other structure. Much like the embryos, the sparse landmarks are the first 93, 12, and 19 rows of the cranium, 
endocast, and mandible 3-D arrays, respectively, and can be partitioned for a sparse shape analysis. If users want 
to generate new landmarks, such as internal landmarks or whole-body landmarks, they can use a script (see 
Label_Propagation.py), the inverted composite transformations (see the “Transformations” section), and a local 
or remote compute cluster to propagate the landmarks to an initialized image. To promote standardization, we 
encourage users to add new landmark subsets to the pre-existing configurations.

Segmentations. We provide segmentation labels for the E15.5 and adult atlases and specimens to 
support alternative morphological analyses, such as 3-D visualizations, voxel-based morphometry, volu-
metric size comparisons, and surface-based image processing pipelines. Other stages do not have segmenta-
tion labels due to the scope of this work. The segmentations follow the same naming conventions described 
above: < Source > _ < Stage > _Atlas_Segs .mnc and < Biosample > _Segs.mnc. The atlas segmentations are avail-
able as “Imaging Data” on FaceBase36, as are the individual segmentation files across various MusMorph datasets. 
The published E15.5 atlas contains 48 whole body segmentations (http://www.mouseimaging.ca/technologies/
mouse_atlas/mouse_embryo_atlas.html)48, while the adult atlas comes with cranium, endocast, and mandible 
segmentations. Each label file is a .mnc volume of integers that matches the dimensionality of the image. To visu-
alize the adult segmentations, for example, the user may load the atlas and label files together and input an integer 
of 1 to render the endocast, 2 for the cranium, and 3 for the mandible. As with new landmarks, there is the poten-
tial to resample new atlas segmentation labels into the initialized space of any image using the composite transfor-
mations (see the “Transformations” section) and a local or remote compute cluster (see Label_Propagation.py).

technical Validation
Cross-correlation and root mean squared error. We computed intensity-based, pairwise registrations 
between each target image (I) and a reference atlas (J) by optimizing a normalized cross-correlation (NCC) sim-
ilarity metric:

=
∑

∑ ∑
.∈Ω

∈Ω ∈Ω

NCC I J
I J

I J
( , ) p p p

p p p p

( ) ( )

( )
2

( )
2

Normalized cross-correlation is calculated for all voxel positions p over a discrete domain ( ∈ Ωp ). If the 
domain is the entire 3-D volume and =NCC I J( , ) 1, the deformed target image and reference image are per-
fectly aligned. To assess the quality of each registration, we recorded the normalized cross-correlation between 
each deformed target image and the atlas using code in the labelling scripts (see Label_Propagation.py). 
Unfortunately, it is difficult to know whether the final registration correlations are “good” or “bad” without relat-
ing them to the quality of the labels collected. We investigated the relationship between landmark root mean 
squared error and cross-correlation in the adult crania training set above to build a quality assessment model. 
Letting 
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After computing the root mean squared error for each specimen, we regressed these values on their corre-
sponding cross-correlation values with linear, squared, and cubic cross-correlation terms (Fig. 5a). We found 
a statistically significant non-linear relationship (R2 = 0.3, p < 0.001), such that cross-correlation values below 
0.90 resulted in exponentially higher landmark errors. The average root mean squared error was 0.23 mm (95% 
CI ± 0.002 mm). This mean error is comparable to manual landmark intra-observer detection errors across 
the skull, which tend to be 0.25 mm or less44,50. To verify registration quality across the rest of the database, we 
calculated cross-correlations for all specimens and stages. The mean cross-correlation values and their standard 
deviations for E10.5, E11.5, E15.5, E18.5, and adulthood were 0.94 ± 0.07, 0.96 ± 0.04, 0.93 ± 0.02, 0.93 ± 0.12, 
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and 0.95 ± 0.02, respectively (Fig. 5a). These values are on par or higher than those reported in previous mouse 
registration studies100 and speak to the reproducibility of this approach for analyzing variable morphology.

Covariance patterns and the mean shape. We quantified differences in covariance structure and the 
sample mean shape between our baseline automated landmarks, the optimized neural network landmarks, and 
the manual landmarks. To analyze covariance similarity, we projected the automated configurations into the 
manual PC space and correlated the uncentered PC scores. Figure 5b shows automated and manual correlations 
for the first 10 PCs (65.1% of the total variance). The average correlation within PCs for the baseline automated 
configurations was r = 0.6. This measure is biased downwards by lower order automated PCs, which tend to cap-
ture residual covariance of the first manual PC. The average correlation within PCs for the optimized automated 
configurations was r = 0.8, suggesting a restoration of signal among the major PCs.

To analyze mean shape deviations, we computed the grand mean shape for the manual landmarks and 
deformed it to the automated mean shapes via thin-plate spline. We then used the Morpho package101 in R 
to generate a deformation heatmap of Procrustes distances at every vertex of the deformed mesh (Fig. 5c). 
Procrustes distance is equivalent to the root mean squared error between two configurations in shape space. 
The total distance between the baseline automated mean and manual mean was 0.05, whereas the distance 
between the optimized automated mean and manual mean was 0.01. Visually, the baseline automated mean 
shape is largely indistinguishable from the manual mean shape, apart from several known problematic areas44. 
First, the anterior extent of the frontonasal prominence is underestimated. Second, the shape of the foramen 
magnum is altered. Third, the lateral extent of the frontal bone is underestimated, likely because there are no 
sparse landmarks to interpolate there; however, this area is well-covered by the dense landmark configurations. 
Optimization successfully corrected errors at these problematic locations.

Outliers and stage-specific shape distributions. For each stage, we calculated the Procrustes distance 
between the mean shape and every configuration to obtain shape distributions and identify outliers (Fig. S1). We 
defined outlier shapes as those with a Procrustes distance above Q IQR1 53 + . × , where Q3 is the third quartile 
and IQR is the interquartile range. Next, we displayed a minimum threshold isosurface of each outlier image 
alongside its landmarks to assess the errors. Landmark (.tag) files with clear head registration errors were 
removed. We observed most errant outlier landmark configurations in the E15.5 and E18.5 embryos, which 
underwent whole-body registrations. Since the orientation of the head relative to the body cannot be standard-
ized in embryos, the whole-body registrations and inherent constraints of spatial normalization resulted in local 
registrations errors if their orientation was markedly different from the atlas.

Eliminating problematic outliers with distance distributions is a global solution but not always a local one. 
For example, if a landmark configuration hardly deviates from the mean on average, yet still has several land-
marks with high detection errors, its distance to the mean could be small but its shape distinct. We performed 
a Principal Component Analysis on each stage-specific landmark dataset (Figs. S2 and S3) to identify such 
localized errors, assuming the first PC would capture distinctly problematic shapes. Figure. 6 shows the resulting 
shape distributions along PC1 for each stage. Here, we morphed a surface of the mean shape to each extreme 
via thin-plate spline and visualized the outputs. If the deformed surface was unusual, we displayed the image 
and landmarks as above, removed the errant landmark (.tag) file if necessary, and repeated this process until the 
prediction was correct.

Usage Notes
Why MusMorph? The goal of MusMorph was to create a database of standardized mouse morphology data 
using an automated, high-throughput, and open-source phenotyping pipeline. By combining developmental 
atlases with a registration and deep learning framework, we constructed common coordinate systems into which 
various phenotypic data can be integrated. We primarily focused on acquiring morphological data, including 
anatomical landmarks, segmentations, and deformation fields, for the craniofacial complex and brain. However, 
we also generated whole body data for other integrative analyses of late-gestation embryos. To enable novel mor-
phometric analyses of genotype-phenotype maps, we utilized mouse models with substantial developmental and 
genetic variation. Paired alongside other key metadata, such as strain and sex, MusMorph provides the commu-
nity with a unique opportunity to disentangle the mechanistic basis for morphological variation.

While sparse landmarks are invaluable for geometric morphometrics, there are scenarios where local shape 
change can be poorly represented. More ambiguous anatomy, such as curves and surfaces, cannot be suffi-
ciently captured with fixed anatomical landmarks, and semi-landmarking each specimen can be tedious and 
error-prone. Our standardized sparse and dense landmark datasets can enable global and local shape analy-
ses102,103, an area in geometric morphometrics historically overlooked. Equivalent dense landmark patches across 
the embryo datasets will also permit joint superimposition of multiple stages into a common shape space for 
increased statistical power as well as analyses of ontogeny (Fig. S4). In addition to landmarks, we make the cor-
responding deformation fields available on an ad hoc basis to support voxel-based meta-analyses of morphology. 
Despite its ubiquitous application in neuroimaging, voxel-based morphometry is rarely seen in fields that study 
hard tissue, such as evolutionary developmental biology, anthropology, and paleontology. These deformation 
fields will let one examine internal and external tissue interactions within anatomical context. Finally, we include 
anatomical segmentations for several stages, which can be used to restrict the dimensionality of a voxel-wise 
analysis, calculate the size (e.g., volume or surface area) of a structure, or perform a surface-based morphometry 
analysis. If users are dissatisfied with the coverage of existing landmarks and segmentations, they can modify the 
atlases and use the image transformations to generate new labels.

We have made the data and scripts freely available at FaceBase (www.facebase.org, https://doi.
org/10.25550/3-HXMC)35 and GitHub (https://github.com/jaydevine/MusMorph) to promote transparency, 
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Fig. 5 Validation of adult crania test set. (a) Left: Regression of automated-manual Euclidean distances (error) 
on cross-correlation, a measure of the final target-reference image similarity. Right: Boxplots showing the 
distribution of cross-correlation values within each developmental stage. (b) Correlation of automated and 
manual PC scores. Left: Baseline automated PC correlations. Right: Optimized automated PC correlations.  
(c) Mean shape deviations between the automated and manual datasets. Red arrows indicate error prone areas.
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reproducibility, and future data aggregation. Completely open-source efforts like MusMorph are critical for 
standardizing phenotypic datasets. Unlike the field of genomics, which has been revolutionized through stand-
ardized sequencing and data crowdsourcing, phenomics continues to be limited by one-off, self-contained stud-
ies that cannot be related to one another. Standardized morphological datasets will allow research groups to, for 
instance, investigate the effects of a gene mutation alongside other mutants or wildtype strains in a common 
morphospace. The same can be said for other significant morphological factors and covariates, such as sex and 
age. Common morphospaces will further encourage multimodal data integration across the phenomic hierar-
chy, ranging from cellular and developmental phenotyping with light sheet microscopy104 to tissue phenotyping 
with magnetic resonance imaging and contrast-enhanced computed tomography38. Large phenotypic datasets 
will ultimately give us the statistical power needed to interrogate mechanisms that bias and generate morpho-
logical variation.

Sources of error and potential limitations. Staining artifacts are a drawback of contrast-enhanced com-
puted tomography. Among the largest sources of registration error were poor contrast and background noise, 
particularly in the E15.5 dataset. Variable stain penetrance and inadequate contrast can underrepresent anatomy, 
whereas background noise can masquerade as anatomy and deceive the registration, even if the alignment is 
constrained with a mask. We mitigated labelling errors by registering thresholded images and by employing 
other preprocessing techniques, such as intensity bias correction and normalization. However, in some cases, 
the intensities of the scanning tube could not be distinguished from the specimen, leading to surface landmark 
errors. Another spatial alignment problem that was difficult to reconcile was variation in articulated anatomical 
positions. For example, head orientation relative to the body varied in the E15.5 and E18.5 datasets, and mandi-
ble orientation relative to the skull sometimes differed in the adult dataset. We chose to register the entire scan 
instead of separate segmentations, masks or cropped volumes, because a) we observed no significant differences 
in average registration quality, b) a single registration field is computationally more feasible to generate, store, and 
use downstream and c) a single atlas with a detailed set of labels is better for data standardization.

Non-linear alignment and labelling errors may occur around extreme anatomical points with high varia-
bility. To demonstrate how automated landmark error can be reduced, we implemented a neural network that 
minimized automated and manual craniofacial shape differences. Since the endocast, mandible, and embryo 
datasets do not have manual landmark training data, they cannot be optimized. However, if other investigators 
have training data, a network could be built to correct sparse phenotyping errors in areas of high morpholog-
ical variability. Lastly, it is important to consider the computational time and memory needed for volumetric 
registration. To integrate new data, we strongly encourage users to parallelize their work on compute clusters.

Fig. 6 Principal Component Analysis of stage-specific shape data. The mean shape (center) was deformed to 
the minimum (left) and maximum (right) extremes of PC1. Every morph is shown with anterior and lateral 
views. Each row represents a different developmental stage, ranging from E10.5 to adulthood.
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Future development. The majority of MusMorph is composed of head data, because we had reservations 
about registering whole body data. Now that we have observed no significant differences in registration quality 
among datasets, on average, we plan to experiment with more whole-body data for embryos and adults. Another 
area we intend to improve is our developmental coverage. Despite sampling across most of development, we 
recognize that additional embryo timepoints (e.g., E9.5 and E12.5-14.5) are needed, as are higher sample sizes 
throughout mid-gestation and early adulthood. The developing mouse craniofacial complex, for example, under-
goes immense growth during the first 30 days after birth105. Early postnatal datasets will be critical for asking 
questions about size and ontogenetic allometry. Finally, to complement our large sample of homozygous embryo 
mutants, we hope to introduce more wildtype and heterozygous embryos for analyses of normal variation. 
Heterozygotes have not been a focus of the IMPC, so there is ample opportunity to reveal previously unrecog-
nized embryo phenotypes with standardized MusMorph comparisons. The adult dataset, by contrast, needs to be 
balanced with more homozygous mutants to better understand how mutations of large effect influence morpho-
logical variance and other related phenomena, such as integration and modularity.

Data access. MusMorph is categorized as a “Project” on FaceBase. Projects can be found in the “Data 
Browser: Projects” tab at the top of the home page. Project data are organized hierarchically. The levels of the 
hierarchy in ascending order of data specificity are “Project”, “Dataset”, “Experiment”, and “Biosample”. A project 
contains datasets, which are sets of similar studies. Each dataset is annotated with study abstracts, experimental 
designs, and metadata identifiers. Datasets are composed of experiments. An experiment represents a set of sim-
ilar specimens, so mice with the same genetic background, age, treatment, and mutation would constitute one 
experiment. Experiments contain biosamples. A biosample is an individual specimen.

After creating a free account and logging in the MusMorph data and metadata can be downloaded at any 
level in the project hierarchy using the “Export: BDBag” tool at the top-right of the browser. This export function 
uses DERIVA106, the software platform that powers FaceBase, to generate a BDBag (Big Data Bag)107 ZIP file. 
Users then need to download the file and process it via BDBag client tools, either via the command line or GUI 
application. Specific details about the DERIVA Client installation and the step-by-step export instructions are 
available here: www.facebase.org/help/exporting.

Code availability
Our code is freely available at https://github.com/jaydevine/MusMorph. The scripts describe every stage of the 
MusMorph data acquisition and analysis, including image preprocessing (e.g., file conversion, image resampling 
and intensity correction), processing (e.g., atlas generation, non-linear registration, label propagation), and 
postprocessing (e.g., shape optimization, morphometric analysis). We developed and implemented the code 
with Bash 4.4.20, R 3.6.1, Python 3.6, and Julia 1.2.0 on Ubuntu. To facilitate MusMorph software installations, 
reproducibility, and data aggregation, we have created a comprehensive Docker image that can be downloaded 
as follows: $ docker pull jaydevine/musmorph:latest. Further information about running the 
Docker container is available on GitHub. All code is distributed under the GNU General Public License v3.0.
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