
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Biology: Faculty Publications and Other Works Faculty Publications and Other Works by 
Department 

11-1-2021 

Relating multivariate shapes to genescapes using phenotype-Relating multivariate shapes to genescapes using phenotype-

biological process associations for craniofacial shape biological process associations for craniofacial shape 

Jose D. Aponte 
McCaig Institute for Bone and Joint Health 

David C. Katz 
McCaig Institute for Bone and Joint Health 

Daniela M. Roth 
University of Alberta, Faculty of Medicine and Dentistry 

Marta Vidal-García 
McCaig Institute for Bone and Joint Health 

Wei Liu 
McCaig Institute for Bone and Joint Health 

See next page for additional authors 

Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs 

Recommended Citation Recommended Citation 
Aponte, Jose D.; Katz, David C.; Roth, Daniela M.; Vidal-García, Marta; Liu, Wei; Andrade, Fernando; 
Roseman, Charles C.; Murray, Steven A.; Cheverud, James; Graf, Daniel; Marcucio, Ralph S.; and 
Hallgrímsson, Benedikt. Relating multivariate shapes to genescapes using phenotype-biological process 
associations for craniofacial shape. eLife, 10, : 1-28, 2021. Retrieved from Loyola eCommons, Biology: 
Faculty Publications and Other Works, http://dx.doi.org/10.7554/eLife.68623 

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department 
at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an 
authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution 4.0 International License. 

https://ecommons.luc.edu/
https://ecommons.luc.edu/biology_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/biology_facpubs?utm_source=ecommons.luc.edu%2Fbiology_facpubs%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.7554/eLife.68623
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Authors Authors 
Jose D. Aponte, David C. Katz, Daniela M. Roth, Marta Vidal-García, Wei Liu, Fernando Andrade, Charles C. 
Roseman, Steven A. Murray, James Cheverud, Daniel Graf, Ralph S. Marcucio, and Benedikt Hallgrímsson 

This article is available at Loyola eCommons: https://ecommons.luc.edu/biology_facpubs/151 

https://ecommons.luc.edu/biology_facpubs/151


Aponte et al. eLife 2021;10:e68623. DOI: https:// doi. org/ 10. 7554/ eLife. 68623  1 of 28

Relating multivariate shapes to 
genescapes using phenotype- 
biological process associations for 
craniofacial shape
Jose D Aponte1, David C Katz1, Daniela M Roth2, Marta Vidal- García1, Wei Liu1, 
Fernando Andrade3, Charles C Roseman3, Steven A Murray4, James Cheverud3, 
Daniel Graf2,5, Ralph S Marcucio6*, Benedikt Hallgrímsson1,7*

1Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research 
Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, 
University of Calgary, Calgary, Canada; 2School of Dentistry, Faculty of Medicine and 
Dentistry, University of Alberta, Edmonton, Canada; 3Department of Biology, Loyola 
University Chicago, Chicago, United States; 4The Jackson Laboratory, Bar Harbor, 
United States; 5Department of Medical Genetics, Faculty of Medicine and Dentistry, 
University of Alberta, Edmonton, Canada; 6Department of Orthopaedic Surgery, 
School of Medicine, University of California, San Francisco, San Francisco, United 
States; 7Department of Animal Biology, University of Illinois Urbana Champaign, 
Urbana, United States

Abstract Realistic mappings of genes to morphology are inherently multivariate on both sides 
of the equation. The importance of coordinated gene effects on morphological phenotypes is 
clear from the intertwining of gene actions in signaling pathways, gene regulatory networks, and 
developmental processes underlying the development of shape and size. Yet, current approaches 
tend to focus on identifying and localizing the effects of individual genes and rarely leverage the 
information content of high- dimensional phenotypes. Here, we explicitly model the joint effects of 
biologically coherent collections of genes on a multivariate trait – craniofacial shape – in a sample of 
n = 1145 mice from the Diversity Outbred (DO) experimental line. We use biological process Gene 
Ontology (GO) annotations to select skeletal and facial development gene sets and solve for the 
axis of shape variation that maximally covaries with gene set marker variation. We use our process- 
centered, multivariate genotype- phenotype (process MGP) approach to determine the overall 
contributions to craniofacial variation of genes involved in relevant processes and how variation in 
different processes corresponds to multivariate axes of shape variation. Further, we compare the 
directions of effect in phenotype space of mutations to the primary axis of shape variation asso-
ciated with broader pathways within which they are thought to function. Finally, we leverage the 
relationship between mutational and pathway- level effects to predict phenotypic effects beyond 
craniofacial shape in specific mutants. We also introduce an online application that provides users 
the means to customize their own process- centered craniofacial shape analyses in the DO. The 
process- centered approach is generally applicable to any continuously varying phenotype and thus 
has wide- reaching implications for complex trait genetics.
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This paper offers a new take on multivariate genotype- phenotype mapping that identifies the joint 
phenotypic effect of genes involved in known biological processes that impact craniofacial variation. 
More specifically, the work expands on the traditional idea of candidate gene investigations into 
candidate biological process investigations, grouping multiple genes into a single analysis. In doing 
so, the authors show the joint effects of three strong candidate processes, chondrocyte differentia-
tion, determination of left/right symmetry, and palate development on multidimensional craniofacial 
shape in the heterogenous Diversity Outbred mouse population.

Introduction
Variation in human craniofacial shape is moderately to highly heritable (~30–70%; Cole et al., 2017; 
Tsagkrasoulis et al., 2017), and resemblances among close relatives as well as twins underscore the 
strong relationship between shared genetics and shared phenotype (Johannsdottir et  al., 2005; 
Nakata, 2014). Despite many studies in humans and in mice (Claes et al., 2018; Cole et al., 2016; 
Shaffer et al., 2016), however, we know very little about the genetic basis for variation in craniofacial 
shape. This is likely due to genetic complexity (Katz et al., 2019; Richtsmeier and Flaherty, 2013; 
Visscher, 2008; Wood et al., 2014; Wray et al., 2013). Like many aspects of morphological variation, 
craniofacial shape is extraordinarily polygenic. Genes with major mechanistic roles in facial develop-
ment such as Fgf8 often contribute little to observed phenotypic variation (Green et al., 2017) while 
genetic influences without obvious connections to craniofacial development emerge as significant 
contributors (Kenney- Hunt et al., 2008; Klingenberg and Leamy, 2001; Maga et al., 2015; Pallares 
et al., 2015; Pallares et al., 2014). The effects of genetic variants on phenotype often depend on 
genetic background (Mackay and Moore, 2014; Percival et al., 2017), and many mutations have 
variably penetrant effects even when background is controlled (Kawauchi et  al., 2009; Rendel, 
1967). These issues likely arise because genetic influences act through multiple layers of interacting 
developmental processes to influence phenotypic traits, resulting in complex patterns of epistasis 
and variance heterogeneity (Hallgrimsson et al., 2019; Hallgrimsson et al., 2014; Kawauchi et al., 
2009; Wagner and Zhang, 2011; Gasch et al., 2016). Solutions that go beyond studies of single 
gene effects are required to overcome these significant challenges in complex trait genetics. Here, we 
implement an enhanced form of the more general candidate gene approach to evaluate the conjoint 
effects of multiple genes on a complex trait – craniofacial shape.

There are two basic approaches to mapping genetic effects on to phenotypic variation. A candi-
date gene approach measures genotypic values with known physiological and biochemical relation-
ships to the phenotypes of interest (Cheverud and Routman, 1996). In contrast, a random marker 
or genome- wide approach seeks to associate any potential genetic variant with variation in the trait 
of interest. There are advantages and disadvantages to these two approaches. The candidate gene 
approach is blind to the unknown – phenotypic variation is often associated with genes not expected 
to be important. On the other hand, a candidate gene approach allows direct measurement of geno-
typic values and produces results that are interpretable in terms of trait physiology or development. 
A genome- wide or random marker approach can produce unexpected insight by revealing novel 
gene- phenotype associations. However, this comes at a great cost in power (Visscher et al., 2017). 
For highly polygenic traits, this approach often produces a ‘tip of the iceberg’ effect in which studies 
reveal a small and often incoherent subset of the genes that actually determine variation in the trait 
of interest (Broman, 2009).

Several strategies have been developed that partially overcome these tradeoffs. One solution is 
the use of polygenic risk scores. Polygenic risk scores assess the overall genetic influence on a trait 
without regard to the genome- wide significance of individual SNP effects (Dudbridge, 2013; Wray 
et  al., 2007). Approaches such as meta- analyses of genome- wide association studies (GWAS) or 
studies based on extreme phenotypes Morozova et al., 2015 have expanded gene lists for a variety 
of complex traits. However, lengthy lists of genes or overall genomic risk for specific phenotypes do 
not necessarily constitute tractable genetic explanations for phenotypic variation. When thousands 
of genes are required to explain heritable variation in stature, for instance, it is not clear what such 
lists tell you beyond the obvious fact that stature is heritable and polygenic (Yang et al., 2010; Wood 
et al., 2014). This tension between hypothesis- driven and hypothesis- free approaches and their atten-
dant tradeoffs between statistical power and interpretability is, arguably, a major issue within complex 

https://doi.org/10.7554/eLife.68623
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trait genetics. To resolve this conceptual conflict, 
approaches are needed that integrate quantita-
tive genetics with biological insights regarding 
the cellular and developmental processes through 
which genes influence phenotypic variation.

Existing approaches to complex trait genetics 
also tend to treat phenotypic traits as singular and 
one- dimensional. Even for morphological varia-
tion, most studies reduce shape variation to linear 
distances, principal components (PCs), regression 
scores or measures of size that are then mapped 
as individual traits (Xiong et  al., 2019; Shaffer 
et  al., 2016; Cole et  al., 2016). This approach 
disregards the information content of multivariate 
phenotypic variation. While univariate traits only 
vary along one dimension, high- dimensional traits 
such as craniofacial shape can vary in direction 
as well as magnitude within a multidimensional 
shape space. To identify the distinctive axes of 
gene effects on a multivariate trait, one must 
model such multiple multivariate relationships 
directly.

Building on Mitteroecker et al.’s (2016) multi-
variate genotype- phenotype (MGP) method, we 
extend the candidate gene framework to eval-
uate the combined contributions of genes to vari-
ation in high- dimensional phenotypic traits such 
as craniofacial shape. Grouping genes by onto-
logical information such as membership in devel-
opmental pathways or other relevant biological 
hypotheses, our process- centered multivar-
iate approach, herein referred to as process 
MGP, brings traditional GWAS together with a 
simplified model of the hierarchical genotype- 
phenotype (GP) map. Gene Ontology (GO) terms 
are broadly grouped into three categories:cellular 
components, molecular functions, and biolog-
ical processes. Our work focuses on biological 
process gene annotations because they group 
known relationships between several genes that 
contribute to a developmental function. The 
process MGP approach aims to leverage this 
knowledge by modeling the joint effects of these 
genes on craniofacial shape variation.

Understanding the genetic determinants of craniofacial variation, as with most complex traits, 
represents a many- to- many GP map problem (Lewontin, 1974; Houle et al., 2010). Both phenotypic 
and genotypic measurements have complex within- set covariance structures. On the genetic side, 
the covariance structure is represented by pathway/biochemical interactions, as well as chromosomal 
structure like linkage, chromatin, and 3D chromosomal organization. For shape- related phenotypes, 
the covariance matrix is structured by the chosen set of landmarks and their resulting coordinates. The 
functional relationship from genotype to phenotype is then described by a between- set covariance 
(Klingenberg and Leamy, 2001; Mitteroecker et al., 2016). To dissect these relationships, we use a 
regularized partial least squares (PLS) (Lorenzo et al., 2019) approach to estimate a low- dimensional 
mapping from the alleles in our sample to variation in adult mouse craniofacial shape. While PLS is 
well suited for analysis of covariation between two sets of measurements, regularization is essential for 

Figure 1. Process multivariate genotype- phenotype 
(MGP) schematic. Once a process is selected, we cross- 
reference the known gene locations using Ensembl with 
the locations of the genotyped markers in the Diversity 
Outbred (DO) sample. The founder probabilities 
of the nearest upstream and downstream markers 
are averaged for each gene. The compiled founder 
probabilities and landmark coordinates are then used 
in a regularized partial least squares (PLS) model to 
estimate the axis of greatest covariance between the 
marker data and craniofacial variation.

https://doi.org/10.7554/eLife.68623
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mitigating overfitting when there are many alleles simultaneously modeled. We focus on how allelic 
variation in processes relevant to craniofacial development maps to craniofacial shape variation. We 
ask the following four questions:

1. How much shape variation is communally accounted for by genes contributing to a process, for 
example, chondrocyte differentiation?

2. How similar are the effects of different processes on shape? For instance, do cell proliferation 
genes affect face shape in a similar way to genes in the bone morphogenetic protein pathway?

3. How similar are mutant model effects and process effects? For example, do chondrocyte mutant 
effects align with the effects of natural variants in chondrocyte differentiation genes?

4. Can one use the similarity of a mutational effect to MGP process effects predict unobserved 
phenotypes associated with that mutation?

Together, these questions demonstrate the ability of the process MGP approach to add meaningful 
understanding of the complex relationships between genotype and phenotype by quantifying higher- 
level regularities between complex phenotypic and genomic data. We also demonstrate its potential 
as a resource for the study of mutational effects on complex traits such as craniofacial shape.

Results
Process MGP mapping
For process MGP analyses, we used the mouse genome informatics database (Bult et al., 2018Kane-
hisa et al., 2017) to identify genes annotated to a given process. Each annotation term has an associ-
ated GO ID. For example, ‘chondrocyte differentiation’ has GO ID GO:000206 (Figure 1, box 1). We 
cross- reference the GO ID with the Ensemble genome database (GRCm38.p6) to find the name, chro-
mosome, and base pair start/end position for each gene (Figure 1, box 2) annotated to the process. 
For genes with multiple splice variants, we select the longest transcript. For each gene, we compare 
marker base pair positions and select the closest upstream and downstream markers to the center 
of each gene. The eight- state genotype probability is then calculated as the average founder allele 
probabilities between the two selected markers. (Figure 1, box 3). After marker selection, we fit a 
regularized PLS model using the founder allele probabilities (eight variables/marker) and full landmark 
data set (Figure 1, box 4). Regularization penalizes the coefficients such that increasing regularization 
strength causes more coefficients to have a value of zero. We chose a regularization parameter using 
10- fold cross- validation. For each of the example process MGP analyses shown, we chose the regular-
ization strength that best represented the tradeoff between minimizing model error and maximizing 
interpretability of marker effects and the similarity of phenotypic effects with mouse mutant models. 
The full cross- validation results are shown in Figure 2, Figure 4, and Figure 5—figure supplement 1.

We demonstrate process MGP mapping with three examples. The first estimates the primary axis 
of skull shape covariation with genes annotated to ‘chondrocyte differentiation’ (Figure 2). Differ-
entiation of chondrocytes is one of several key developmental processes involved in endochondral 
ossification. Endochondral bones form the majority of the cranial base through a cartilage model of 
bone formation (Percival and Richtsmeier, 2013). There are 38 genes annotated to chondrocyte 
differentiation in the Ensembl database (Yates et al., 2020). In the figure, genetic effects are shown as 
zero- centered bars that span the range of estimated allele effects across the eight DO founders; indi-
vidual founder allele effects – eight per marker – are color- coded within those bars (Figure 2A). We 
chose a regularization parameter of 0.075 for this analysis (Figure 2—figure supplement 1). Among 
chondrocyte differentiation genes, Nov/Ccn3, Bmpr1b (Alk6), and Nfib are most implicated in the 
major axis of pathway covariation with craniofacial shape. The phenotypic effects at each landmark 
primarily relate to anteroposterior positioning of the zygomatic arches and dorsoventral jugal position 
(Figure 2B). The chondrocyte differentiation GP map explains 2.15% of the total variance in cranio-
facial shape. Compared to 10,000 random permutations of the model, chondrocyte differentiation 
explains substantially more craniofacial variation (Figure 2—figure supplement 2).

Figure 2C compares the direction of the chondrocyte differentiation MGP axis – magnified 4× 
– to the axis of shape variation of a relevant mutant phenotype. We chose homozygous Bmpr1b 
mutants for this comparison for three reasons. The first is because Bmpr1b in synergy with other 
bone morphogenic protein pathway receptors regulates chondrocyte proliferation and differentiation 
in embryonic cartilage condensations (Yoon et al., 2005, ). The second reason we chose Bmpr1b 

https://doi.org/10.7554/eLife.68623
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mutant comparisons is because the marker selected for Bmp1rb in the genomic analysis contains 
one of the strongest allelic effects associated with the morphological effect. Bmpr1b shows stronger 
loading/association than Bmpr1a (Figure 2A). While Bmpr1a has well- established roles in craniofacial 
development (Liu et al., 2005; Liu et al., 2018), the role for Bmpr1b on its own is less clear. Bmpr1b 
mutants show shorter long bones at birth and overexpression of a dominant negative Bmpr1b using 
a type 1 collagen promoter showed delayed ossification of the frontal, parietal, and occipital bones 

Figure 2. Process multivariate genotype- phenotype (MGP) for chondrocyte differentiation with a regularization 
parameter of 0.075. (A) PLS1 genetic loadings are shown for each gene in the model sorted from largest to 
smallest effects. Individual founder allele effect sizes are colored within each bar. The gene in red text corresponds 
to the mutant used for comparison of phenotypic effects. (B) The estimated chondrocyte differentiation MGP 
phenotype is shown with a heatmap. Warm colors represent areas of relative expansion, light green represents 
areas of little shape effect, and cool colors represent areas with relative contraction. (C) Chondrocyte differentiation 
MGP effects shown in black vectors multiplied 4× are compared to a Bmpr1b (Alk6) homozygous mutant and are 
shown with red vectors. The vector correlation between chondrocyte differentiation MGP and Bmpr1b is shown 
below the phenotypic effects.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. 10- fold cross- validation results for the chondrocyte differentiation multivariate genotype- 
phenotype (MGP).

Figure supplement 2. Permutation of marker sets of fixed size.

https://doi.org/10.7554/eLife.68623
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(Yoon et al., 2005; Zhao et al., 2002). The overall phenotypic directions of Bmpr1b mutant variation 
and chondrocyte differentiation variation are moderately correlated at r = 0.371 (t = –5.06, df = 160, 
p<0.0001), but the direction at landmarks with large effects in mutant and MGP is clearly coinci-
dent. Over the landmarks we measured, the chondrocyte differentiation effect is less global than the 
Bmpr1b effect, likely due to the difference in severity of the mutant phenotype.

The similarity of the chondrocyte differentiation effect with the Bmpr1b mutant and the high loading 
Bmpr1b allele in the DO genome suggest that Bmpr1b mutants may produce chondrocyte differenti-
ation defects in the developing neurocranium. In response to the process MGP results, quantified cell 
size and distribution in the intersphenoid synchondroses (ISS) of several mutant and control Bmpr1b 
mice (Figure 3—figure supplement 1). We found that homozygotes show overall larger cell sizes as 
well as a differing distribution of cell sizes throughout the width of the ISS (Figure 3A–C; χ2 = 21.23, 
df = 3, p<0.0001). The presence of larger cell sizes in the homozygote Bmpr1b mutants suggests 
that the synchondroses possess more hypertrophic chondrocytes. Additionally, Bmpr1b homozygous 
mutant mice show premature fusion of the coronal suture (Figure 3D). Both features have not been 
reported in the literature.

The second example quantifies cranial shape covariation with the 81 genes annotated to ‘deter-
mination of left/right symmetry.’ We used a regularization parameter of 0.04 (Figure  4—figure 
supplement 1). There are several high loading alleles that contribute to the determination of left/
right symmetry MGP phenotype. In particular, an Fgf10 allele inherited from the Castaneus founder 
background was among the most important (Figure 4A). FGF10 is a key ligand in early develop-
ment, directing proliferation as well as differentiation for many craniofacial components, including 
the palate, teeth, and bones (Hilliard et al., 2005; Prochazkova et al., 2018; Watson and Francav-
illa, 2018). The phenotype associated with left/right symmetry alleles is predominately related to a 
larger neurocranium volume relative to the outgrowth of the face (Figure 4B). We also visualized the 
asymmetry in the phenotypic response, which shows subtle asymmetry, particularly in the position of 
the anterior zygomatic landmark (Figure 4D). Several Fgf ligands including Fgf10 are integral in the 
asymmetric distribution of organs (Hecksher- Sørensen et al., 2004). Fgf8 has also previously been 
shown to produce asymmetric craniofacial phenotypes in zebrafish, but craniofacial asymmetry has 
not previously been observed in Fgf10 mutants (Albertson and Yelick, 2005). Left/right symmetry 
loci explain 3.4% of the total variance in craniofacial shape, which exceeds the variance explained 
by 10,000 randomly permuted L/R symmetry MGP analyses (Figure 4—figure supplement 2). We 
compared the estimated L/R symmetry MGP effect with the direction of an Fgf10 homozygous mutant 
because of the relative importance of the allelic effect (Figure 4C). The vector correlation between the 
Fgf10 mutant and the estimated left/right symmetry effect is 0.672 (t = 12.29, df = 160, p<0.0001). 
The importance of other Fgf ligands in craniofacial symmetry, as well as the high- loading Fgf10 allele 
for left/right symmetry MGP along with the similar genomic and mutant phenotypes, suggests that 
Fgf10 mutants could show directional asymmetry in the cranium. To test this hypothesis, we measured 
a sample of 8 Fgf10 adult mutant crania for object symmetry and detected significant directional 
asymmetry (Figure 4D; F = 4.91, df = 52, p<0.0001).

The final example estimates the shape covariation attributed to the 73 genes annotated to ‘palate 
development.’ Formation and fusion of the palatal shelves are crucial for proper orofacial develop-
ment and heavily influence overall facial shape (Greene and Pisano, 2010). We used a regularization 
penalty of 0.05 because it best balances the vector correlation to the mutant comparison and the 
reduction of prediction error (Figure 5—figure supplement 1). Several genes contribute strongly 
to the palate development MGP effect including Ephb2, Gli3, and Lrp6 (Figure 5A). The estimated 
phenotype shows corresponding variation in palate length as well as strong effects in the majority 
of the cranial base landmarks (Figure 5B). Palate development MGP loci explain 2.4% of the total 
variance in cranial shape, which is greater than the variance explained by 10,000 randomly permuted 
palate development MGP models (Figure 5—figure supplement 2). We compared the palate devel-
opment phenotype to a heterozygous Ankrd11, neural crest- specific knockout mouse. The Ankrd11 
locus is associated with KBG syndrome in humans, which presents with generally delayed bone miner-
alization as well as craniofacial characteristics including palate abnormalities (Low et al., 2016). While 
the vector correlation between the palate development MGP effect and the Ankrd11 mutant over the 
complete set of cranial landmarks is moderate at r = 0.339 (Figure 5C; t = 4.31, df = 160, p=0.0001), 
the vector correlation for palate landmarks is substantially higher at r = 0.536.

https://doi.org/10.7554/eLife.68623
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Figure 3. Chondrocyte defects in Bmpr1b mutants. (A, B) Quantification of cell size in the sections of the 
intersphenoid synchondrosis shows an increase in relative cell size as well as a change in the distribution of 
cell sizes throughout the width of the synchondrosis. (C) Sections of intersphenoid synchondroses highlighting 
the midline and extremes of the synchondroses. (D) Premature fusion of the coronal suture is visible in Bmpr1b 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.68623
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In each case above, we have shown how association of gene sets and phenotypic variation can 
produce highly informative results that can guide subsequent hypothesis testing. For a given biolog-
ical process, we identified several genes that load strongly on the primary axis of MGP covariation 
for which mutant samples were available to us, as well. Future investigations could also use this infor-
mation about genes with high loadings to generate new mutants for analysis of associated develop-
mental processes. For each example, we focus only on the first PLS axis, so distinct joint gene effect 
combinations may contribute to novel phenotypic directions in lower PLS axes.

Joint versus single-loci effects
While the process MGP approach focuses on the joint effect of markers on craniofacial shape, it is 
important to measure the extent that joint effects matter for craniofacial shape. Unlike alternative 
models such as canonical correlation analysis (CCA), the PLS model used for process MGP does not 
allow for statistical tests of individual marker effects. However, it is possible to measure the simi-
larity of phenotypic effects after successively removing the most heavily loading markers from the full 
model. Figure 6 shows the change in variance explained (A) as well as the change in the direction 
of phenotypic response (B) as markers are increasingly removed from the model. For each example 
analysis, we remove markers in order from most heavily loaded to least heavily loaded. We found that 
process MGP analyses with few loci of very large effect, like Ccn3/Nov for chondrocyte differentia-
tion MGP, are very sensitive to the removal of the most highly loaded genes. The vector correlation 
between the full chondrocyte differentiation MGP model and the model with the Ccn3/Nov marker 
removed is 0.346.

For process MGP analyses with a more uniform distribution of marker effects, we found that the 
phenotypic effect is much more reliant on a multitude of marker alleles. For instance, L/R symmetry 
MGP with the 10 most heavily loaded markers removed still produced a vector correlation of 0.95 
with the full model. The majority of process MGP analyses demonstrate a similar importance to 
several alleles, highlighting the main strength of process- level analyses over individual marker tests 
(Figure 6—figure supplement 1). In the following sections, we will examine how process MGP pheno-
types relate to each other, as well as the phenotypic directions of several mutant mouse models.

Pairwise comparison of craniofacial development processes
We chose 15 processes integral to craniofacial development and compared the pairwise similarity of 
effect on craniofacial shape using a heatmap based on clustering of the correlation matrix (R Develop-
ment Core Team, 2017 ). Processes with similar effects on craniofacial shape will be highly correlated, 
while processes that affect distinct aspects of craniofacial variation will be uncorrelated to each other. 
The clustering algorithm resulted in two main blocks of strongly correlated effects (Figure 7A). The 
largest block of highly correlated phenotypic effects includes neural crest cell migration, epithelial 
to mesenchymal transition, forebrain development, as well as some of the most general develop-
mental processes like cell proliferation, bone development, apoptosis, A/P pattern specification, and 
FGFR signaling. In addition, there is a general BMP block, with Bmp signaling, dorsoventral pattern 
formation, endochondral ossification, and positive regulation of skeletal muscle tissue growth. Inter-
estingly, phenotypic variation associated with cranial suture morphogenesis, neural tube patterning, 
and intramembranous ossification is largely uncorrelated with the other craniofacial developmental 
processes included here.

To assess the stability of the clustering result, we estimated the vector correlation between the 
cluster distances – also known as the cophenetic distance – and the original correlation matrix (Sneath 
and Sokal, 1973). A high vector correlation suggests reliable clustering, whereas a low correlation 
suggests a random clustering result. The correlation between the cophenetic distance matrix and the 
correlation matrix is 0.648 (t = 8.64, df = 103, p=7.6 × 10–14), suggesting a moderate, though signifi-
cant, structure in the similarity of effects amongst this set of MGP processes.

homozygous mutants.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Chondrocyte morphometric example.

Figure 3 continued

https://doi.org/10.7554/eLife.68623
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Figure 4. Process multivariate genotype- phenotype (MGP) for determination of left/right symmetry with a 
regularization parameter of 0.04. (A) PLS1 genetic loadings are shown for each gene in the model sorted from 
largest to smallest effects. Individual founder allele effect sizes are colored within each bar. The gene in red text 
corresponds to the mutant used for comparison of phenotypic effects. (B) The estimated left/right symmetry MGP 
phenotype is shown with a heatmap. Warm colors represent areas of relative expansion, light green represents 
areas of little shape effect, and cool colors represent areas with relative contraction. (C) Estimated left/right 
symmetry MGP phenotype is shown with black vectors multiplied 4×. An Fgf10 homozygous mutant is shown 
with red vectors for comparison. The vector correlation between left/right symmetry MGP and the Fgf10 mutant 
is shown below the phenotypic effects. (D) Visualizations of asymmetry in the L/R MGP response and the Fgf10 
homozygous mutant. Asymmetry vectors are magnified 4×.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. 10- fold cross- validation results for the chondrocyte differentiation multivariate genotype- 
phenotype (MGP).

Figure supplement 2. The permuted R2 distribution of 10,000 L/R symmetry multivariate genotype- phenotype 
(MGP) analyses is shown in blue.

https://doi.org/10.7554/eLife.68623
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The similarity in process MGP effects suggests that processes may coordinate in a limited set of 
potential directions of phenotypic variation. One reason that we could observe this pattern that is not 
because of common axes of GP variation is that key genes show up repeatedly within processes and 
largely drive these patterns of phenotypic variation. Figure 7B shows over 45,000 pairwise process 
MGP vector correlations as a function of the number of shared genes between the two randomly 
chosen annotations. While the similarity of phenotypic effects generally increases as the number of 
shared genes increases, GO processes that share genes are not necessarily strongly correlated. For 
GO processes that share between 0 and 10 genes, the observed correlations in phenotypic response 

Figure 5. Process multivariate genotype- phenotype (MGP) for palate development. (A) PLS1 genetic loadings 
are shown for each gene in the model sorted from largest to smallest effects. Individual founder allele effect sizes 
are colored within each bar. The gene in red text corresponds to the mutant used for comparison of phenotypic 
effects. (B) The estimated palate development MGP phenotype is shown with a heatmap. Warm colors represent 
areas of relative expansion, light green represents areas of little shape effect, and cool colors represent areas with 
relative contraction. (C) Estimated palate development MGP phenotype is shown with black vectors multiplied 
4×. An Ankrd11 mutant mean is shown with red vectors for comparison. The vector correlation between palate 
development MGP and the Ankrd11 mutant is shown below the phenotypic effects.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. 10- fold cross- validation results for the palate development multivariate genotype- 
phenotype (MGP).

Figure supplement 2. The permuted R2 distribution of 10,000 palate development multivariate genotype- 
phenotype (MGP) analyses is shown in blue.

https://doi.org/10.7554/eLife.68623
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spanned from no correlation to almost entirely concordant. GO processes that share more than 10 
genes show generally higher vector correlations, with the lowest vector correlation we observed at 
0.35.

Process effects in the mutant morphospace
To assess the extent to which craniofacial shape variation associated with developmental processes 
aligns with variation from mutants of major effect, we projected seven process effects onto the first 
two PCs of a dataset containing the DO sample, and samples from 30 mutant genotypes (Figure 8A). 
Each black label represents the mean shape score of the listed mutant genotype. The shaded ellipse 
with an orange border displays the 95% data ellipse of PCs 1 and 2 of DO cranial shape variation. 
The DO mean shape is contrasted by the mutant variation along PC1. The first PC describes vault size 
relative to the length of the face. The phenotype shown along the X axis of Figure 8A depicts the 
maximum positive PC1 shape, while the heatmap drawn on the crania represents the local deforma-
tions towards the minimum PC1 shape. The positive direction of PC2 describes coordinated variation 

Figure 6. Gene drop tests. For each of the example analyses, we show the effect of removing the most heavily 
loaded markers from the process multivariate genotype- phenotype (MGP) analysis on the (A) variance explained 
by the model and (B) vector correlation with the full model. The variance explained as well as vector correlation 
is relatively stable for both L/R symmetry and palate development MGP models, suggesting that the effect is 
driven by the coordination of many markers. In contrast, chondrocyte differentiation MGP shows large differences, 
particularly in the direction of the phenotypic effect as the most heavily loaded markers are removed from the 
analysis.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Single marker importance.

https://doi.org/10.7554/eLife.68623
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Figure 7. Pairwise multivariate genotype- phenotype (MGP) vector correlations. (A) Pairwise correlations of phenotypic effects for 15 process MGP 
analyses. Scale on the right denotes color correspondences to vector correlation, where yellows are high correlations, greens are moderate, and blues 
are low. (B) Pairwise process MGP vector correlations as a function of the number of shared genes between the processes. Processes that share less than 
10 genes can produce very similar and very disparate phenotypic effects. Processes with substantial numbers of shared genes will tend to show highly 
correlated responses as they increasingly use similar marker sets.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Pairwise process multivariate genotype- phenotype (MGP) vector correlations as a function of the number of shared genes 
between the processes.

https://doi.org/10.7554/eLife.68623
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that includes a relatively wider vault, narrower zygomatic, and shorter premaxilla (Figure 8A, Y axis 
margin).

Process effects – highlighted with orange vectors originating at the DO mean shape – are neces-
sarily of smaller magnitude than the total variation in the DO sample. Therefore, to better compare 

Figure 8. Comparisons of multivariate genotype- phenotype (MGP) and mouse mutant directions. (A) Seven MGP phenotypes projected onto a 
principal component analysis (PCA) of the Diversity Outbred (DO) and a sample of 30 mutant mouse genotypes. Mutant means are labeled in black. 
The directions of MGP effects are shown with orange vectors from the DO mean to the associated process MGP. The range of DO variation on principal 
components (PCs) 1 and 2 is shown with the shaded ellipse with an orange border. (B) A heatmap of vector correlations between 30 mutant effects and 
30 process MGP effects. The scale on the right denotes color correspondences to vector correlation, where yellows are high correlations, greens are 
moderate, and blues are low.

https://doi.org/10.7554/eLife.68623
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the direction of process effects the vector magnitudes were magnified 4×. Several process effects 
align in distinct directions of mutant effects, such as bmp signaling pathway and endochondral ossifi-
cation in the direction of Shh, Nipbl, and Ift88 mutants. Neurotransmitter transport and Wnt signaling 
pathway is similar in direction to Kcna1Mceph and B9d1 mutant effects. Execution phase of apoptosis 
and intracellular transport both show similar effects to a cluster of Bmp mutants. Figure 8A focuses 
on two PCs, which allows for the contextualization of how process MGP analyses and mutants vary 
in similar directions and allows us to visualize what those phenotypes look like. This combination of 
context and visualization is only possible in limited axes and cannot account for differences or similar-
ities in the full multivariate shape space.

To show the similarity of process MGP directions with mutants in the full shape space, we present 
a heatmap of 30 process MGP effects to 30 mouse mutant models in Figure 8B. The heatmap shows 
the correlation in direction with yellow/green denoting higher correlation and teal/blue denoting 
lower correlation. The bottom right of the heatmap (highlighted by a white border) shows a block of 
mutants for which there are strong process correlations. These are among the most extreme pheno-
types along PC1 (Figure 8A) and include mutants for Nosip, Bmp2, Grm1, Bmp2; Bmp7 transhetero-
zygote, Bmp7, Ghrhr, Fgf10, and Papps2. The processes most strongly correlated to these mutants 
are histone methylation, dendrite morphogenesis, chromosome segmentation, vasodilation, and 
fibroblast growth factor binding.

There are a set of mutant phenotypes that have generally low correlations to the set of processes 
chosen. These mutants include Fgf3, Shh, Nipbl, Disp, Pten, Hhat, and Alk2; Alk3 transheterozygote. 
Interestingly, this group of mutants varies more along PC2 than PC1 (Figure 8A). Notably, regula-
tion of intracellular protein transport and regulation of cell death are strongly uncorrelated with the 
majority of mutant directions.

Real-time process GP mapping
Finally, we provide an online tool to visualize process effects and make comparisons to mutant effects 
in real time. This application is found at https:// genopheno. ucalgary. ca/ MGP/ and can be used for anal-
yses similar to those described in this paper. When the user selects GO terms, the program searches 
for genotype markers adjacent to each gene listed and uses the selected markers to fit a regularized 
PLS model. The result is an estimate of the many- to- many relationship between the selected markers 
and cranial shape variation. The visual outputs include barplots depicting the relative allele effect sizes 
for each gene in the process and a 3D plot of the corresponding axis of shape variation. Users can 
compare the effects of different processes and also compare process effects to mutant effects from a 
provided database of 30 mutant genotypes.

To illustrate how to use this application, we have provided the graphical user interface used to 
select the parameters (Figure 9). As an example, in the ‘Process text’ entry field, supply a starting 
term; we chose ‘brain.’ The GO database is then filtered, returning a user- selectable subset of biolog-
ical process ontology annotation terms in the ‘Process filter’ field. We chose ‘forebrain morphogen-
esis,’ which has 11 associated genes. We chose to magnify the process phenotype vectors 4× and 
compare the effect to a heterozygous Ift88 mutant. Ift88 is a core component of the primary cilia, 
which are responsible for promoting developmental signals involved in many facets of facial develop-
ment (Tian et al., 2017). Further, the plots that are generated are interactive. For example, marker 
loadings can be highlighted and subset by genes of interest (Sievert, 2019). There is further informa-
tion about using this online tool in the ‘About this app’ tab.

Discussion
A key goal in genomics is to create tractable genetic explanations for phenotypic variation. In this 
study, we used the process MGP approach to model the joint effects of genomic markers on multivar-
iate craniofacial shape. This approach allows us to address the joint contributions of multiple genes 
that share ontological characteristic such as pathway membership on craniofacial shape as a multivar-
iate trait. Specifically, we chose markers adjacent to genes annotated under a developmental process 
of interest. We showed three process MGP analyses in depth, each with distinct phenotypic effects. 
Each of these comparisons highlighted the integrated structure of phenotypic variation in mouse 
craniofacial shape. We found that while there are processes with distinct and localized effects, genetic 

https://doi.org/10.7554/eLife.68623
https://genopheno.ucalgary.ca/MGP/
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Figure 9. Example screenshot of web version of process analysis. Analyses include a barplot of the relative effect sizes of each selected marker and the 
associated phenotype shown with black vectors at each landmark. If a mutant comparison is selected, the vector correlation is provided and the mutant 
phenotype is shown with red vectors. Selecting ‘send me the results’ generates an HTML report with an interactive 3D model.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Combining queries in the multivariate genotype- phenotype (MGP) shiny app with the pipe operator.

https://doi.org/10.7554/eLife.68623
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effects generally converge on a limited set of directions in phenotype space. Further, these process 
effects often correspond with the directions of major mutations known to affect these same processes.

Many recent studies have addressed the genetics of craniofacial shape in humans and mice 
(reviewed in Roosenboom et al., 2016; Weinberg et al., 2018; White et al., 2021). While these 
studies are yielding a growing list of genes, suggesting that facial shape is highly polygenic, they have 
left the vast majority of heritable variation unexplained. Existing studies have either used univariate 
measures of facial shape such as linear measurements or univariate summaries of multivariate shape 
(e.g., Procrustes distances or PC scores). In addition, most genomic studies of craniofacial shape 
quantify the effects of each genomic marker independently, with notable exceptions focusing on 
epistatic effects (e.g., Varón- González et al., 2019). Our approach shares common features with some 
predecessor GP mapping strategies in which candidate genes/SNPs are selected a priori because of 
common involvement in a pathway (or other mechanistic cluster) (Claes et al., 2014; Liu et al., 2012; 
Wang et al., 2010; Wang et al., 2007). Wang and colleagues selected SNPs based on proximity to 
genes of interest and effect size to jointly model the pathway- level effects on Parkinson disease data. 
Their approach is similar to gene set enrichment analysis, weighing overrepresentation of statistical 
effects related to case- control group membership. In contrast, our approach focuses on estimating a 
multivariate set of continuous craniofacial responses. Importantly, our approach jointly identifies GP 
axes that maximally covary. This differs significantly from approaches that determine phenotypes for 
analysis a priori or based on a predetermined method of data reduction such as the principal compo-
nent analysis (PCA). Our implementation also differs from similar methods like CCA that was used to 
associate single- locus effects with a multivariate phenotype (Claes et al., 2018). In comparison with 
the process MGP approach, CCA has the advantage of allowing for a parametric hypothesis test, 
whereas PLS analyses are limited to permutation- based hypothesis testing. A distinguishing feature 
of the process MGP approach is the ability to penalize the model with regularization. This is ideal for 
models with many simultaneous genetic effects in order to mitigate the effects of overfitting. Regu-
larization is not unique to PLS as applications of ridge penalties to CCA have been used for genomic 
analyses (Waaijenborg and Zwinderman, 2009; Le Floch et al., 2012).

A key finding of our application of the MGP method to craniofacial shape is that multivariate 
phenotypic variation aligns nonrandomly to genetic markers associated with pathways or develop-
mental processes. Process MGP effects that are generally not driven by single loci of large effect are 
possible, like with the chondrocyte MGP analysis (Figures 2–5A, Figure 6—figure supplement 1). 
These covarying effects represent the joint genetic effects of multiple contributors to phenotypic vari-
ance. While these patterns of MGP covariation may include genetic variants that do not actually affect 
the phenotype, many other high- loading alleles will be contributors that we lack statistical power to 
detect under a typical univariate approach (Pitchers et al., 2019; Varón- González et al., 2019). Here, 
the overall pattern of GP covariance is the level of genetic explanation for phenotypic variation. When 
such patterns involve genes that are ontologically linked in meaningful ways, they can provide novel 
insights into the coordination of genetic effects on phenotypic variation and bolster existing hypoth-
eses from developmental studies.

Another valuable asset that arises from the process MGP approach is the ability to generate test-
able hypotheses or predictions from MGP observations. The chondrocyte differentiation MGP analysis 
suggested differentiation defects in the Bmpr1b mutant that could contribute to craniofacial variation. 
We followed up the MGP analysis with histological analysis of Bmpr1b mutants and showed prema-
ture suture fusion as well as atypical distribution of hypertrophic chondrocytes in the ISS. Similarly, 
the analysis of left/right symmetry genes suggested that Fgf10 alleles can contribute to directional 
asymmetry. A follow- up morphometric analysis of symmetry showed that Fgf10 mutants do display 
significant craniofacial asymmetry (Figure 4D). Process MGP can also be used to test existing hypoth-
eses about GP relationships. The relative importance of the Ankrd11 locus in the palate development 
analysis and the similarity between the genomic and mutant phenotype further validate the role of 
Ankrd11 in palate development. These examples illustrate the additional insights that a process MGP 
analysis of a mutational effect can provide. Given that such comparisons can be run quickly with our 
web application, this creates a tool with the potential for hypothesis generation and initial screening 
for hypotheses about process- level effects on craniofacial variation in mice.

The explicit modeling of multivariate relationships between phenotypes and genotypes also 
allows a focus on pleiotropy. Developmental studies in mice demonstrate widespread craniofacial 

https://doi.org/10.7554/eLife.68623
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morphological effects from localized developmental perturbations (Martínez- Abadías et al., 2012; 
Stelzer et al., 2007; Young et al., 2010) Perturbations to specific processes in development gener-
ally produce effects on multiple aspects of phenotype due to knock- on effects at later stages or to 
interactions at the level of tissues or anatomical structures (Hallgrímsson et al., 2007; Hallgrímsson 
et al., 2009). A change in cartilage growth in basicranial synchondroses produces a global change 
in craniofacial form, for example (Parsons et al., 2015). Remarkably, enhancers with highly specific 
temporospatial effects on gene expression also produce global rather than localized changes in 
craniofacial shape (Attanasio et al., 2013). Given that pleiotropy is likely ubiquitous (Churchill et al., 
2012; Wagner et al., 2007), explicitly multivariate approaches to understanding GP maps are clearly 
needed.

This convergence of genetic effects on axes of covariation is reflected in our finding that mutations 
to major developmental genes produce effects that tend to align with the directions of effect asso-
ciated with the corresponding broader pathways or ontological groups (Hallgrímsson et al., 2009). 
These results suggest that perturbations that are developmentally similar tend to move the pheno-
type in the same direction in multivariate space (Figure 8). Even so, both mutational and higher- level 
pathway/process effects tend to converge on a few directions of variation, suggesting that multiple 
pathways and processes lead to common developmental outcomes (Houle and Fierst, 2013; Uller 
et al., 2018; Hallgrímsson and Lieberman, 2008; Gonzalez et al., 2013). This conclusion is further 
supported by our finding that the genetic axes of covariance for individual processes/pathways 
can align with multiple directions of mutational effect. For example, the process MGP phenotypes 
clustered in the bottom right of Figure 8B are all highly correlated with a set of BMP and growth 
hormone- related mutants.

In some cases, mutants and MGP map directions do not correspond. There are several ways this 
can occur. The first is that the DO population may simply lack alleles as deleterious as found in mutant 
lines. A small effect allele in the DO may not align with the direction of a mutant almost completely 
lacking expression of the target gene. Further, there are many examples where a mutation may have 
different and sometimes even opposite effects depending on genetic background (Mackay, 2013; 
Percival et al., 2017). Mutations of major effect may also differ in direction from variants in related 
genes that have smaller phenotypic effects due to underlying nonlinearities in development (Green 
et al., 2017). Investigating how variants in genes that are functionally related vary in phenotypic effect 
is an important avenue of inquiry that is revealed by analyses such as those we have performed here. 
Additionally, relationships between process and mutant effects may stimulate hypotheses about previ-
ously unknown or unvalidated interactions between loci or pathways.

A second potential reason that MGP effects may not correspond to major mutation effects is the 
use of only one PLS axis for each process analysis. With only one axis, we only show the phenotypic 
direction with greatest covariance with genetic marker variation. If there are multiple large marker 
effects that do not covary, the weaker marker effect will be masked in the analysis. For instance, there 
may be a PLS axis for ‘chondrocyte differentiation’ that corresponds more strongly with the Bmp2 
mutant phenotype. This phenomenon may be particularly prominent for pathways with substantially 
different mutant effects, like FGF (Figure 8A). While we did not delve into the directions outside of 
the first PLS axis, we have facilitated the selection of lower axes in the web application for users to 
explore and compare with mutants of interest.

Finally, our analysis shares the limitation of all approaches based on gene annotation data. Incom-
plete annotation may lead to faulty or incomplete groupings of genes when defining pathway/process 
hypotheses. Gene annotation is a huge undertaking, and there is substantial variation in the complete-
ness of different process annotations. Many process annotations are manually assigned using inference 
from the literature, while most are a combination of automated efforts based on transcript similarity 
and human curation (Mudge and Harrow, 2015; Finger et al., 2017). Related to this, we assign gene 
annotation data to genetic markers based on the closest protein- coding region. While this is a reason-
able proxy, there will be regulatory sites that affect genes other than the one immediately adjacent 
and this is a potential source of uncertainty in our analysis (Forrest et al., 2014; Yue et al., 2014).

In addition, this approach does not currently model the temporal and spatial aspects of gene 
function throughout development. As a result, alleles of high importance in an MGP analysis do not 
necessarily produce craniofacial variation through the selected process. A strong allelic effect like 
Ccn3 can load heavily in several processes, like ‘chondrocyte differentiation,’ ‘fibroblast migration,’ 

https://doi.org/10.7554/eLife.68623
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and ‘negative regulation of inflammatory response.’ We do not know the mechanism through which 
any individual allele contributes to variation from an MGP analysis alone. Genomic data with more 
fine grain measurements of variation in expression and utility of individual loci may be better suited to 
teasing out the potential mechanisms that alleles produce variation.

The MGP method represents a deliberate decision to trade higher- level insight from GP associa-
tion data at the expense of statistical certainty about the significance of individual gene effects. The 
current implementation of the method also does not allow for quantification of individual epistatic 
effects. Epistasis occurs when the genotypic trait value for a locus is altered by the genotype of 
a different locus. Such effects generate nonlinear GP maps, but when considered genome- wide, 
contribute mainly to additive variance (Cheverud and Routman, 1996; Hill, 2017). The MGP method 
is additive in that it models only the linear effects of genes. However, since it captures the covariances 
among genotypic effects, much of this ‘additive’ variation is likely epistatic in origin.

Complex traits present a massive challenge in genomics because so many are turning out to 
be enormously polygenic. To generate tractable explanations of the genetic basis for such traits, 
methods are needed that extract higher- level representation of GP relationships than those that 
emerge from single- locus- focused approaches. Here, we present a process- driven framework for 
deriving such higher- level genetic explanations for phenotypic variation. Our approach leverages the 
biological tendency for developmental processes to produce covariation among aspects of a multi-
variate phenotypic trait (Kawauchi et al., 2009; Wagner et al., 2007). The underlying assumption in 
this approach is that there are latent variables within high- dimensional GP data that correspond to 
developmental architecture. We believe that analyses aimed at defining and characterizing such latent 
variables represent a level of genetic explanation for phenotypic variation that is complementary to 
genetic analyses designed to establish the significance of single- locus effects. Pursuing such questions 
will help bridge the gap between emerging mechanistic accounts of morphogenesis and our growing 
understanding of the genetics of morphological variation.

Materials and methods
Mice
We use a sample (n = 1145) of DO mice (Jackson Laboratory, Bar Harbor, ME) to map GP relationships 
for craniofacial shape (Churchill et al., 2012; 2004). The DO is a multiparental outcross population 
derived from the eight founding lines of the Collaborative Cross (CC). Each animal’s genome is a 
unique mosaic of the genetic diversity found in the CC – more than 45 million segregating SNPs 
(Collaborative Cross Consortium, 2012). Random outcrossing over many DO generations maintains 
this diversity and, with recombination, increases mapping resolution . Discussions of recommended 
sample sizes in univariate DO studies can be found in Churchill et al., 2012. Both studies recom-
mend a sample size greater than 800 mice for small univariate effect sizes (1–5% variance explained). 
Further, there are inherent power advantages to our approach because multivariate responses repre-
sent maximized differences in phenotype given a set of genotypic measurements. In contrast, univar-
iate approaches such as analyses of individual PCs can only detect effects along those predefined axes 
that may not have clear biological significance.

Our DO sample was sourced from three separate laboratories and seven DO generations. 386 are 
from the Jackson Laboratory (JAX), 287 from the University of North Carolina (UNC), and 472 come 
from the Scripps Research Institute. Figure 10—figure supplement 1 shows the distribution of the 
sample by lab source and generation of breeding. Imaging of mice at the University of Calgary was 
performed under IACUC protocol AC13- 0268. Ankrd11 and Bmpr1b mutant mice were bred at the 
University of Alberta by the Graf lab under Animal Use and Care Committee protocol AUP1149 in 
accordance with guidelines of the Canadian Council of Animal Care.

Genotyping
Genotyping was performed by Neogen (Lincoln, NE). Ear clippings were used to extract DNA for all 
samples. Mice from generations 9, 10, and 15 were genotyped using the MegaMUGA genotyping 
array (77,808 markers); mice from generations 19, 21, 23, and 27 were genotyped using the larger 
GigaMUGA array (143,259 markers) (Morgan et al., 2015). To pool the genotype data from these 
two SNP arrays with differing numbers of markers, we imputed markers between the two genotyping 
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arrays using the ‘calc_genoprob’ function in the qtl2 package (Broman et al., 2019). The function uses 
a hidden Markov model to estimate genotype probabilities and missing genotype data (Gatti et al., 
2014). After imputation, the merged genetic dataset consists of 123,309 SNPs that vary among CC 
founders. Each animal’s genetic record is a 123,309 * 8 matrix of estimated diplotype contributions of 
each CC founder to each marker.

Scanning and landmarking
We used micro- computed tomography to acquire 3D scans of the full heads of the mice. Scanning 
was done at the University of Calgary at 0.035 mm voxel resolution (Scanco vivaCT40). One of us (WL) 
then acquired 54 3D landmarks (Figure 10) manually on each volume using Analyze 3D. A discussion 
of the error associated with manual landmarking can be found in Katz et al., 2019. In addition to 
the DO phenotype data, the mutant mouse data used for comparisons were collected, scanned, and 
landmarked between the Hallgrimsson and Marcucio labs.

Landmark registration and analysis
We symmetrized landmarks along the midline of the skull using Klingenberg et al.’s method for object 
symmetry that configures landmark pairs into a common orientation with reflection and subsequently 
removes variation associated with translation, scale, and rotation, using Generalized Procrustes Anal-
ysis (Adams et al., 2013; Klingenberg et al., 2002; Mardia, 2000 et al.; Schlager, 2017). We tested 
for directional asymmetry using the Procrustes ANOVA approach described in Klingenberg et al., 

Figure 10. 54 3D landmark configuration. (A) Sagittal view of representative scan with landmarks shown as red 
spheres. (B) Dorsal view of landmark configuration. (C) Ventral view of landmark configuration.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Demographic plots for the Diversity Outbred (DO) sample.

https://doi.org/10.7554/eLife.68623
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2002. To focus on shared, within- generation patterns in our multigenerational DO sample without sex 
effects, we regressed symmetric shape on DO generation and sex and used the residual shapes with 
the grand mean added as the observations for analysis.

Genetic relatedness
Adjustment of phenotypes for the influence of genetic relatedness is a common approach in genomic 
studies to prevent spurious associations. However, it is not necessary in all cases, such as situations 
with low genetic relatedness and little variation in relatedness. We evaluated whether accounting for 
genetic relatedness was important for our sample. To do so, we estimated a kinship matrix based on 
DO genotype correlations (Cheng and Palmer, 2013; Broman et al., 2019). The kinship values in our 
sample have a mean of 0 and a standard deviation of.047. As a result of these findings, we performed 
all subsequent analyses on the within- generation symmetric shape data, without an adjustment for 
relatedness.

Regularized PLS analysis
MGP methods for explicitly modeling multivariate phenotypes and for overcoming the limitations of 
simple linear regression are increasingly common in mapping studies. One example of a multivariate 
genomic approach is found in Claes et al., 2018, where the authors used CCA to quantify individual 
SNP effects for a multivariate measurement of facial shape. CCA returns a vector of the linear combi-
nation of phenotypic effects that maximally correlates to the alleles at a given locus. Mitteroecker 
et al., 2016 developed a similar multivariate strategy around a singular value decomposition (SVD) of 
GP covariance matrices (versus decomposition of correlation matrices in CCA). PLS describes a family 
of approaches that use SVD to decompose cross- covariance matrices (Lee et al., 2011; Mitteroecker 
et al., 2016; Singh et al., 2016). PLS is increasingly used with large genetic datasets in order to model 
how genomic effects extend to multiple traits (Bjørnstad et al., 2004; Mehmood et al., 2011; Tyler 
et al., 2017). However, its implementation for MGP mapping is, thus far, much more limited.

SVD decomposes the covariance matrix into three matrices:

 Y = UDV′  

where Y is the mean- centered covariance matrix, U denotes the left singular vectors, a set of 
vectors of unit length describing the relative weighting of each variable on each axis, and D denotes 
the variance along each axis. V denotes the set of right singular vectors. For a full (square, symmetric) 
covariance matrix, U and V are identical, and the decomposition is equivalent to PCA. For a non- 
symmetric matrix of covariances, that is, one describing covariance between two distinct blocks of 
traits, each successive column of U and V provides a pair of singular vectors describing the best 
least- squares approximation of covariance between the two blocks, in order of greatest covariance 
explained to least.

PLS is most often used to find low- rank linear combinations that maximize covariance between two 
sets of features. Here, we use the data- driven regularized PLS model implemented in the mddsPLS 
package to find paired axes that maximize covariance between allelic and shape variation (Lorenzo 
et al., 2019). The model uses a lasso penalty to minimize the coefficients (loadings) towards zero to 
prevent overfitting (James et  al., 2013). Overfitting can occur when many genotypic markers are 
included in the model, particularly when markers are colinear. The genotype block is composed of the 
full set of DO founder probabilities for each selected marker. Thus, an analysis of 20 markers would 
estimate 160 genotype coefficients. The phenotype block consists of the full set of 54 3D landmarks 
(162 phenotype coefficients). In all biological process analyses undertaken herein, we used a regular-
ization parameter of 0.06 and report only the first paired axes of the PLS model, that is, the genotype 
and phenotype axes that explain the most covariance.

We generate graphical displays of process results using the R packages ggplot2 (Wickham, 2016) 
and Morpho (Schlager, 2017). An example script to reproduce the analyses is provided at https:// 
github. com/ J0vid/ MGP_ shiny/ tree/ main/ analyses (copy archived at swh:1:rev:61fb597c48ced306dd5
88e289e69c3e3d8f9ce15, Aponte, 2021).

https://doi.org/10.7554/eLife.68623
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Statistical results and comparisons
We estimate the magnitude and direction of MGP process effects using R2 and vector correlations, 
respectively. R2 is calculated as the ratio of trace of the predicted model covariance to the trace of the 
phenotypic covariance matrix. We contextualize the MGP process R2 by comparing it to the R2 value 
of 10,000 randomly drawn marker sets of the same size. For instance, a process annotated with 40 
genes would be compared to 10000 40- gene MGP analyses with random markers selected in each 
iteration. Random marker selection for permutation is constrained to follow similar patterns of linkage 
disequilibrium to the observed marker set of interest. The null expectation in this scenario is that gene 
annotation does not provide better information about coordinated marker effects than a randomly 
selected set of markers.

Vector correlations between process MGP effects are calculated by taking the Pearson product- 
moment correlation of the two sets of process PLS1 phenotypic loadings. Vector correlations between 
process effects and mutant effects are calculated by taking the correlation between the process 
PLS1 phenotypic loadings and mutant MANOVA coefficients. MANOVA was used to compare the 
mutant group phenotype against the DO sample specified as the reference group. The coefficients 
of MANOVA describe the relative weights of each landmark coordinate difference between the DO 
mean shape and the mutant mean shape.

Chondrocyte morphometrics
Chondrocyte morphometrics were performed using a novel technique developed by the Marcucio 
Laboratory. Images of the ISS were stained with H&E, SafO, or picrosirius red and were captured and 
imported into ImageJ (2–6 sections from at least  four mice/genotype/synchondrosis; Rueden et al., 
2017). Landmarks were placed in a defined order (left, right, top, bottom) of visible chondrocytes 
in the synchondrosis using ImageJ’s multi- tool. Data points were then exported as XY coordinates 
and imported into Microsoft Excel for calculation of major and minor axes relative to overall width of 
synchondrosis. Area of individual cells was determined from height and width values based on the 
assumption that each cell is roughly ellipsoidal. An example of major and minor axis measurements 
and ellipsoidal area measurements on a slide is provided in Figure 3—figure supplement 1.

We compared differences in the distribution of cell sizes along normalized synchondroses between 
Bmpr1b mutants and controls with a mixed effects model approach. We used ellipsoidal area of cell 
size (in microns) as our dependent variable. For fixed effects, we modeled the normalized synchon-
drosis position (first and second order), where a value of 0 represents the relative midline of the 
synchondrosis and values of –1 and 1 represent the most distant cells in that synchondrosis. We also 
modeled genotype as a fixed effect as well as a genotype by cell position interaction (both first- and 
second-- order interactions). For each individual within each genotype, we measured multiple histo-
logical sections. These repeated and nested measurements of cell size in multiple sections for each 
individual were modeled as random effects. To test for cell size differences between genotypes, we 
used a likelihood ratio test to compare the full model to a reduced model with the fixed effect of 
genotype and all genotype interactions removed.

Visualization tools
We introduce an interactive web application that allows the user to select processes of interest with a 
graphical user interface; see the resulting craniofacial effect at https:// genopheno. ucalgary. ca/ MGP/. 
The web apps were written using the shiny package in R (Chang et al., 2018; R Development Core 
Team, 2017). The application dynamically filters the MGI GO database based on the initial user input. 
Queries will only list GO terms with exact matches. For example, ‘chond’ will return GO terms that 
incorporate either ‘chondrocyte’ and ‘mitochondria’.

Multiple queries can be selected. An analysis of ‘chondrocyte differentiation’ and ‘chondrocyte 
hypertrophy’ will select the joint gene set of both processes. Processes with different names can be 
jointly queried with the pipe operator ‘|,’ which is interpreted as an OR (union) operator. For example, 
to generate the list of GO terms associated with either apoptosis or WNT, we used the ‘apopto-
sis|WNT’ query and selected the processes ‘Wnt signaling pathway’ and ‘execution phase of apop-
tosis’ to perform the analysis on the joint set of associated genes (Figure 9—figure supplement 1).

Several other parameters can be specified by the user including the type of plot to be generated 
for the genetic loadings, the amount of magnification applied to the phenotype effect vectors, the 

https://doi.org/10.7554/eLife.68623
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regularization parameter, and the option to overlay a mutant phenotype for comparison. The compar-
ative database currently includes craniofacial shape contrast data (wild- type vs. mutant) for 30 mutant 
genotypes. If a mutant comparison is selected, the full set of DO specimens are registered with the 
mutants added (with size removed). We then provide the vector correlation between the process 
effect and the mutant effect (see Figure 9). The database also includes PC1 of the DO sample for 
comparison.

The app enables users to save results. A save request will generate and download an HTML report 
of the analysis that includes several versions of the genetic effect plot and an interactive 3D model of 
the estimated phenotypic effect. If a mutant comparison is selected, it will also appear in the report.

The application tracks recent searches by the user for their reference. A heatmap of process vector 
correlations of the PLS phenotype loadings is also available under the ‘recent searches’ tab. The user 
can select between a heatmap of the processes in their search history or a random assortment of 
process correlations from past anonymous user searches.

Finally, we provide programmatic access to our model for both process MGP analyses as well as 
custom gene lists over the web through an application programming interface (API). Queries can be 
formatted using curl commands as well as request URLs and return results in JavaScript object nota-
tion (JSON) format. Documentation for the available functions and their parameters, as well as exam-
ples for queries, can be found at https:// genopheno. ucalgary. ca/ api/__ docs__/. The API was written 
using the plumber package (Schloerke and Allen, 2021) in R, with code available at https:// github. 
com/ J0vid/ MGP_ shiny/ tree/ main/ MGP_ API.
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