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Parent-of-origin effects propagate 
through networks to shape 
metabolic traits
Juan F Macias-Velasco1, Celine L St Pierre1, Jessica P Wayhart1, Li Yin2, 
Larry Spears2, Mario A Miranda1, Caryn Carson1, Katsuhiko Funai3, 
James M Cheverud4, Clay F Semenkovich2, Heather A Lawson1*

1Department of Genetics, Washington University School of Medicine, Saint Louis, 
United States; 2Department of Medicine, Washington University School of Medicine, 
Saint Louis, United States; 3Diabetes and Metabolism Research Center, University 
of Utah, Salt Lake City, United States; 4Department of Biology, Loyola University, 
Chicago, United States

Abstract Parent-of-origin effects are unexpectedly common in complex traits, including meta-
bolic and neurological traits. Parent-of-origin effects can be modified by the environment, but 
the architecture of these gene-by-environmental effects on phenotypes remains to be unraveled. 
Previously, quantitative trait loci (QTL) showing context-specific parent-of-origin effects on meta-
bolic traits were mapped in the F16 generation of an advanced intercross between LG/J and SM/J 
inbred mice. However, these QTL were not enriched for known imprinted genes, suggesting another 
mechanism is needed to explain these parent-of-origin effects phenomena. We propose that non-
imprinted genes can generate complex parent-of-origin effects on metabolic traits through inter-
actions with imprinted genes. Here, we employ data from mouse populations at different levels of 
intercrossing (F0, F1, F2, F16) of the LG/J and SM/J inbred mouse lines to test this hypothesis. Using 
multiple populations and incorporating genetic, genomic, and physiological data, we leverage 
orthogonal evidence to identify networks of genes through which parent-of-origin effects propa-
gate. We identify a network comprised of three imprinted and six non-imprinted genes that show 
parent-of-origin effects. This epistatic network forms a nutritional responsive pathway and the genes 
comprising it jointly serve cellular functions associated with growth. We focus on two genes, Nnat 
and F2r, whose interaction associates with serum glucose levels across generations in high-fat-fed 
females. Single-cell RNAseq reveals that Nnat expression increases and F2r expression decreases 
in pre-adipocytes along an adipogenic trajectory, a result that is consistent with our observations in 
bulk white adipose tissue.

Editor's evaluation
We all learned simple Mendelian Punnett Squares in Junior High or earlier when studying simple 
Mendelian traits. But we also all know that the world is so much richer and more complex than this. 
The current article explores some of that complexity, opening rich insights into intergenerational 
effects, offering the opportunity for mathematical thinking and further hypothesis testing, and 
opening up exciting new hypotheses to test. As Professor Stephen Stearns wrote, "Many of us do 
not do science only, or even primarily, to achieve practical results. We do it because we are fasci-
nated with neat ideas. Evolutionary medicine is full of them, including parent-of-origin pattern." Let 
us enjoy the wonder.

RESEARCH ARTICLE

*For correspondence: 
lawson@wustl.edu

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 18

Preprinted: 11 August 2021
Received: 12 August 2021
Accepted: 25 March 2022
Published: 31 March 2022

Reviewing Editor: David B 
Allison, Indiana University, United 
States

‍ ‍ Copyright Macias-Velasco 
et al. This article is distributed 
under the terms of the Creative 
Commons Attribution License, 
which permits unrestricted use 
and redistribution provided that 
the original author and source 
are credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.72989
mailto:lawson@wustl.edu
https://doi.org/10.1101/2021.08.10.455860
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Macias-Velasco et al. eLife 2022;11:e72989. DOI: https://doi.org/10.7554/eLife.72989 � 2 of 23

Introduction
Parent-of-origin effects, where the phenotypic effect of an allele depends on whether the allele is 
inherited maternally or paternally, are epigenetic phenomena associated with a wide range of complex 
traits and diseases (Lawson et al., 2013). Thus, the functional impact of a specific genetic variant can 
depend on its parental origin. The best characterized parent-of-origin effect is genomic imprinting, 
an epigenetic process in which either the maternally or paternally inherited allele is silenced, typically 
through DNA methylation. In humans, there are 107 verified imprinted genes and in mice there are 
124, of which ~ 70% overlap (Jirtle, 2012). Despite the rarity of imprinted genes, parent-of-origin 
effects on complex traits and diseases are relatively common, suggesting that canonical imprinting 
mechanisms are not sufficient to account for these phenomena (Mozaffari et al., 2019; Zeng et al., 
2019). With so few imprinted genes, what mechanisms underlie these parent-of-origin effects? We 
hypothesize that a small number of imprinted genes can generate a large number of parent-of-origin 
effects through interactions with non-imprinted genes.

In this study, we use four populations at different levels of intercrossing of the LG/J and SM/J inbred 
mouse lines to test the hypothesis that non-imprinted genes can contribute to parent-of-origin effects 
on metabolic phenotypes through epistatic interactions with imprinted genes. Multiple populations 
(F0, F1, F2, F16) allow us to refine our search space and provide orthogonal evidence supporting puta-
tive networks of interacting genes. Metabolic traits were previously mapped in a F16 generation of an 
advanced intercross between LG/J and SM/J (Cheverud et al., 2011; Lawson et al., 2010; Lawson 
et al., 2011a; Lawson et al., 2011b). We generated visceral white adipose tissue gene expression 
profiles from 20 week-old F1 animals in order to match the age of the F16 LG/J x SM/J advanced inter-
cross population. F1 reciprocal cross (LxS and SxL) mice were subjected to the same high and low-fat 
diets and phenotyping protocols as the previously-studied F16 mice to keep environmental contexts 
consistent. We identified genes showing parent-of-origin-dependent allele-specific expression (ASE), 
characterized interactions among these genes and biallelic genes that are differentially expressed by 
reciprocal cross (DE), and correlated interacting ASE and DE gene pairs with metabolic phenotypes in 
the F1 population. Pairs that significantly associated with phenotypic variation were tested for epistasis 
on correlated traits in the F16 population.

We identified an epistatic network that forms a nutritional environment responsive pathway medi-
ated through calcium signaling. This network contributes to metabolic variation by balancing prolif-
eration, differentiation, and apoptosis in adipocytes. The genes comprising this network jointly serve 
functions associated with growth in multiple tissues, which is consistent with the evolutionary hypoth-
esis that sexual conflict underlies some parent-of-origin effects (Mochizuki et al., 1996). We focus 
on two key interacting genes: Nnat (neuronatin), a canonically imprinted gene, and F2r (coagulation 
factor II receptor), a biallelic gene showing significant DE by cross in F1 high-fat-fed female animals. 
Co-expression of these two genes associates with variation in basal glucose levels, and this associa-
tion persists across generations. Further, single-cell RNAseq reveals that Nnat expression increases 
and F2r expression decreases in pre-adipocytes along an adipogenic trajectory, a pattern consistent 
both with their expression in bulk white adipose tissue and with their respective roles in adipogenesis. 
Our results demonstrate that incorporating orthogonal lines of evidence including genotype, allele 
specific expression, total gene expression, single-cell expression, and phenotype from different popu-
lations varying in their degree of intercrossing is a powerful way to identify putative mechanisms and 
test hypotheses underlying parent-of-origin effects on phenotype.

Results
Non-imprinted genes interact with imprinted genes and effect 
metabolic phenotypes
We test the hypothesis that non-imprinted genes can mediate complex parent-of-origin effects on 
phenotypes through genetic interactions with imprinted genes using a F1 reciprocal cross model of 
the LG/J and SM/J inbred mice (LxS and SxL). In this model the effects of parental origin on an 
allele can be tested directly and isolated from sequence dependent cis-regulatory differences. We 
validated our findings in LG/J and SM/J parentals (F0) as well as in F2 and F16 intercrosses of LGxSM 
(Figure 1). The parental F0 animals serve to anchor variation in allele-specific expression that is a func-
tion of allelic identity (L or S). Incorporating the F2 and F16 populations into our validations ensures 

https://doi.org/10.7554/eLife.72989
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Figure 1. Proposed model for propagation of parent-of-origin effects through gene-gene interactions. Parent-of-origin effects should be partitioned 
into cis mechanisms and trans mechanisms (A) An example of a cis parent-of-origin effect is a system with three regulatory elements: promoter, 
insulator, and enhancer. Activation of transcription requires the enhancer to act upon the promoter. Enhancer activity is blocked by the insulator when 
it has been bound by CTCF. CTCF cannot be bound when methylated. In this system, the insulator is selectively methylated when inherited maternally, 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.72989
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that the interactions we observe are not solely a function of linkage in the F1 animals. We generated 
mRNA expression profiles in white adipose tissue from 20-week-old F1 reciprocal cross animals. These 
animals were subjected to the same high and low-fat diets and phenotyping protocols as the previ-
ously studied F16 animals (Cheverud et al., 2011; Lawson et al., 2011a, Lawson et al., 2010; Carson 
et al., 2020; Miranda et al., 2020). We identified two classes of genes: (1) imprinted genes and (2) 
non-imprinted genes with parent-of-origin effects on total expression.

To test our model, we identified genes showing parent-of-origin dependent allele specific expres-
sion (ASE). We identified 23 genes showing significant ASE (Figure 2A; Supplementary file 1). Of 
these 23 genes, 17 are canonically imprinted genes, two are not reported as imprinted genes but 
are located in known imprinted domains, and four are novel. Next, we identified genes showing 
differential total expression between individuals varying only in allelic parent-of-origin (DE between 
reciprocal crosses, SxL vs LxS). We identified 33 genes that are significantly DE in at least one sex or 
dietary context (Figure 2A; Supplementary file 2). A larger set of genes show signatures of parent-
of-origin effects at the total gene expression level, but do not meet the statistical rigor demanded 
by the massive multiple tests burden incurred by a genome-wide scan accounting for sex, diet, and 
parent-of-origin (see Materials and methods).

To identify interactions between gene sets, we constructed a network comprised of genes that 
could initiate a parent-of-origin effect on phenotype (ASE) and genes that may mediate the effect 
onto phenotype (DE). Interacting gene pairs were predicted by modeling the expression of biallelic 
genes that are significantly DE by reciprocal cross as a function of the expression of genes showing 
significant parent-of-origin-dependent ASE, their allelic bias (Lbias), diet, sex, and the diet-by-sex 
interaction. Genes showing parent-of-origin effects form a highly interconnected network comprised 
of 52 genes forming 217 gene pairs (Figure 2B)(Supplementary file 3). Most of these interactions 
are trans-chromosomal. We identified two genes that could serve as initiation points of propagating 
parent-of-origin effects through this network. These two genes, Nnat (neuronatin) and Cdkn1c (cyclin 
dependent kinase inhibitor 1 C), are both canonically imprinted and differentially expressed by recip-
rocal cross (Supplementary file 1).

Functional over representation analysis was performed and seven terms were significantly over-
represented at an FDR ≤ 0.05 (Figure 2C; Zhang et al., 2005). Enriched terms suggest this network 
plays a role in signaling and genetic imprinting (Supplementary file 4). In order to identify which 
phenotypes might be affected by genes in this network, gene expression was correlated with meta-
bolic phenotypes collected for the F1 animals (Figure 2D). Seventy-four ASE/DE/phenotype sets were 
identified as candidates for subsequent testing (Supplementary file 5).

Epistasis in an F16 advanced intercross identifies a diet-responsive 
network affecting adipogenesis
To validate the interactions we identified in F1 animals, we tested for imprinting-by-imprinting epis-
tasis in an F16 population. Imprinting-by-imprinting epistasis occurs when the parent-of-origin effect at 

so methylation of the maternally inherited insulator blocks CTCF binding, allowing the enhancer to activate transcription. Because the paternally 
inherited insulator is not methylated, it is bound by CTCF which blocks enhancer activity, silencing transcription. This canonical genomic imprinting 
mechanism interacts with genetic variation in the three regulatory features. For example, if one allele produces stronger enhancer activity (Alt) than the 
other, individuals inheriting the Alt allele maternally would have elevated expression compared to those that inherit the same allele paternally. These 
cis genetic effects do not occur in isolation. Due to the highly interconnected nature of biological systems, there are downstream effects. We refer to 
these as trans parent-of-origin effects. (B) An example of a trans parent-of-origin effect is a system with two genes each having its own promoter. The 
first gene is canonically imprinted, and the activity of the gene promoter is blocked by DNA methylation. The imprinted gene’s promoter is methylated 
when inherited maternally. Consequently, the paternally inherited allele is almost exclusively expressed. As before, when genetic variation in a regulatory 
feature interacts with these epigenetic mechanisms, we see parent-of-origin effects on expression of the imprinted gene. In this example, the imprinted 
gene regulates expression of a non-imprinted gene. Despite the non-imprinted gene being agnostic to parental origin, its expression nonetheless 
depends on the parental origin of alleles at the imprinted locus. (C) Summary of our experimental design. Expression patterns of genes showing allele-
specific expression (ASE) such as imprinted genes are shaped by parental genotypes and environment (e.g. nutrition). Downstream gene expression is a 
function of their genotype and the expression of upstream ASE genes. Altered parent-of-origin dependent total gene expression of ASE genes leads to 
differential expression of downstream genes varying only in allelic parent-of-origin (DE). Phenotype is most directly affected by expression of DE genes. 
Variation in DE gene expression leads to corresponding variation in phenotype. Mouse populations used to probe parts of this model are labeled F0 
(inbred lines), F1 (reciprocal cross of inbred lines), F2 (intercross of F1 mice), and F16 (advanced intercross of inbred lines).

Figure 1 continued

https://doi.org/10.7554/eLife.72989
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Figure 2. Genes showing parent-of-origin effects at the allele specific and/or total expression levels covary with each other and with metabolic traits. 
 (A) Mean parent-of-origin effect score across contexts. Effect size of ASE is calculated as the mean allelic bias (L / L + S) of SxL animals minus LxS 
animals. Effect size of DE is measured by log2(Fold Change) between LxS and SxL crosses. The single context with largest magnitude fold change is 
plotted for each gene. Dashed lines represent minimum acceptable effect size cut-offs within a context. Genes showing significant ASE and sufficiently 
large parent-of-origin effect score are shown in blue. Genes showing significant DE and sufficiently large fold change in some sex or dietary context are 
shown in lime. Genes showing both ASE and DE are shown in teal. Genes not meeting cut-offs are shown in gray. The two genes showing significant 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.72989
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a locus is dependent on the parent-of-origin of alleles at another locus. This allowed us to determine 
if the effect of parent-of-origin at DE genotype on phenotype is dependent upon the parent-of-origin 
at ASE genotype. This orthogonal approach allows us to connect genotype at these loci to pheno-
type as predicted in the F1 candidates. Nine epistatic interactions replicated in the F16 population (n 
= 1002 animals, FDR ≤ 0.1; Figure 3A; Supplementary file 6). These interactions were comprised of 
three ASE genes showing parent-of-origin (Cdknlc, Nnat, Plcd1), six genes that are DE by cross (Car3, 
F2r, Hexb, Hmger, Srgn, Tnfrsf11a) and four phenotypes (basal glucose level, AUC calculated from a 
glucose tolerance test, serum cholesterol, necropsy weight). Together, these nine genes form a puta-
tive diet-responsive network affecting adipogenesis (Figure 3B).

The network can be broken down into signal potentiation, transduction, and response. Nnat (neuro-
natin) and Hexb (beta-hexosaminidase subunit beta) fall into the potentiation group. These genes play 
a role in managing the availability and accumulation of calcium necessary for signal transduction. Nnat 
is a paternally expressed canonically imprinted gene which encodes a proteolipid protein that local-
izes to the ER (Li et al., 2010). Nnat is diet-responsive and its overexpression in 3T3L1 pre-adipocytes 
promotes adipogenesis through increased free cytosolic calcium (Young et al., 2005). In pre-neural 
stem cells, Nnat binds sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) to block Ca2+ uptake into 
the ER thereby increasing cytosolic Ca2+ levels (Lin et al., 2010). In addition to Nnat, Hexb regulates 
the uptake and accumulation of Ca2+ in the ER via SERCA (Pelled et al., 2003). Upon the arrival of a 
signal, F2r (coagulation factor II receptor) and Plcd1 (1-phosphatidylinositol 4,5-bisphosphate phos-
phodiesterase delta-1) in the transduction group initiate the adipogenesis cellular program. F2r is a 
G-protein-bound receptor that promotes phosphoinositide hydrolysis (Soh et  al., 2010). Variation 
in the human F2R gene is associated with obesity (Kichaev et al., 2019). G-protein-coupled recep-
tors transmit external signals into the cell where they are then propagated by secondary messenger 
systems, one of which is mediated by Plcd1 (Nakamura et  al., 2005; McDonald and Mamrack, 
1995). The downstream effect of Plcd1-mediated signaling is the efflux of calcium into the cytosol 
from the ER, thereby increasing cytosolic Ca2+ levels (Thatcher, 2010; Berridge, 2016). Increased 
cytosolic Ca2+ in pre-adipocytes promotes phosphorylation of cAMP-response element-binding 
protein (CREB), which promotes activity of CCAAT/enhancer-binding protein (C/EBP) transcription 
factors, activating adipogenesis, altering the expression of Cdkn1c (cyclin dependent kinase inhibitor 

ASE but falling short of parent-of-origin effect score requirements are a case of context dependent bipolar parent-of-origin effect scores (i.e. paternally 
expressed in one context and maternally expressed in its opposite). (B) Parent-of-origin effect network constructed from ASE and DE gene pairs. 
(C) Significantly overrepresented ontologies after multiple tests correction in the parent-of-origin effect network. Terms are color coded by ontology 
domain. GO biological process (yellow), GO cellular component (orange), and Mammalian phenotype (purple). Circle size denotes the number of 
genes with each term. (D) Correlation of parent-of-origin effect network genes with metabolic traits. Only genes and phenotypes with at least one 
significant correlation after multiple test corrections are shown. The heatmap is broken up into subnetworks with the ASE gene as the first separated row 
followed by associated DE genes in subsequent rows. Columns correspond to metabolic traits. Coloration of each cell denotes the Pearson’s correlation 
coefficient value.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. RNAseq libraries are sufficiently complex to detect allele specific expression.

Figure supplement 2. Number of reads mapped to LG/J x SM/J pseudo-genome.

Figure supplement 3. Stable null permutation plots for allele-specific expression.

Figure supplement 4. Multiple tests correction of ASE detection.

Figure supplement 5. Volcano plots of parent-of-origin dependent allele-specific expression.

Figure supplement 6. Multiple tests correction of DE detection.

Figure supplement 7. Volcano plots of differentially expressed genes.

Figure supplement 8. Stable null permutation plots for network pairs.

Figure supplement 9. Multiple tests correction of pairwise network construction.

Figure supplement 10. Volcano plots of network construction.

Figure supplement 11. Example transformation of F1 phenotypes.

Figure supplement 12. Multiple tests correction of phenotype correlations.

Figure supplement 13. Volcano plots of phenotypes correlated with POE net gene expression.

Figure 2 continued

https://doi.org/10.7554/eLife.72989
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1 C), Hmgcr (3-hydroxy-3-methylglutaryl-CoA reductase), Car3 (carbonic anhydrase 3), Tnfrsf11a (TNF 
receptor superfamily member 11 a), and Srgn (serglycin).

Cdkn1c is a canonically imprinted maternally expressed gene that inhibits cell proliferation (Kang 
et al., 2008). Increased expression of Cdkn1c is protective against diet-induced obesity in mice (Van 
de Pette et al., 2018), and in humans increased caloric intake results in decreased CDKN1C expres-
sion (Franck et al., 2011). Hmgcr is the rate-limiting enzyme in cholesterol biosynthesis (Burg and 
Espenshade, 2011; Jo and Debose-Boyd, 2010) and converts HMG-CoA into mevalonate, which is 
essential for adipocyte survival (Yeh et al., 2018). Srgn is an adipocytokine thought to be part of a 
feedback loop with Tnfα (tumor necrosis factor alpha), mediating paracrine cross-talk between macro-
phages and adipocytes (Lemire et al., 2007; Imoto-Tsubakimoto et al., 2013; Schick et al., 2001; 
Zernichow et al., 2006). Srgn is known to play a role in osteoblast-mediated bone mineralization 
(Bigdeli et al., 2010), which along with osteoclast-driven bone deconstruction drives bone remod-
eling (Aubin, 1992). Osteoblasts share a lineage with adipocytes, and the quantity of osteoblasts is 
inversely proportional to that of marrow adipose tissue (Rodríguez et al., 2008; Prockop, 1997; Ali 
et al., 2005; Akune et al., 2004; Cho et al., 2011; Rosen and Bouxsein, 2006; Turner et al., 2018). 

Figure 3. Interacting genes form a diet-responsive network affecting adipogenesis. 
 (A) There are nine significant imprinting-by-imprinting epistatic ASE/DE/phenotype sets in the F16 advanced intercross population (n = 1002). 
Interactions are shown as lines connecting ASE (yellow) and DE genes (purple). Chromosome number is shown around the plot. (B) The epistatic 
parent-of-origin effect network is comprised of key steps in a putative pathway regulating differentiation and survival of adipocytes. This pathway was 
constructed by incorporating previously published cellular functions. The pathway members are color coded in blue for ASE genes (Plcd1, Nnat, and 
Cdkn1c) and green for DE genes (F2r, Hexb, Hmgcr, Car3, Tnfrsf11a, and Srgn). The network breaks down into potentiation, transduction, and response. 
Nnat and Hexb potentiate signaling by managing availability and accumulation of calcium necessary for signal transduction. Once a signal is received, 
F2r and Plcd1 transduce it by activating second messengers to initiate a response. This response initiates an adipogenesis cellular program that affects 
expression of Cdkn1c, Hmgcr, Car3, Tnfrsf11a, and Srgn.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Example transformation of F16 phenotypes.

Figure supplement 2. Stable null permutations plot for epistasis.

Figure supplement 3. Representative multiple tests correction of imprinting:imprinting epistasis.

https://doi.org/10.7554/eLife.72989


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Macias-Velasco et al. eLife 2022;11:e72989. DOI: https://doi.org/10.7554/eLife.72989 � 8 of 23

Tnfrsf11a is a cell surface protein that regulates differentiation of osteoclasts (Nakagawa et al., 1998). 
Osteoprotegerin (OPG) is a decoy receptor for TNFRSF11A thereby inhibiting osteoclastogenesis and 
bone resorption (Matsuo et al., 2020). OPG is expressed during differentiation of 3T3L1 adipocytes 
(An et al., 2007). Expression of OPG is induced by Tnfα in 3T3L1 adipocytes and is associated with 
obesity in humans (Holecki et al., 2007; Erol et al., 2016; Zaky et al., 2022).

The exact function of OPG/Tnfrsf11a outside of osteoclastogenesis is unknown, but the function 
of osteoclasts is to break down bone tissue during bone resorption. Bone resorption regulates the 
level of blood calcium. The bioavailability of calcium in the blood potentially alters ER calcium stores, 
creating cross-talk between bone cells and white adipose tissue calcium signaling. Osteoclasts break 
down bone by acidifying mineralized bone, orchestrated by osteoblasts that have become embedded 
in the matrix they produce (osteocytes). Oxidative stress on osteocytes from the bone acidification 
process is prevented by Car3. Car3 is an enzyme that catalyzes the conversion of carbonic acid to CO2 
and water. Its expression in white adipose is negatively correlated with, and responsive to, long-term 
obesity in mice and humans (Stanton et al., 1991; Font-Clos et al., 2017). Car3 does not protect 
against diet-induced obesity and is not necessary for fatty acid synthesis (Renner et al., 2017). As 
such its exact function in adipocytes is unknown.

Nnat and F2r covary in white adipose tissue and their interaction 
associates with variation in basal glucose levels across generations
To better understand how these interactions affect phenotype, we focused on the negative correla-
tion of the imprinted gene, Nnat, and the biallelic gene, F2r, in the above network in high fat-fed 
females, the cohort with the most significant covariation in the F1 animals (FDR = 0.05). Nnat and 
F2r show significant imprinting-by-imprinting epistasis for basal glucose levels in the F16 population 
(FDR = 6.00e–16; Figure 4A and B). To validate gene expression patterns, we combined F1 biological 
replicates and F0 high fat-fed female animals (F1 n = 13 and F0 n = 12) and again observe that F2r and 
Nnat are each significantly differentially expressed between reciprocal heterozygotes, that is by cross 
(Figure 4C and D). Further, the co-expression of Nnat and F2r also persists in the F0/F1 population 
(Figure 4E).

A limitation of identifying covariation patterns in F1 and F0 populations is that all loci are linked. This 
makes it difficult to determine which ASE genes truly co-express with DE genes. While incorporation of 
orthogonal F16 genotypes and phenotypes helps reduce false discoveries, a population with random-
ized genetic background for which we have expression data is needed to replicate these results. To 
that end, F2 animals were generated and Nnat and F2r gene expression levels were measured via 
qPCR (n = 14). We found that F2r and Nnat are significantly co-expressed in high-fat-fed female F2 
animals (Figure 4H).

F2r expression significantly positively correlates with basal glucose levels in the RNA-sequenced 
high-fat-fed female F1 animals (r = 0.514, FDR = 0.01; Supplementary file 5). F2r expression is also 
significantly positively correlated with basal glucose in the combined F0/F1 population (Figure 4G). 
A negative trend between Nnat expression and basal glucose level is observed but not statistically 
significant in the combined F0/F1 animals (Figure 4F). Correlation of F2r’s and Nnat’s individual expres-
sion with basal glucose in F2 mice follows the same pattern as in the F0/F1’s. Bootstrapping to calculate 
confidence intervals shows that the correlation differences between F0/F1 and F2 are not significant 
(Figure 4I and J; Figure 4—figure supplement 1). However, the product of Nnat and F2r expression 
(Nnat x F2r) is significantly predictive of basal glucose (p = 0.045, R2 = 0.29). This indicates that expres-
sion of Nnat and F2r, as a function of their genotypes and allelic parent-of-origin, are not individually 
sufficient to explain variation in basal glucose levels. But together they are able to explain a significant 
amount of phenotypic variation. This is precisely what our epistatic model would predict.

Finally, studying the F2 animals allows us to determine if maternal mitochondrial ancestry contrib-
utes significantly to Nnat or F2r expression or to variation in basal glucose. We find mitochondrial 
genome identity does not significantly covary with F2r expression (p = 0.198), Nnat expression (p = 
0.365), or basal glucose (p = 0.388).

https://doi.org/10.7554/eLife.72989
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Figure 4. Nnat and F2r covary across generations. 
 (A) Breeding scheme for the F16 Advanced Intercross between the LG/J and SM/J inbred strains. (B) Significant imprinting-by-imprinting epistasis 
associated with variation in basal glucose (n = 1002). The parent-of-origin effects of F2r on basal glucose depend on the parent-of-origin effects at 
Nnat. (C) Expression of Nnat across genotypes in a combined F0/F1 population of high fat-fed females (n = 25). (D) Expression of F2r across genotypes 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.72989
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Single-cell RNAseq reveals that Nnat expression increases and F2r 
expression decreases in pre-adipocytes along an adipogenic trajectory
To determine what cell types express Nnat and F2r and whether the directionality of the Nnat 
imprinted → F2r target correlation persists along the adipogenic trajectory, we turned to single-cell 
RNAseq. We used publicly available scRNAseq data collected from stromal vascular cells isolated from 
C57BL/6 J epididymal adipose tissue (Burl et al., 2018). Cell type identity was assigned using previ-
ously reported markers for this data set (Adipoq = differentiating mesenchymal stem cells; Pdgfra = 
mesenchymal stem cells; Csf1r = macrophage; Cdh5 = vascular endothelial cells; Acta2 = vascular 
smooth muscle cells; Cd2 = B cells) (Supplementary file 7; Figure 5—figure supplement 1). The 
adipogenic trajectory refers to cells transitioning from pre-adipocytes (mesenchymal stem cells) to 
cells differentiating into adipocytes. Clusters along this trajectory were identified by the opposing 
expression patterns of Pdgfra and Adipoq (Figure  5A-D and I). We found that Nnat expression 
increases along the trajectory while F2r expression decreases (Figure 5E–F and H). Further there 

in a combined F0/F1 population of high-fat-fed females (n = 25). (E) Significant correlation between Nnat and F2r expression in the F0/F1 mice (F1 n = 13; 
F0 n = 12). (F) and (G) Correlations between basal glucose and Nnat and F2r in the F0/F1 mice (F1 n = 13; F0 n = 12). (H) Significant correlation between 
Nnat and F2r expression in the high fat-fed female F2 mice (n = 14). (I) and (J) Correlations between basal glucose and Nnat and F2r are not individually 
significant in the F2 mice. Alleles are ordered maternal | paternal within the genotype classes.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Pearson’s correlation coefficient confidence intervals.

Figure 4 continued

Figure 5. Nnat expression increases and F2r expression decreases in pre-adipocytes along an adipogenic trajectory. 
 (A) Adipoq is a marker of adipocytes whose expression (purple) increases along the trajectory. (B) Pdgfra is a marker of mesenchymal stem cells whose 
expression (pink) decreases along the trajectory. (C) Cells in clusters expressing one or both Adipoq and Pdgfra fall along an adipogenic trajectory. 
(D) Intensity of expression of Adipoq and Pdgfra indicated by coloration. (E)  Nnat expression (blue) increases along the trajectory. (F)  F2r expression 
(teal) decreases along the trajectory. (G) Negative association between Nnat and F2r expression within adipocytes along the trajectory. (H) Intensity of 
expression of Nnat and F2r indicated by coloration. (I) The adipogenic trajectory is broken into subclusters of cells with no Adipoq expression (cluster 0) 
to high Adipoq expression (cluster 2).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Cell types were defined using canonical markers.

Figure supplement 2. Candidate genes are differentially expressed across adipogenic trajectory.

Figure supplement 3. Single cell quality was controlled.

Figure supplement 4. Determining the resolution for clustering.

Figure supplement 5. Adipocyte clustering resolution was selected to minimize Adipoq variation.

https://doi.org/10.7554/eLife.72989
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is a negative association between Nnat and F2r expression within adipocytes along the trajectory 
(Figure 5G). This pattern is consistent with the negative correlation we observe between Nnat and F2r 
in the bulk white adipose tissue. Because available scRNAseq data do not match the exact sex/ diet/ 
genetic background contexts of the LGxSM mice, there will be unaccounted for differences between 
the data sets. However, the observed consistent pattern indicates that the pathway structure persists 
across sex/ diet/ genetic backgrounds.

In addition to interrogating Nnat and F2r in single cells along an adipogenic trajectory, we found 
that eight of the nine genes comprising the epistatic parent-of-origin effect network described above 
are differentially expressed along the trajectory, and they associate with cell types that are consistent 
with their respective roles in adipose tissue (Figure 5—figure supplement 2).

Discussion
Epistatic interactions between imprinted and non-imprinted genes can influence complex traits when 
the genotypic effects of one gene depends on the parent-of-origin of alleles at another (Lawson 
et al., 2013; Wolf and Cheverud, 2009). Here, we examined epistatic interactions associated with 
parent-of-origin effects on dietary-obesity traits in white adipose using a simple yet powerful F1 recip-
rocal cross mouse model. Although these parent-of-origin dependent allele-specific expression biases 
are consistent with imprinting mechanisms, we cannot rule out that maternal and/or paternal effects 
also contribute to the phenomena we observe (Hager et al., 2008).

Interactions between imprinted and non-imprinted genes have previously been shown to 
contribute to variation in metabolic phenotypes. For example, the maternally expressed transcription 
factor KLF14 (kruppel-like factor 14) regulates biallelic gene expression related to adiposity (Parker-
Katiraee et al., 2007; Small et al., 2011). Mapping studies have identified two SNPs (rs4731702, 
rs972283) upstream of KLF14 associated with type II diabetes and cholesterol levels (Voight et al., 
2010; Teslovich et  al., 2010). Both variants have maternally restricted cis-regulatory associations 
with KLF14 expression in adipose tissue (Kong et al., 2009). eQTL analysis found that rs4731702 is 
also enriched for trans-associations with KLF family transcription factor binding sites in subcutaneous 
white adipose tissue, suggesting that KLF14 may be a master transcriptional regulator in adipose 
tissue (Small et  al., 2011). Whether additional pairs of imprinted and biallelic genes are similarly 
co-expressed and associate with phenotypic variation remains an open question that has not been 
thoroughly investigated in large landmark functional genomics studies including ENCODE, GTEx, and 
GWAS, leaving a significant gap in our knowledge. Interactions between imprinted and biallelic genes 
could explain some of the observed parent-of-origin effect patterns associated with regions lacking 
obvious candidate genes, as described in a recent survey of 97 complex traits measured in outbred 
mice (Mott et al., 2014).

Our model asserts that parent-of-origin effects start at ASE genes and are transduced through DE 
genes onto phenotype. This is illustrated in the interaction between Nnat and F2r. If a cis-regulatory 
effect interacts with epigenetic modifications (i.e. imprinting) at Nnat, then Nnat expression of geno-
typic classes are affected by paternal allele identity (Lawson et al., 2013). Between the LG/J and 
SM/J alleles at Nnat, the LG/J allele is more highly expressed. If our model is correct, the down-
stream DE gene should show a corresponding pattern (Figure 1B). In the case of Nnat and F2r, which 
have strong negative correlated expression, when the LG/J allele is inherited paternally at Nnat, the 
higher expression of Nnat should correspond with lower expression of F2r. This is what we observe 
(Figure 4). If this relationship is true, we should see persistent co-expression of Nnat and F2r across 
genetic backgrounds (F0, F1, F2), which we do (Figure 4). This supports a biologically meaningful rela-
tionship between Nnat and F2r. Our model further predicts that the DE genes should more closely 
affect phenotype (Pierce et al., 2014; Shan et al., 2019; Lutz and Hokanson, 2015). In the case of 
Nnat and F2r, we expect F2r to more strongly associate with basal glucose levels than Nnat, which we 
observe (Figure 4).

There is a clear relationship between Nnat and F2r in adipogenesis, but the specifics of how this 
relationship extends to glucose homeostasis are unclear. One possibility is that by altering SERCA 
function, Nnat affects not only the formation of new adipocytes, but also the beiging of adipocytes. 
The SERCA channel is uncoupled in beige adipocytes as part of a UCP1-independent form of non-
shivering thermogenesis (Ikeda and Yamada, 2020). Non-shivering thermogenesis consumes a signif-
icant amount of energy, thereby altering glucose homeostasis (Carson et al., 2020). This hypothesis 

https://doi.org/10.7554/eLife.72989


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Macias-Velasco et al. eLife 2022;11:e72989. DOI: https://doi.org/10.7554/eLife.72989 � 12 of 23

links these genes to physiological processes that are consistent with evolutionary hypotheses about 
the prevalence of parent-of-origin effects. Nnat and F2r are members of a putative network we iden-
tified that is coordinated by interactions between ASE and DE genes. From the literature, we found 
that the genes in this epistatic network function in key steps in a pathway regulating differentiation 
and survival of adipocytes in response to nutritional environment (Figure 3B). Specifically, there is 
evidence that it plays a critical role in the induction of adipogenesis. This alone demonstrates how 
parent-of-origin effects can move through networks along molecular pathways. Beyond proof-of-
principle this network provides a clue to the puzzle of the prevalence of parent-of-origin effects.

The constituents of this single network appear to play vastly different physiological roles depending 
on the tissue. In white adipose the network appears to play some role in balancing proliferation, 
differentiation, and apoptosis as we describe above. In pancreatic ß-cells, members of this network 
affect insulin secretion (Millership et al., 2018). In bone, members of this network affect the balance 
of cartilage/bone growth and reabsorption. These three physiological processes may at first seem 
unrelated, but they share one key commonality – they are jointly critical to growth. This is consistent 
with the sexual conflict hypothesis attributed to parent-of-origin effects (Patten et al., 2014; Babak 
et al., 2015). The of size of progeny in placental mammals can have opposing fitness consequences 
for mothers/ maternal relatives and fathers/ paternal relatives. The fitness of fathers and paternal 
relatives, particularly in the case of multi-paternity litters, is improved with larger progeny (Mochizuki 
et al., 1996; Babak et al., 2015; Fowden and Moore, 2012; Patten et al., 2014; Wilkins and Haig, 
2003; Haig, 1997). This comes at a fitness disadvantage to the mother. The fitness of mothers is 
improved by progeny of a manageable size, allowing her to produce multiple litters.

According to this model, imprinting evolved in part to allow one parental lineage to hijack parts of 
a nutritional environment response pathway driving growth in a direction favorable to maximize the 
fitness of that lineage. Key processes in such a pathway driving growth would include the secretion 
of growth factors, construction of cartilage and bone, and the accumulation of energy stores. We 
present a network that appears to play a role in all three processes. If the sexual conflict hypothesis is 
true, then the most parsimonious place for imprinting to evolve would be in key regulatory points that 
affect as many aspects of growth as possible. This is consistent with the network we identified, a single 
pathway affecting many aspects of growth. This hints at the possibility that parent-of-origin effects are 
common because of the multi-purpose nature of the pathways in which genomic imprinting manifests 
and parent-of-origin effects propagate.

By leveraging the reciprocal F1 hybrids, we are able to integrate parent-of-origin-dependent allele 
specific expression and parent-of-origin-dependent differential expression with F16 phenotypes. By 
doing so, we identify plausible candidates for functional validation and describe discrete molecular 
networks that may contribute to the observed parent-of-origin effects on metabolic phenotypes. The 
genes and interactions we present here represent a set of actionable interacting candidates that can 
be probed to further identify the machinery driving these phenomena and make predictions informed 
by genomic sequence. The frameworks we have developed account for the genetic, epigenetic, and 
environmental components underlying these parent-of-origin effects, thereby improving our ability 
to predict complex phenotypes from genomic sequence. We focused on metabolic phenotypes in 
this study, but the patterns we identified may translate to other complex traits where parent-of-origin 
effects have been implicated.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Other High fat diet Teklad TD88137 42% kcal from fat

Other Low-fat diet Research Diets D12284 15% kcal from fat

Commercial assay, kit RNeasy Lipid Tissue Kit QIAgen 74,804

Commercial assay, kit RiboZero kit Illumina 20040529

Commercial assay, kit DNA 1000LabChip Agilent 5067–1504

https://doi.org/10.7554/eLife.72989
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Commercial assay, kit
High-Capacity cDNA Reverse 
Transcription Kit Thermo Fisher 4368814

Sequence-based reagent Nnat forward primer This paper
Detailed information is found in the 
methods section

Sequence-based reagent Nnat reverse primer This paper
Detailed information is found in the 
methods section

Sequence-based reagent F2r forward primer This paper
Detailed information is found in the 
methods section

Sequence-based reagent F2r reverse primer This paper
Detailed information is found in the 
methods section

Sequence-based reagent L32 forward primer This paper
Detailed information is found in the 
methods section

Sequence-based reagent L32 reverse primer This paper
Detailed information is found in the 
methods section

Software, algorithm R R 3.6.1

Software, algorithm STAR STAR
DOI: 10.1093/bioinformatics/
bts635

Software, algorithm FASTQC FASTQC other
https://www.bioinformatics.babraham.ac.​
uk/projects/fastqc/

Software, algorithm EdgeR CRAN
DOI: 10.1093/bioinformatics/
btp616

Software, algorithm
WEB-based Gene Set Analysis 
Toolkit

WEB-based Gene Set 
Analysis Toolkit DOI: 10.1093/nar/gkz401

Software, algorithm Seurat Seurat DOI: 10.1038/nbt.3192

Strain, strain background (Mus 
musculius) SM/J The Jackson Laboratory 000687

Strain, strain background (Mus 
musculus) LG/J The Jackson Laboratory 000675

 Continued

Mouse husbandry and phenotyping
LG/J and SM/J founders (F0) were obtained from The Jackson Laboratory (Bar Harbor, ME). F1 
reciprocal cross animals were generated by mating LG/J mothers with SM/J fathers (LxS) and the 
inverse (SxL). F2 intercrossed animals were generated by mating LxS mothers with SxL fathers 
and the inverse. After weaning at 21 days, animals were separated into sex-specific cages of 3–5 
animals per cage and randomly placed on high-fat (42% kcal from fat; Teklad TD88137) or low-fat 
(15% kcal from fat; Research Diets D12284) isocaloric diets. Feeding was ad libitum. There were 96 
experimental F1 animals in total, with 48 animals for each cross (LxS and SxL). Within each cross, 
there were 24 high-fat-fed animals (12 males; 12 females) and 24 low-fat-fed animals (12 males; 
12  females). The F2 animals were generated for a different study, following the same weaning 
protocol and diets, and we used data from the high fat-fed females (n = 14) for validation in the 
the current study (Carson et  al., 2020). Additionally, we used data generated from founder F0 
(LG/J (n = 6) and SM/J (6)) high fat-fed female animals, also generated for a different study and 
subjected to the same weaning protocol and diets (Carson et al., 2020). The barrier animal facil-
ities at WUSM follow a 12/12 hr light/dark schedule, all water is autoclaved and changed weekly, 
and all cages are changed weekly.

All animals were weighed weekly from three weeks of age until sacrifice. At 19 weeks of age, body 
composition was determined by MRI and a glucose tolerance test was performed after a 4 hr fast. At 
20 weeks of age, animals were given an overdose of sodium pentobarbital after a 4 hr fast and blood 
was collected via cardiac puncture. Euthanasia was achieved by cardiac perfusion with phosphate-
buffered saline. After cardiac perfusion, the reproductive fat pad was harvested, flash frozen in liquid 
nitrogen, and stored at –80 °C.

https://doi.org/10.7554/eLife.72989
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://dx.doi.org/10.1093%2Fbioinformatics%2Fbtp616
https://dx.doi.org/10.1093%2Fbioinformatics%2Fbtp616
https://doi.org/10.1093/nar/gkz401
https://doi.org/10.1038/nbt.3192
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Study design
The weaning, phenotyping protocols, and diets were chosen to reproduce the protocols and diets 
used in studies of the F16 Advanced Intercross of the LG/J x SM/J inbred mouse lines that were used 
in previously published mapping studies (Cheverud et al., 2011; Lawson et al., 2011a; Lawson et al., 
2011b, Lawson et al., 2010). The experimental unit for the current study is the individual mouse. For 
the RNA sequencing, a single animal was randomly chosen from each cage using a random number 
generator in R. All other animals served as biological replicates. Mice from multiple cages repre-
senting different crosses, generations, diets, and sexes, were necropsied at the same time to avoid 
batch effects. Library prep and RNA sequencing was performed blinded by the WUSM Genome Tech-
nology and Access Center.

Genomes and annotations
LG/J and SM/J indels and SNVs were leveraged to construct strain-specific genomes using the 
GRC38.72-mm10 reference as a template (Nikolskiy et al., 2015). This was done by replacing refer-
ence bases with alternative (LG/J | SM/J) bases using custom python scripts. Ensembl R72 annotations 
were adjusted for indel-induced indexing differences for both genomes.

RNA sequencing
Total RNA was isolated from adipose tissue using the RNeasy Lipid Tissue Kit (QIAgen) (n = 32, 4 
animals per sex/diet/cross cohort). RNA concentration was measured via NanoDrop and RNA quality/
integrity was assessed with a BioAnalyzer (Agilent). RNA-Seq libraries were constructed using the 
RiboZero kit (Illumina) from total RNA samples with RIN scores > 8.0. Libraries were checked for quality 
and concentration using the DNA 1000LabChip assay (Agilent) and quantitative PCR, according to 
manufacturer’s protocol. Libraries were sequenced at 2 × 100 paired end reads on an Illumina HiSeq 
4,000. After sequencing, reads were de-multiplexed and assigned to individual samples. RNAseq data 
are available through the NCBI-SRA, accession: PRJNA753198.

Library complexity
Complexity was measured by fitting a beta-binomial distribution to the distribution of Lbias values using 
the VGAM package (Yee, 2010). The shape parameters (α, β) of beta-binomial distributions were esti-
mated and used to calculate dispersion (ρ). Dispersion values less than 0.05 indicate our libraries are 
sufficiently complex (Figure 2—figure supplement 1).

	﻿‍ ρs = 1
1+αs+βs ‍�

One library was found to have insufficient complexity and was removed from the analyses.

Allele-specific expression
FASTQ files were filtered to remove low quality reads and aligned against both LG/J and SM/J pseudo-
genomes simultaneously using STAR with multimapping disallowed (Dobin et al., 2013). Read counts 
were normalized via upper quartile normalization and a minimum normalized read depth of 20 was 
required. Alignment summaries are provided in Supplementary file 8 and Figure 2—figure supple-
ment 2.

For each gene in each individual, allelic bias (Lbias) was calculated as the proportion of total reads 
for a given gene with the LG/J haplotype. Parent-of-origin-dependent allele-specific expression was 
detected by ANOVA using one of a number of models in which Lbias is responsive to cross and the 
interaction of cross with some combination of sex and diet:

	﻿‍

Model




if each Cross context has ≥ 2 samples, Lbias ∼ Cross

if each Cross : Sex context has ≥ 2 samples, Lbias ∼ Cross + Cross : Sex

if each Cross : Diet context has ≥ 2 samples, Lbias ∼ Cross + Cross : Diet

if each context has ≥ 2 samples, Lbias ∼ Cross + Cross : Sex + Cross : Diet + Cross : Sex : Diet‍�

https://doi.org/10.7554/eLife.72989
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Accurately estimating the significance of these effects and correcting for multiple tests is chal-
lenging for two reasons: (1) the complexity of the many environmental contexts and (2) the correlation 
of allelic bias within and between imprinted domains breaks assumptions of independence. A permu-
tation approach is an effective way to overcome these challenges. The context data was randomly 
shuffled for each gene independently and analyses were rerun to generate a stable null distribution 
of p-values (Figure 2—figure supplement 3). False discovery rates were estimated for a given signif-
icance threshold as the proportion of significant tests under the permutated null model relative to 
significant tests under the real data model. A value of 1 meaning that 100% of tests at a given signif-
icance threshold are likely false positives. An FDR ≤ 0.1 was considered significant (Supplementary 
file 1, Figure 2—figure supplement 4).

To determine the parental direction and size of expression biases, a parent-of-origin effect score 
was calculated as the difference in mean Lbias between reciprocal crosses (LxS or SxL). Parent-of-origin 
effect scores range from completely maternally expressed (–1), to biallelic (0), to completely paternally 
expressed ( + 1). Parent-of-origin effect score thresholds were calculated from a critical value of α = 
0.01, determined from a null distribution created by permutation Genes with significant allele-specific 
expression and parent-of-origin scores beyond the critical value were considered to have significant 
parent-of-origin-dependent allele-specific expression (Figure 2—figure supplement 5).

Differential expression
Differential expression by reciprocal cross was determined by first aligning reads against the LG/J and 
SM/J genomes simultaneously with multimapping permitted. Reads were normalized by Trimmed 
mean of M-values (TMM) normalization, which estimates scale factors among samples to allow for 
differences in RNA composition (Robinson and Oshlack, 2010). A minimum normalized read count of 
10 was required. Generalized linear models accounting for diet, sex, and diet-by-sex were fit in EdgeR 
(Robinson et al., 2010). Differential expression was detected by a likelihood ratio test. Significance 
was determined for five models for each gene:

	﻿‍ 1. Expression ∼ Cross‍�

	﻿‍ 2. Expression ∼ Cross : Sex‍�

	﻿‍ 3.Expression ∼ Cross : Diet‍�

	﻿‍ 4. Expression ∼ Cross : Sex : Diet‍�

	﻿‍ 5. Expression ∼ Cross + Cross : Sex + Cross : Diet + Cross : Sex : Diet‍�

Multiple test corrections were performed by implementing the ‘qvalue’ R package to estimate false 
discovery rates (Figure 2—figure supplement 6). Genes with a FDR of ≤0.1 and a ‍

∣∣fold change
∣∣ ≥ 1.5‍ 

were considered significantly differentially expressed by reciprocal cross (Figure 2—figure supple-
ment 7 and Supplementary file 2).

Gene-gene interactions
Networks were constructed in each tissue by pairing genes showing parent-of-origin-dependent 
allele-specific expression with biallelic genes that are differentially expressed by cross. Pairs were 
predicted by modeling the expression of biallelic genes as a function of parent-of-origin-dependent 
allele-specific expression, Lbias, sex, diet, and sex-by-diet. The strength of a prediction was measured 
through model fit, which was estimated as a mean test error with 10-fold cross-validation employed to 
prevent overfitting. Significance was estimated by likelihood ratio test using a chi-square distribution. 
Given the complexity of contexts, false discovery rates were determined by permuting the context 
and expression data to generate a stable null-distribution of p-value (Figure 2—figure supplement 
8) Null distribution stability was evaluated by calculating the critical value for alpha = 0.05 at each 
genome wide iteration. The standard deviation of critical values was calculated after each iteration for 
the last 5 iterations. Genome-wide shuffling was done 500 times, with 759 independent randomized 
tests per iteration, meaning the stable null model is composed of 379,500 randomized observations. 
Using the null model, the ‘qvalue’ package estimated a ‍π̂0‍ . This estimate was then used to estimate 
false discovery rates in the real data. MTE score thresholds were calculated from a critical value of α = 
0.01, determined from a null distribution created by permutation (Figure 2—figure supplement 9). 

https://doi.org/10.7554/eLife.72989
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Connections with an FDR ≤ 0.1 (Supplementary file 9) and MTE below the critical value were consid-
ered significant (Figure 2—figure supplement 10).

Functional enrichment analysis
Functional enrichment of interacting genes showing parent-of-origin-dependent allele-specific expres-
sion with biallelic genes that are differentially expressed by cross was tested by over-representation 
analysis in the WEB-based Gene Set Analysis Toolkit v2019 (Zhang et al., 2005). We performed anal-
yses of gene ontologies (biological process, cellular component, and molecular function), pathway 
(KEGG), and phenotype (Mammalian Phenotype Ontology). The list of all unique interacting genes 
was analyzed against the background of all unique genes expressed in white adipose. A Benjamini-
Hochberg FDR-corrected p-value ≤ 0.01 was considered significant (Supplementary file 4).

Phenotype correlation
In order to identify which phenotypes might be affected by genes in the parent-of-origin effects 
network, gene expression was correlated with metabolic phenotypes collected for F1 animals with 
the contexts combined. Phenotypes were log transformed when necessary, as determined by Shapiro 
Wilkes test to approximate normality (Figure  2—figure supplement 11). Additionally, the effects 
of sex and diet were residualized out leaving only the effect of cross. This was done to mirror later 
residualizing of phenotypes in the F16 population when testing for epistasis. Multiple test corrections 
were performed by implementing the ‘qvalue’ R package to estimate false discovery rates (Figure 2—
figure supplement 12). The minimum Pearson’s correlation coefficient threshold was set to |0.5|. 
Connections with an FDR ≤ 0.05 (Supplementary file 5) and MTE below the critical value were consid-
ered significant (Figure 2—figure supplement 13).

Epistasis testing
The F16 LxS advanced intercross population, phenotypes, genotypes, genotypic scores, and QTL 
mapping methods are described elsewhere (Cheverud et al., 2011; Lawson et al., 2011a; Lawson 
et  al., 2011b, Lawson et  al., 2010). We tested for epistasis in interacting pairs between genes 
showing parent-of-origin-dependent allele-specific expression and biallelic genes that are differen-
tially expressed by cross. We selected F16 genotyped markers that fall within 1.5 Mb up- and down-
stream from the geometric center of each gene, defined as the genomic position halfway between the 
transcription start and stop position of that gene (Supplementary file 10). For every F16 animal, an 
‘imprinting score’ was assigned to each marker based on that animal’s genotypic values (LL = 0, LS = 1, 
SL = –1, SS = 0; maternal allele is depicted first). Non-normally distributed phenotypes (as evaluated by 
a Shapiro-Wilk test) were log10-transformed to approximate normality (Figure 3—figure supplement 
1). Because of the number of epistasis tests performed and the number of contexts represented in the 
data, we removed the effects of sex, diet and their interaction from each F16 phenotype with a covariate 
screen. We tested for epistasis on the residualized data using the following generalized linear model:

	﻿‍ Rpheno ∼ BDEIMP + ASEIMP + BDEIMP : ASEIMP‍�

where Rpheno is the residual phenotype, BDEIMP is the imprinted genotypic score for the biallelic 
gene that is differentially expressed by cross, ASEIMP is the imprinted genotypic score for the gene 
showing parent-of-origin-dependent allele-specific expression bias, and BDEIMP:ASEIMP is the interac-
tion between the two genes’ imprinted genotypic score. We employed a permutation approach to 
accurately estimate significance given the linkage of proximal markers. Imprinted genotypic values 
were randomly shuffled to generate a stable null model of p-values (Figure 3—figure supplement 
2). False discovery rates were estimated for a given significance threshold as the proportion of signif-
icant tests under the permutated null model relative to significant tests under the real data model 
(Figure 3—figure supplement 3). An FDR ≤ 0.1 was considered significant. Epistasis was considered 
significant if the BDEIMP: ASEIMP interaction term met the significance threshold (Supplementary file 6).

Validation of Nnat and F2r expression patterns
Expression patterns of Nnat and F2r in white adipose were validated by qRT-PCR in high-fat-fed 
female LG/J and SM/J mice and in biological replicates of high-fat-fed female F1 reciprocal cross 

https://doi.org/10.7554/eLife.72989
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animals (n = 6  LG/J homozygotes, n = 10  LxS and 10 SxL reciprocal heterozygotes, n = 6  SM/J 
homozygotes). Total RNA was extracted from adipose samples using the Qiagen RNeasy Lipid Kit. 
High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher) was used for reverse transcription. 
Quantitative RT-PCR was performed with an Applied Biosystems (USA) QuantStudio 6 Flex instrument 
using SYBR Green reagent. Results were normalized to L32 expression using the ΔΔCt method. Nnat 
forward primer – ​CTAC​​CCCA​​AGAG​​CTCC​​CTTT​ and reverse primer – ​CAGC​​TTCT​​GCAG​​GGAG​​TACC​
. F2r forward primer – ​TGAA​​CCCC​​CGCT​​CATT​​CTTT​C and reverse primer – ​CCAG​​CAGG​​ACGC​​TTTC​​
ATTT​​TT. L32 forward primer – ​TCCA​​CAAT​​GTCA​​AGGA​​GCTG​ and reverse primer – ​GGGA​​TTGG​​TGAC​​
TCTG​​ATGG​. Data points were considered outliers if they led to violation of normality assumptions 
or were considered outliers by box and whisker plots. ANOVA was used to estimate significance of 
differential expression by cross (1), paternal allele identity (2), mitochondrial ancestry (3).

	﻿‍

1. Expression ∼ Cross ∈





LL, 0

LS, −1

SL, 1

SS, 0 ‍�

	﻿‍

2. Expression ∼ Paternal Allele ∈





LL, 0

LS, 1

SL, 0

SS, 1 ‍�

	﻿‍

3. Expression ∼ Mitochondrial ancestry ∈





LxS x SxL, 0

SxL x LxS, 1
‍�

Expression patterns were also validated by qRT-PCR in high fat-fed female F2 animals (n = 14). 
Co-expression was determined by fitting a general linear model and estimating significance using 
the Wald test approximation of the LR test. Correlation with basal glucose was determined by fitting 
a general linear model and estimating significance using the Wald test approximation of the LR test. 
Pearson’s correlation coefficients were calculated for each gene with basal glucose. To test whether 
patterns in these correlations was significantly different between F0/F1 and F2 populations, boot-
strapping was used to calculate 90% confidence intervals for the Pearson’s correlation coefficients. 
5,000 iterations were run with 10 individuals randomly selected with replacement. scRNA analysis of 
Nnat and F2r scRNAseq data was downloaded from SRA: SRP145475 (Burl et al., 2018). Data were 
processed and aligned to the C57BL/6 J reference (mm10) using Cell Ranger (Zheng et al., 2017). 
Analysis and cell quality control was performed using the Seurat (3.2.2)(Stuart et al., 2019) package in 
R (3.6.1)(R Development Core Team, 2013). Cell quality was controlled using three metrics (Luecken 
and Theis, 2019): (1) number of features, (2) number of counts, (3) covariation of features and counts. 
High quality cells were required to have between 500 and 3000 features and read counts between 
1000 and 30,000. As sequencing is a process of random sampling, the number of features and the 
number of counts should covary. This relationship was fit to a generalized additive model. Deviation 
from this relationship (residuals) were computed for each cell. High-quality cells were required to have 
a residual within 3 standard deviations of the mean residual of all cells (Figure 5—figure supplement 
3).

Seurat normalization with a scale factor of 10,000 was performed. Dimensionality reduction (UMAP) 
was performed (dims = 1:10, resolution = 0.15). Resolution was chosen using the clustree (0.4.3) 
package (Zappia and Oshlack, 2018). A range of resolutions from 0.06 to 0.18 were tested, and 
the highest resolution with stable clustering was chosen (Figure 5—figure supplement 4). Cell type 
markers were identified by differential expression analysis using the ‘MAST’ hurdle-model test (Finak 
et al., 2015). Genes overexpressed in a given cell type relative to all other cell types were considered 
cell type ‘markers’. Cell type identity was assigned using previously reported markers for this data set 
(Figure 5—figure supplement 1).

https://doi.org/10.7554/eLife.72989
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Cells along the adipogenic trajectory were subset and subjected to dimensionality reduction 
(UMAP, dims = 1:10, resolution = 0.17). A range of resolutions from 0.01 to 0.25 were tested. Using 
Adipoq as a marker of differentiation, we sought to identify the set of clusters that would best encap-
sulate the stages of differentiation. To this end for every level of resolution we calculated the mean 
count variance (‍C̄σ‍). This is done by calculating the standard deviation (‍σ‍) of Adipoq expression (E) 
within each cluster (G), referred to as the count variance (‍Cσ‍). Cells with no expression of Adipoq were 
excluded. The mean of count variances for all clusters is calculated. This process is similar to k-means 
clustering, where the goal is to find that parameters which minimize the within group variation.

	﻿‍ Count Variance =
∑n

G=1 σ
(

EG
)

n ‍�

We also calculated the percent expressing variance (‍P̄σ‍). This was taken as the mean of the stan-
dard deviation in the percent of cells expressing Adipoq.

	﻿‍ Percent Expressing Variance =
∑n

G=1 σ
(

%E>0G
)

n ‍�

The resolution 0.17 was chosen as the lowest resolution where variation is minimized and no 
longer significantly changes (Figure 5—figure supplement 5). Using Adipoq as a marker of adipo-
genesis, clusters 1 and 2 were identified as pre- and post-differentiated cells, respectively. Differential 
expression was analyzed using the ‘MAST’ test. Expression was compared between clusters 1 and 2 
only. Multiple tests correction was performed using the Bonferroni method. We required changes in 
expression to show either a sufficiently large fold change (‍

∣∣log2 FoldChange
∣∣ ≥ 0.3‍) OR a sufficiently 

large change in the percent of cells expressing the gene in question (‍pct.∆ ≥ 0.4‍). The change in 
percent of cells expressing a gene was calculated as the difference in percent of cells expressing the 
gene between the clusters and scaled by dividing by the larger percentage.

	﻿‍
pct.∆ = pct.2−pct.1

max
(

pct.1,pct.2
)
‍�

Source code is available at https://github.com/LawsonLab-WUSM/POE_Epistasis, (copy archived 
at swh:1:rev:b39046ce35f53e0c3f15bcdefa122c274aee48b7, Lawson, 2019).
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