Randomized Routing on Fat-Trees

Ronald I. Greenberg
Charles E. Leiserson

MIT
Fat-Trees

- Concentrator switch
- 2 channels
- Processor

n processors

capacity of channel $\text{cap}(c)$ = no. of wires
Universality

Any bounded-degree network can be efficiently simulated by a fat-tree of comparable hardware cost.

efficiently = polylog time degradation

hardware cost = VLSI area

Leiserson [85]: Off-line simulations

Leiserson & Greenberg: Randomized on-line simulation
Proof of Universality

Assumption: At most $O(A)$ bits can pass through a surface of area A in unit time.

Communication bandwidth at ith level: $O\left(\left(\frac{V}{2^i}\right)^{2/3}\right)$
Universality Proof (continued)

Balance the decomposition tree.
Associate with FT with exponentially growing capacities.
Message set delivered in time t by competition puts $O((t \log n) \cdot \text{cap}(c))$ messages on channel c.
Load Factor

arbitrary network

message set M

$$\text{load}(M,c) = \# \text{messages crossing } c$$

$$\text{cap}(c) = \text{bandwidth of } c$$

$$\lambda(M) = \max_{c} \frac{\text{load}(M,c)}{\text{cap}(c)}$$

The load factor $\lambda(M)$ is a lower bound on the time to deliver M.
Our Result

With high probability, e.g. $1 - O(\frac{1}{n})$, a message set M can be delivered in the following no. of delivery cycles:

<table>
<thead>
<tr>
<th>load factor</th>
<th>delivery cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \leq \lambda(M) \leq 1$</td>
<td>O</td>
</tr>
<tr>
<td>$1 < \lambda(M) \leq \frac{\log n}{\log \log n}$</td>
<td>$O(\log n \log (\lambda(M)))$</td>
</tr>
<tr>
<td>$\frac{\log n}{\log \log n} \leq \lambda(M) \leq \text{poly}(n)$</td>
<td>$O(\lambda(M))$</td>
</tr>
</tbody>
</table>

(always $O(\lambda(M) + \frac{\log n}{\log \log n})$)

- single algorithm
- no restriction to permutation routing
- no assumptions about statistical distribution of messages

Each delivery cycle takes $\Theta(1.3^2 n)$ time.
A Communications Model

- synchronous
- bit-serial
- batched (delivery cycles)
- no buffering at switches

![Diagram]

- must drop message
- can deliver both messages in one cycle

- successful deliveries acknowledged
- perfect switches ($\log_2 n$ depth)
Routing Algorithm

Must deal with polynomial congestion.

Randomize in the choice of messages to send in each delivery cycle.

- no randomization in basic paths taken

- switch randomization unnecessary
The Basic Idea

In each delivery cycle, choose a random subset of messages to try routing.

Idea: Suppose we know $\lambda(M)$. Send each message with probability $\frac{1}{r \lambda(M)}$ for some $r > 1$.

The expected number of messages sent through channel c is

$$\frac{\text{Load}(M, c)}{r \lambda(M)} \leq \frac{1}{r} \cdot \text{Cap}(c)$$

Intuition: About $\frac{M}{r \lambda(M)}$ messages will be delivered. Total no. of delivery cycles should be about $r \lambda(M)$.
The Halving Lemma

Lemma: Let U be the set of currently un routed messages, and suppose $\lambda(U) \leq \lambda$ initially. Then $O(\max\{\lambda, \log n\})$ cycles suffice to yield $\lambda(U) \leq \frac{1}{2} \lambda$ with high probability.
Routing with Known Load Factor

CASE 1: \(\lambda(M) \geq \log n \log \log n \)

\(O(\lambda(M)) \) cycles suffice

CASE 2: \(\lambda(M) \leq \log n \log \log n \)

\(O(\log n \log(\lambda(M))) \) cycles suffice

Why: Halve the load factor \(\log(\lambda(M)) \) times

Recall: Each halving takes

\(O(\max\{\lambda(U), \log n\}) \) cycles.

\[
\lambda(M) + \lambda(M)/2 + \lambda(M)/4 + \cdots + \log n + \log n + \cdots + \log n
\]

\(\sum \)

\(= O(\lambda(M)) \)

\(= O(\log n \log \log n) \)

CASE 2
Routing with Unknown Load Factor

Make guesses in two phases.

Phase 1: Square guesses. Work = $O(\lg n / \lg \lambda)$.
Phase 2: Double guesses. Work = $O(\lambda)$.

Guesses for λ:
1
2
4
16
256

Work:
1
$\lg n$
$2 \lg n$
$4 \lg n$
$8 \lg n$

Phase 1:
- $\lg n$
- $\lg n \cdot \lg n$
- $2 \lg n \cdot \lg n$
- $4 \lg n \cdot \lg n$
- $\lambda(M)$

Phase 2:
- $\lg n \cdot \lg n$
- $\lg n \cdot \lg n$
- $2 \lg n \cdot \lg n$
- $4 \lg n \cdot \lg n$
- $\lambda(M)$
The Halving Lemma

Lemma: Let U be the set of currently unrouted messages, and suppose $\lambda(U) \leq \lambda$ initially.

Then $O(\max\{\lambda, \log n\})$ cycles suffice to yield $\lambda(U) \leq \frac{1}{2} \lambda$ with high probability $\left(1 - O\left(\frac{1}{\sqrt{n^2}}\right)\right)$

Idea of Proof:

Defn.: A p-subset of M is a subset formed by independently choosing each message in M with probability p.

Send $\frac{1}{r\lambda}$-subsets of M for a suitable constant r.
Proving the Halving Lemma

- Analysis of a single channel in a single cycle
- A single message in a single cycle
- A single channel over many cycles
Channel Congestion

Lemma: Let M' be a p-subset of M. Then the probability is at most
$(e^\lambda(M))^{\text{cap}(c)}$ that a given channel c is congested by M', i.e. that $\text{load}(M',c) > \text{cap}(c)$.

Proof: Chernoff bound on binomial distribution $B(s,t,p) \leq \left(\frac{ept}{s}\right)^s \rightarrow$ probability of:
s successes in t independent Bernoulli trials with probability p of successes.
Plug in $s \leftarrow \text{cap}(c)$, $t \leftarrow \text{load}(M,c)$.
Congestion Parameter

Definition: The congestion parameter r of a fat-tree is the smallest positive value such that for each simple path of channels $c_1, c_2, ..., c_P$ in the tree, \(\sum_{k=1}^{P} \left(\frac{e}{r} \right) \text{cap}(c_k) \leq \frac{1}{2} \).

Note: r is constant for universal fat-trees, or for fat-trees which have capacities that are all $\Omega(\lg^{2} n)$.
Single Message/Single Cycle

Lemma: Consider a delivery cycle in which a \(p \)-subset \(M' \) of \(M \) is sent. The probability that a given \(m \in M \) is delivered is \(\geq \frac{1}{2}p \).

Proof: Suppose \(m \in M' \) must go through \(c_1, c_2, \ldots, c_k \). Then the probability that at least one of these channels is congested is at most \(\sum_{k=1}^{2} \frac{1}{k} \cdot \text{cap}(c) \leq \frac{1}{2} \). Thus, \(\Pr\{m \in M \text{ delivered}\} = \Pr\{m \in M'\} \cdot \Pr\{m \text{ not lost} \mid m \in M'\} \geq p \cdot \frac{1}{2} \).
Sketch of Proof of Halving Lemma

Recall:
- $\lambda(U) \leq \lambda$ initially
- run $z = \max\{k_1 \lambda, k_2 \log n\}$ cycles
 sending $\frac{1}{r \lambda}$-subsets of U.
- $\lambda(U) \leq \frac{1}{2} \lambda$ at the end.

Pf. sketch:
- Consider arbitrary channel.
- Assume there are a lot of unrouted messages before each cycle.
- Show that a lot of messages get routed during the z cycles.
Proof Sketch continued

- Assume there are always $\frac{1}{2} \lambda \text{cap}(c)$ undelivered messages which must pass through channel c.
- Expected # messages delivered on a given cycle is $\geq \frac{1}{2} \cdot \frac{1}{r} \cdot \frac{1}{2} \lambda \text{cap}(c) = \frac{\text{cap}(c)}{4r}$.
- Probability that fewer than $\frac{\text{cap}(c)}{8r}$ messages delivered on a given cycle is $< 1 - \frac{1}{8r}$. (bad cycle)
- For $z = \Omega(\log n)$, it is unlikely a large constant fraction of cycles are bad.
- For $z = \Omega(\lambda)$, $\Omega(z)$ good cycles yields $\Omega(\lambda \text{cap}(c)) = \Omega(\text{load}(U,c))$ deliveries.
Why not Greedy

Greedy approach: Just send all undelivered messages. Keep resending any messages which do not reach their destinations.

Switches:
- greedy: drop minimum number of messages
- oblivious: decisions on what to drop based on no knowledge of message set other than presence of messages on input lines.

Sending more messages doesn't always help.

Greedy strategy requires $\Omega(\lambda(M) \log n)$ cycles.
Other Results

• Good off-line schedules exist

• If the channel capacities are all \(\Omega(\log n) \), then \(O(\lambda(M)) \) cycles suffice with high probability

• Improved fat-tree
Research Directions

1. Greedy strategy
2. Lower bounds
3. Different communication models
4. Different ways of handling congestion
5. Comparison with other routing schemes
6. Better universal networks