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Abstract

Due to its frequent association with urinary tract infections (UTIs), Escherichia coli is the

best characterized constituent of the urinary microbiota (urobiome). However, uropatho-

genic E. coli is just one member of the urobiome. In addition to bacterial constituents, the

urobiome of both healthy and symptomatic individuals is home to a diverse population of

bacterial viruses (bacteriophages). A prior investigation found that most bacterial species in

the urobiome are lysogens, harboring one or more phages integrated into their genome (pro-

phages). Many of these prophages are temperate phages, capable of entering the lytic

cycle and thus lysing their bacterial host. This transition from the lysogenic to lytic life cycle

can impact the bacterial diversity of the urobiome. While many phages that infect E. coli

(coliphages) have been studied for decades in the laboratory setting, the coliphages within

the urobiome have yet to be cataloged. Here, we investigated the diversity of urinary coli-

phages by first identifying prophages in all publicly available urinary E. coli genomes. We

detected 3,038 intact prophage sequences, representative of 1,542 unique phages. These

phages include both novel species as well as species also found within the gut microbiota.

Ten temperate phages were isolated from urinary E. coli strains included in our analysis,

and we assessed their ability to infect and lyse urinary E. coli strains. We also included in

these host range assays other urinary coliphages and laboratory coliphages. The temperate

phages and other urinary coliphages were successful in lysing urinary E. coli strains. We

also observed that coliphages from non-urinary sources were most efficient in killing urinary

E. coli strains. The two phages, T2 and N4, were capable of lysing 83.5% (n = 86) of strains

isolated from females with UTI symptoms. In conclusion, our study finds a diverse commu-

nity of coliphages in the urobiome, many of which are predicted to be temperate phages, ten

of which were confirmed here. Their ability to infect and lyse urinary E. coli strains suggests

that urinary coliphages may play a role in modulating the E. coli strain diversity of the

urobiome.
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Introduction

While several different bacterial species are known to cause urinary tract infections (UTIs),

uropathogenic Escherichia coli (UPEC) is estimated to account for up to 74.4% of all commu-

nity-acquired infections [1]. The presence of E. coli is often taken as evidence of UTI. While

UTIs can be the result of colonization of the urinary tract by E. coli strains from the gut [2–5],

E. coli can also be a member of the urinary microbiota (urobiome) of individuals without

lower urinary tract symptoms (LUTS) [6–8]. In fact, recent studies found that E. coli can be

the predominant taxon in female without LUTS, particularly in some older females [8, 9]. Fur-

thermore, human host genetic make-up can contribute to the presence of E. coli in the urine of

females without UTI symptoms [9].

The urobiome of individuals with or without LUTS is home to a wide variety of other bacte-

rial taxa (see reviews [10–13]), fungi [14], and viruses [15]. In fact, viruses are the most abun-

dant members of the urobiome and recently have been associated with LUTS [16]. Viruses

that infect bacteria (bacteriophages or phages) far outnumber human viruses in the urobiome

[15, 17, 18]. Similar observations have been made in other organs’ microbiota [19]. Phages can

drive bacterial diversity within a community through predation [20–22]. Phages that integrate

into their bacterial host’s genome (prophages) can increase the virulence of their host [23, 24],

e.g., by encoding for toxins [25, 26]. While studies of phage-bacteria dynamics have yet to be

conducted for the urobiome, investigations in the gut microbiota are ongoing [27].

Prior studies of urinary bacterial genomes found that most strains harbor one or more pro-

phage sequences [28–30]. This includes bacterial species associated with urinary health, e.g.,

Lactobacillus species [28, 29], as well as bacterial species associated with UTIs, e.g., E. coli [7,

28] and Proteus mirabilis [28]. These phages replicate with their bacterial host and are either

integrated in the bacterial host genome or persist as an extrachromosomal plasmid; this is

referred to as the lysogenic life cycle of the phage. Our previous work with urinary strains har-

boring prophages found that many of these prophages could switch from the lysogenic life

cycle to the lytic (predatory) life cycle [28, 30–32]. This switch, a process called induction, is

mediated by intrinsic and/or extrinsic factors that cause the prophage to excise itself from the

bacterial genome, replicate to produce mature (lytic) phages, and burst or kill the host cell (see

review [33]). Bladder-relevant stressors, e.g., changes in pH, have been shown to be effective in

inducing prophages [31].

Prophages and phage genes have been routinely identified in urinary E. coli genome

sequences [28, 34–37]. While phages and prophages that infect E. coli (coliphages) in the lab

have been studied for decades [38] and coliphages from urine samples have been isolated and

characterized [39–42], coliphage diversity within the urobiome has yet to be thoroughly inves-

tigated. Here, we present the first catalog of urinary E. coli prophages. All publicly available uri-

nary E. coli genomes were examined for prophage sequences and the diversity and genic

content of these prophages was explored. Ten urinary prophages were then induced from uri-

nary E. coli strains, and we assessed their ability to lyse laboratory and urinary E. coli strains

isolated from females with UTI or overactive bladder (OAB) symptoms. Additionally, we

tested several urinary coliphages and laboratory coliphages against these same set of urinary E.

coli strains. We find that coliphages are ubiquitous in the urobiome, including temperate coli-

phages capable of lysing other urinary E. coli strains.
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Methods

Prophage identification

All publicly available E. coli complete and draft genome assemblies in NCBI that were docu-

mented as being collected from urine or the urinary tract in the genome metadata were down-

loaded (February 2021). 906 genomes were obtained from NCBI meeting this criterion; 2

sequences were removed due to quality concerns. The final set of 904 E. coli sequences (S1

Table) were examined using PHASTER [43]. A Python script was written to pull results from

the PHASTER API and to separate PHASTER predicted “intact,” “questionable,” and “incom-

plete” prophage sequences. This script is available at https://github.com/putonti/phaster_

commands.

All intact prophage sequences were compared via local blastn queries to a database of all

complete and partial phage genome sequences in GenBank as of February 2021 (Advance

Query Fields—Organism: “Virus” and Division: “PHG”). This database includes 26,381

sequences. Results with a query coverage greater than 50% and a percent identity greater than

70% were considered high confidence hits and the associated taxonomies of the GenBank

phage records were used to predict the taxonomies of the predicted urinary phages.

Furthermore, all intact prophage sequence were screened for antibiotic resistance genes

using the RGI tool v.5.2.1, which uses CARD [44], exploring perfect, strict, and loose hits, and

virulence factors via the Virulence Factor Database (VFDB) [45]. RGI was installed locally

using conda, and the CARD database (v.3.1.4) was downloaded. The RGI program was run

using default parameters. For virulence factor screening, the full dataset of known bacterial vir-

ulence factor gene sequences was downloaded from VFDB on March 2021 (http://www.mgc.

ac.cn/VFs/download.htm). These sequences were made into a local database via the make-

blastdb command (BLAST+ v.2.9.0). Prophage sequences were queried against this database

using BLASTn with the parameter -evalue 0.001. Hits of<90% sequence identity and query

length<90% of the virulence factor gene sequence were removed from further consideration.

The virulence factor gene descriptions were determined using VFDB.

The PATRIC online tool was used to annotate the intact prophage sequences with the

“Annotation Recipe” parameter set to “Bacteriophage” [46]. All annotated genes containing

“integrase” in the description were added to a multi-FASTA file, and Kalign v.2.04 was used to

produce a multiple sequence alignment with default parameters [47]. The multiple sequence

alignment was manually inspected using Geneious Prime 2021.2.2 (Dotmatics, Auckland,

NZ). Partial integrase gene sequences were identified through this manual inspection and

were removed from the data set. The remaining integrase gene sequences were aligned again

with Kalign. This alignment aided in confirming the identity of integrase genes within the pre-

dicted prophage sequences.

Prophage network construction

Using Anvi’o v.6.2 [48], the intact prophage sequences were annotated, and a coliphage pan-

genome was constructed. Prophage sequences were made into an Anvi’o database annotated

using the ‘anvi-run-hmms’ command. The annotated prophage sequences were then used to

produce a coliphage pan-genome using the Anvi’o ‘anvi-pan-genome’ command with an mcl-

inflation of 2 and a minbit of 0.35 to identify homologous genes among the prophage

sequences.

An R script (www.R-project.org) was written to derive a network of prophages. The meth-

ods described here for phage network construction were adapted from our prior work [49].

Using the output result (mcl-cluster.txt) of the Anvi’o mediated clustering using the Markov
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Clustering Algorithm (MCL), the MCL results were translated into a genome-gene presence/

absence matrix, P, in which each entry {i,j} was 1 if virus genome i contained a homolog found

in gene cluster j. This matrix is equivalent to the adjacency matrix for a bipartite network of

phage genomes and genes. Adjacency matrices for the genome and gene level networks were

then created as Agenome = sign(P × PT) and Agene = sign(PT × P), where T indicates the matrix

transpose. The sign() function replaced all nonzero entries resulting from the original matrix

products with a 1, converting the matrices from weighted to unweighted adjacency matrices.

These matrices were then transformed into undirected graphs and corresponding edge lists

using igraph (https://igraph.org/). Thus, for the genome-level network, two genomes are con-

sidered connected if they share any genes. The connections were filtered using a normalization

calculation: w ¼ ð# of shared genes between genomes 1 & 2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1 � l2ð Þ

p
, where li is the size

of the genome i. By designating a minimum value of w (minw) that allows for an edge to be

drawn between two genomes only if w>minw, the edges were filtered to construct networks

of differing connectivity.

The edge-lists constructed from the edge-drawing Rscript were then visualized using Cytos-

cape [50]. Different values of minw were considered for the PHASTER predicted prophages.

Prophage sequence clustering

All intact prophage sequences were clustered using cd-hit-est v.4.6 [51, 52]. The following

parameters were used: sequence identity threshold = 80% (0.8), length of difference cut-

off = 80% (0.8), word length = 4. The “accurate but slow mode” algorithm was used. For each

cluster, cd-hit-est selected one sequence as a representative sequence (indicated by “*” in the

output .clstr file). For more details regarding the process implemented by CD-HIT algorithms

for selecting representative sequences, see Huang et al. [53]. Sequences of representatives of

each cluster are available upon request.

Comparison of urinary coliphages to gut phageome

All phage sequences from metagenomic data sets from the gut microbiome were retrieved

from the mMGE database [54] (accessed July 2021). Intact urinary prophage sequences were

compared against this database using a local blastn query. For these results, our thresholds

were query coverage� 50% and sequence identity� 70%, although all results meeting the

query coverage threshold had a sequence identity� 80%.

Prophage induction

Nine strains of E. coli isolated from urine samples were used for induction experiments. The

urinary strains were selected based upon their genome analysis by PHASTER [43]; all 9 were

predicted to contain at least one intact prophage sequence. For pH-based induction, we used

the previously described protocol [31]. Briefly, urinary E. coli strains were grown overnight in

LB at 37˚C with shaking. These strains include E. coli UMB0527, UMB6653, UMB6721,

UMB9006, UMB9105, UMB9208, UMB9344, UMB9346, and UMB9930. While UMB9006 was

obtained from a “clean-catch” voided urine sample, the remaining 8 samples were isolated

from catheterized urine samples. These strains were obtained through prior IRB-approved

studies (Loyola University Chicago: LU204195 and LU209545, and University of California

San Diego: 170077AW) as part of prior separate studies [55, 56]. The overnight culture was

then subcultured into 3 mL of LB adjusted to different pH values, pH = 4, 7, and 9 and grown

overnight at 37˚C with shaking. These pH values were selected informed by our prior work

[31]. These pH-adjusted cultures were filtered using a 0.22um CA syringe filter. Filtrate was
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next spotted onto lawns of naïve laboratory strains of E. coli B, E. coli C, and E. coli K-12. For

each lawn, 500 uL of turbid (overnight) E. coli culture + 3 mL of soft (0.7%) LB agar were

mixed and spread atop a 1.7% LB agar plate. The spot plates were then incubated overnight at

37˚C. Plaques were harvested and used to reinfect the laboratory strain, i.e., the bacteria of the

lawn from which the plaque was harvested, and incubated again overnight at 37˚C. These cul-

tures were filtered as previously described and plated using the pour plate technique (100 uL of

phage lysate + 500 uL of turbid E. coli culture + 3 mL of soft LB agar); a single plaque was

picked, suspended in LB, vortexed, filtered, and added to turbid E. coli overnight cultures. This

process was repeated at least 3 times to plaque purify the phage and subsequently to create

higher titer stocks of the induced urinary prophage.

Prophage identification was performed by PCR. Primers were designed using Primer-

BLAST [57] to amplify the PHASTER predicted intact prophage sequences. A primer pair was

designed for each individual predicted intact prophage sequence; thus, a strain harboring mul-

tiple predicted intact prophage sequences would have multiple pairs (S2 Table). Preference

was given to primers that amplified coding regions with a predicted protein function, i.e., not

hypothetical proteins. All predicted prophage sequences were annotated using the RAST

server [58] and visualized using Geneious Prime. If more than one intact prophage was pre-

dicted for a given strain, primers were designed for each predicted prophage. Primers were

synthesized by Eurofins Genomics LLC (Louisville, KY USA). The original bacterial strain was

used as a positive control for PCR reactions of its respective induced prophages. Amplification

was confirmed via agarose gel. The PHASTER predicted sequences were queried online

against the nr/nt viruses (taxid:10239) to identify the closest related sequenced phage.

Phage host range

Urinary and laboratory E. coli strains were grown in LB overnight at 37˚C with shaking. Each

was lawned, following the protocol listed previously, and 10 uL of phage lysate (at titer 109

phage per mL) was spotted on each lawn. Each phage lysate was spotted onto each E. coli strain

a minimum of 4 times (technical replicates). In addition to assessing the host range for the

induced urinary phages, two other urinary coliphages previously isolated by our group [41] as

well as non-urinary coliphages were spotted on urinary and laboratory E. coli strains. These

coliphages include Escherichia phage Greed and Escherichia phage Lust, both isolated from

urobiome samples, and non-urinary coliphages K30, P22, T2, T3, T6, T7 and N4 obtained

from the Félix d’Hérelle Reference Center for Bacterial Viruses (Quebec City, Quebec Can-

ada). Phages T2 and N4 were further tested on urinary E. coli strains collected from UTI-posi-

tive females (S3 Table). Plaques of T2 and N4 spots were confirmed via PCR of the plaque. T2

primers: 5’-aaacaggtgcctttggtgtc-3’ and 5’-ccacaatacccgcttcagtt-3’; N4 primers: 5’-tgctcttgatac-

cagaggcaatg-3’ and 5’-tacgttggttcaacttcttggtt-3’. Primers were synthesized by Eurofins Geno-

mics LLC. For all phages producing plaques for the host range spot assays, infection was again

tested by harvesting the plaque and replating using the pour plates technique previously

described.

Results

Prophages in urinary E. coli genomes

904 urinary E. coli draft and complete genome sequences were obtained from NCBI and

screened for the presence of prophage via PHASTER [43]. Sixty-nine of these genome assem-

blies are of strains from our own collection. Of the 8,452 predicted prophage sequences found,

3,038 prophages were identified as intact, 1,508 as questionable, and 3,906 as incomplete. We

focused our analysis on those identified as intact. 45 of the 904 genomes examined did not
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contain any intact prophages, while the majority (95%) of the urinary E. coli genomes harbored

at least one intact prophage (S1 Table). 1,807 (59.48%) of the intact prophage sequences con-

tained an identifiable integrase gene sequence (S1 Table). Each intact prophage sequence was

compared to all annotated phage genome sequences to predict their taxonomy (Table 1).

Virulence factor genes were identified in 25% (n = 765) of the intact coliphage sequences.

These virulence-carrying intact prophage sequences were harbored by 710 of the 904 E. coli
genomes examined. The most frequently identified virulence factor gene was aaiQ (n = 137), a

pseudogene that has been linked to enteroaggregative E. coli pathogenesis [59]. The iron

uptake sit operon was the next most prevalent virulence factor identified in 61 of the intact

prophage sequences. When screened for antibiotic resistance associated genes, 299 genes were

identified. These genes were found in 178 different intact prophage sequences (5.86%) from

165 different E. coli genomes. The most frequently identified antibiotic resistance gene was the

ethidium multidrug resistance protein E (emrE), found in 47 of the prophage sequences. The

transcription factor marA was the second most frequent antibiotic resistance associated gene

found; 37 intact prophage sequences encoded for marA. While most strains had just one or

two antibiotic resistance genes, E. coli Combat11I9 (GCF_002952095.1) includes one prophage

sequence with 14 antibiotic resistance genes. S1 Table lists information about the virulence

factors and antibiotic resistance associated genes found within the prophage sequences.

Intact prophages were annotated and the number of homologous genes between each pro-

phage was calculated. Prophage similarity was assessed using a network approach in which

nodes in the network represent a single prophage. Two nodes are connected by an edge in the

network if they share a homologous gene sequence. We introduced a threshold for these edges

such that only edges in which the two prophages (nodes) shared at least 30% of their genic con-

tent were visualized (see Methods). 3,025 of the 3,038 predicted prophages met this threshold,

connected by 414,291 edges. Fig 1 displays the network representation of the urinary

prophages.

Nodes, representative of prophages, have been colored in this network according to their

predicted taxonomic family. Over half of the identified prophages most closely resembled

tailed phages (order Caudovirales), including the families Myoviridae, Podoviridae, and Sipho-

viridae. However, 43.9% of the predicted intact prophage sequences in the urinary E. coli
genomes did not have significant similarity to previously isolated and sequenced phages. Our

analysis of the shared genetic content of the predicted urinary prophages reveals nine con-

nected components (Fig 1, labeled A-I). The individual connected components do not gener-

ally share homologous genes (see Methods). While the largest connected component, labeled

A in Fig 1, includes the majority of Caudovirales, our network contains two distinct connected

components of siphoviruses (Fig 1D and 1G, orange); these are separate from the siphoviruses

within the primary (largest) connected component. There also are six distinct connected

Table 1. Taxonomic classification of predicted prophages in urinary E. coli based on blastn sequence similarity to

sequenced phages.

Taxonomy # Predicted Prophages

Myoviruses 788

Podoviruses 113

Siphoviruses 738

Unclassified Caudovirales 44

Unclassified bacterial viruses 20

Unknown 1,335

https://doi.org/10.1371/journal.pone.0283930.t001
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components of prophages for which we were unable to predict their taxonomic lineage (shown

in Fig 1B, 1C, 1E, 1F, 1H and 1I in blue for “Unknown”).

Next, we investigated the network of prophages to identify clusters of similar prophage

sequences, i.e., closely related prophages likely representative of the same species/strain. In

total, 1,542 unique clusters of prophage sequences were identified (S4 and S5 Tables). The size

of these clusters varied from singletons, i.e., single representative prophage sequences

(n = 1,115, 72.31%) to a single cluster with 127 representatives (length ~43–50 Kbp; 87.73%

nucleotide sequence identity between members). The consensus sequence of this large cluster

was queried against the nr/nt Viruses database, identifying the top hit as a MAG sequence

from the human metagenome (GenBank Accession No.: BK034715.1; 76% query coverage and

99.98% identity). Most of the clusters were small; 95% of the clusters had 5 or less prophage

sequences. Four of the clusters had two prophage sequences identified from the same genome

sequence. While two of these were the only instances of these prophage sequences in the data

set, the other two were found in other genomes, including the cluster of 127 representatives.

There is no association between cluster size and prophage sequence length (S5 Table).

Sequences for the cluster representative are provided in S1 File.

Comparison to gut E. coli prophages

Given prior evidence of UTIs by colonization of E. coli from the gut, we investigated whether

the same or similar phage populations were harbored by urinary E. coli strains and phages

from the gut. The 3,038 intact urinary prophages were screened against the phage database of

the gut microbiome. These gut microbiome phage sequences include phages identified from

Fig 1. Diversity of urinary E. coli prophages. Each node corresponds with a predicted intact coliphage. Edges connecting nodes represent shared

gene content. Individual connected components, clusters of prophages that share gene content, are indicated by letters A through I.

https://doi.org/10.1371/journal.pone.0283930.g001
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metagenomic studies and, as such, include phages infectious of bacteria other than E. coli; fur-

thermore, the host genus or species for most of these phage sequences is not known. As a result

of this comparison, we found 2,006 urinary coliphages that exhibited� 50% query coverage

and� 80% nucleotide sequence identity to phage sequences from the gut. This is representa-

tive of 863 of the 1,542 unique clusters of urinary prophages, and 560 of these clusters only had

one representative sequence from the urinary coliphages. Furthermore, 117 intact urinary pro-

phages, representative of 49 unique clusters, had a query coverage of 100% to a gut phage

sequences (� 96% sequence identity) and 21 were identical (100% query coverage and

sequence identity) to gut phage sequences (S6 Table). Thirteen of these 21 prophage sequences

shared no significant sequence similarity to an annotated phage genome sequence. Thus, no

taxonomic classification could be assigned. These 21 prophages sequences were also screened

for antibiotic resistance genes and virulence factors, although none were found. The 21 identi-

cal prophages represent 12 unique clusters, including small clusters with just 2 members as

well as the largest observed cluster with 127 representatives.

Inducing urinary E. coli prophages

Nine urinary E. coli strains in our collection were selected for induction assays. These strains

were selected as they were predicted to contain prophage sequences from singleton clusters,

i.e., the urinary strain was the only genome predicted to contain this prophage, as well as pro-

phage sequences from larger clusters, including clusters with prophages from E. coli strains

from collections other than our own. For those prophages in singleton clusters, induction

would lay the groundwork for future characterization of this phage strain. For those prophages

in larger clusters, induction would provide insight into the putative temperance of the phage

across many different urinary E. coli strains.

Using changes in pH, 10 induced prophages were identified as they were efficient in

completely lysing one or more of the naïve laboratory strains tested–E. coli B, E. coli C, and E.

coli K-12. We were able to identify the prophage that was induced via PCR (see Methods).

Eight of the induced prophage sequences included recognizable integrase genes; i527 and

i9930-2 did not. i6721 and i6653 were induced at all three pH conditions tested, pH = 4, 7 and

Table 2. pH-induced prophages from urinary E. coli strains and their closest characterized and sequenced phage. Phages are named as i plus the E. coli strain number

from which they were induced. As two phages were isolated from E. coli UMB9930, they are signified as “-1” and “-2”.

Phage

ID

pH Condition (E. coli
host)

Predicted Product Amplified by PCR Closest Blast Hit

Description Accession No. Query

Coverage

Sequence

Identity

i527 4 (E. coli C) DUF2560 family protein Enterobacteria phage CUS-3 CP000711.1 60% 96.04%

i6653 4, 7 and 9 (E. coli C) Phage terminase, endonuclease subunit

GpM

Bacteriophage L-413C AY251033.1 77% 97.80%

i6721 4, 7 and 9 (E. coli C) Phage terminase, endonuclease subunit

GpM

Enterobacteria phage

fiAA91-ss

NC_022750.1 75% 93.48%

i9006 4 (E. coli C) Phage replication protein GpA,

endonuclease

Escherichia virus P2_4E6b NC_049389.1 79% 96.52%

i9105 7 (E. coli C) Phage tail fiber protein GpH Bacteriophage L-413C AY251033.1 88% 99.97%

i9208 4 (E. coli C) Phage tail fiber protein GpH Escherichia phage pro147 KR073660.1 77% 96.87%

i9344 4 (E. coli C) Phage major tail tube protein GpFII Escherichia virus P2_4C9 NC_049388.1 73% 96.24

i9346 7 (E. coli C) Phage lysis regulatory protein, LysA Bacteriophage R18C NC_049461.1 68% 97.31%

i9930-1 7 (E. coli C) Phage baseplate assembly protein GpJ Escherichia virus P2_4C9 NC_049388.1 73% 96.24

i9930-2 7 (E. coli K-12) Phage head, portal protein B Stx-1a-converting phage

Stx1_499

LC567825.1 96% 94.88%

https://doi.org/10.1371/journal.pone.0283930.t002
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9; the phages isolated from pH = 7 were used for subsequent testing. The closest characterized

and sequenced phage record in GenBank was identified for each of the induced prophage

sequences (Table 2). Upon further inspection, it was found that the induced prophage from

UMB9344 (i9344) is identical–query coverage and sequence identity = 100%–to one of the two

induced prophages from UMB9930, i9930-1. The induced prophages from UMB5563 (i6653)

and UMB6721 (i6721) also were similar, belonging to the same cluster (S7 Table). A visualiza-

tion of the induced prophage genomes is provided in S1 Fig.

Phage host range

Each induced urinary coliphage was tested for its ability to completely lyse laboratory strains

of E. coli, as well as urinary E. coli strains representative of the diversity of E. coli phylotypes

found within the female bladder [7]. In parallel, we tested two lytic urinary siphoviruses previ-

ously isolated by our group [41], Escherichia phage Greed and Escherichia phage Lust, along-

side several well-studied lytic coliphages routinely used in the laboratory—Escherichia phage

K30, Enterobacteria T3 and Enterobacteria T7 (family Autographiviridae), Salmonella virus

P22 (family Podoviridae), Enterobacteria phage T2 and T6 (family Myoviridae), and Escheri-
chia virus N4 (family Schitoviridae). The results of these host range assays are shown in

Table 3.

The well-studied phages T2 and N4 were most efficient in completely lysing E. coli strains

isolated from UTI patients. Each was capable of completely lysing eight of the ten urinary

Table 3. Phage efficacy of lysing laboratory and urinary bacteria. If a phage completely lysed the E. coli strain, the table lists “+”. The phylotype for each urinary E. coli
strain is listed [7]. E. coli UMB0103 was isolated from a female with OAB symptoms; the other urinary E. coli strains were isolated from females with UTI symptoms.

LABORATORY E. COLI
STRAINS

URINARY E. COLI STRAINS

A B1 B2 D F

B C K-12 1358 1180 1195 5924 1220 1162 1225 1337 7431 103

Induced Phages

i527 + + + +

i6653 + + + + +

i6721 + + + + + +

i9006 +

i9105 + +

i9208 + + + +

i9344 + + + +

i9346 + +

i9930-1 + + + +

i9930-2 + + +

Urinary Phages

Lust + + + + + +

Greed + + + + + + +

Laboratory Phages

K30 + + + + +

P22 + + + +

T2 + + + + + + + + + + +

T3 + + + + + + + + +

T6 + + + + + + + + + +

T7 + + + + + + +

N4 + + + + + + + + + +

https://doi.org/10.1371/journal.pone.0283930.t003
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strains tested. Given this success, we further tested T2 and N4 against an additional 103 E. coli
strains isolated from urine samples from females with UTI symptoms. A list of the strains

tested, including serotype and phylotype, are listed in S3 Table. Sixty-three strains were

completely lysed by T2, 71 strains were completely lysed by N4, 48 strains were completely

lysed by both T2 and N4, and 17 strains were not completely lysed by either phage (Table 4).

Thus, 83.5% of the E. coli strains tested from females with UTI symptoms would be susceptible

to a phage cocktail containing T2 and N4.

Discussion

While our prior catalog of prophages in urinary bacteria considered just four E. coli strains

[28], here we have evaluated the incidence of lysogeny among a significantly larger (n = 906)

sampling of urinary E. coli strains. While all four of the genomes examined in our prior study

were found to harbor prophage sequences, only one was predicted to include an intact pro-

phage [28]. Here, the majority (95%) of the urinary E. coli genomes harbored at least one intact

prophage sequence indicating that lysogeny is prevalent among E. coli strains of the urobiome.

While some (~25%) of these prophage sequences carried virulence factor genes, very few

encoded antibiotic resistance genes (S1 Table). One of the lysogen-associated proteins, the

integrase, was identified in many (59.48%) of these intact prophage sequences. Those lacking

the integrase necessitate further investigation to ascertain if they are temperate phages or pro-

phage relics.

We found that only 56.1% of the predicted intact prophage sequences resembled character-

ized phage sequences. The remaining prophage sequences either represent novel prophages or

highly mosaic prophages infectious of E. coli. This concurs with our prior examination of

genomes of other taxa from the urobiome, which found a high percentage of unknown, novel

prophages [28]. It is important to note that the intact prophages examined here do not include

any representatives of inoviruses. Current prophage prediction tools–including PHASTER–

frequently fail to identify inovirus sequences [60–62]. Previously, we identified an inovirus

harbored by Enterobacteriaceae including urinary E. coli strains [63]. Inovirus sequences

could be included in the questionable and/or incomplete prophage sequence predictions

excluded from our analysis. We thus hypothesize that the intact prophage sequences examined

here underestimates the genetic diversity of prophages within urinary E. coli strains. It does,

however, provides a good approximation of the diversity of tailed phages infectious of urinary

E. coli.
Our network-based analysis of the shared genetic content between the predicted urinary

prophages identified nine connected components (Fig 1). The largest connected component

contains the majority of the tailed phages identified. From the network, we can posit taxo-

nomic classification of “Unknown” (Fig 1, blue) prophages within this connected component

as members of Caudovirales. It is important to note that our network analysis includes a

threshold for the minimum percentage of gene content shared for an edge to be drawn. Thus,

edges represent “modules” shared between prophages. When this threshold is removed, such

Table 4. Susceptibility of E. coli strains from females with UTI symptoms to bacteriophages T2 and N4.

# of E. coli lysed % of E. coli lysed

Both T2 & N4 48 46.6%

N4 only 23 22.3%

T2 only 15 14.6%

Neither 17 16.5%

https://doi.org/10.1371/journal.pone.0283930.t004
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that every homologous gene shared between two prophages (nodes) is represented by an edge,

all prophages are connected producing a single connected component. Previous analyses of

phage genomes have taken a similar modular approach [64, 65]. In this prior work, modules in

temperate phages were found to correspond to functional modules [64]. These modules often

serve as markers corresponding to the evolutionary history of related phages [66].

Of the 1,542 unique clusters of urinary prophage sequences identified, many (55.97%,

n = 863) shared sequence similarity to phages identified in the gut microbiota suggesting that

similar coliphages infect E. coli strains found in both niches. The interconnectedness of the

urobiome and gut microbiota is an open question. Prior studies have shown that E. coli causing

UTIs can come from the gastrointestinal tract [2–5]. However, a previous examination of the

bacterial constituents of the gut and urinary tract did not find the two niches to be connected

[67]. To date, the interconnectedness of the phage populations between these two microbiota

have not been examined. The similarities observed here serve as the impetus for future studies.

Our ability to induce prophages from the urinary E. coli strains supports the working

hypothesis that the PHASTER predictions of intact prophages are temperate phages, rather

than prophage relics. Changes in pH were able to stress the bacterial cell and trigger the induc-

tion process. Changes in pH are particularly relevant to the urinary tract and its microbiota.

Lactobacillus species are dominant members of the healthy female bladder [8], and lactobacilli

reduce the pH of the urogenital environment (see review [68]). Thus, fluctuations in lactoba-

cilli abundances within the urinary tract could lead to changes in pH, which in turn could trig-

ger induction. While nine out of the ten induced urinary prophages completely lyse the naïve

laboratory strain E. coli C, they have varied abilities to completely lyse urinary E. coli strains.

Two main observations can be made from our host range assays (Table 3). First, no single

induced urinary phage was capable of completely lysing all of the urinary E. coli strains tested.

Second, induced urinary phages capable of completely lysing one representative of a phylotype

were not necessarily able to completely lyse all of the strains tested for that same phylotype.

While only a single strain from phylotype A, B1, and F were tested, multiple representatives of

phylotypes B2 and D, the most common phylotypes in the bladder [7], were tested. It is well

documented that phages often are infectious of some but not all strains of a given species (see

review [69]). The observed lack of plaquing by these induced urinary phages could be the

result of (1) the phage’s inability to infect the E. coli strain, (2) the phage’s inability to evade the

host’s defenses (e.g., CRISPR/Cas system), (3) the phage’s inability to completely lyse the bacte-

rial cell, (4) entrance of the temperate phage back into the lysogenic life cycle, and/or (5) bacte-

rial resistance due to superinfection.

In contrast, the lytic laboratory coliphages were far more successful in completely lysing the

urinary E. coli strains. They also were far more successful than the lytic urinary phages Lust

and Greed. T2 and N4 were able to complete lyse at least one strain from all five phylotypes

tested. The susceptibility of the urinary E. coli strains to these lytic laboratory coliphages may

be due to the very fact that they are less likely to encounter these phages in the urinary tract

than they are to encounter the induced urinary prophages. This suggests that phages that are

not native to the urinary tract would be better candidates for use as phage therapies. Phage

therapy is increasingly being explored for treatment of bacterial infections including E. coli
and UTIs (see reviews [70–72]). Our further tests of T2 and N4 phages found that they were

able to completely lyse most UTI-associated E. coli strains tested (Table 4), and thus should be

explored for UTI treatments.
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