SEMINAR

DATE: Thursday, October 10, 1985
TIME: 2:00 - 3:00 p.m.
PLACE: NE43 - 512A

"RANDOMIZED ROUTING ON FAT-TREES"

Speaker:
Ron L. Greenberg
M.I.T.
Laboratory For Computer Science

ABSTRACT:

Fat-trees are a class of routing networks for hardware-efficient parallel computation. This talk will present a randomized algorithm for routing messages on a fat-tree. The quality of the algorithm is measured in terms of the load factor of a set of messages to be routed, which is a lower bound on the time required to deliver the messages. We show that if a set of messages has load factor \(\lambda = \Omega(\log n \log \log n) \) on a fat-tree with \(n \) processors, the number of delivery cycles (routing attempts) that the algorithm requires is \(O(\lambda + \log n) \) with probability \(1 - O(1/n) \). The best previous bound was \(O(\lambda \log n) \) for the offline problem where switch settings can be determined in advance. In a VLSI-like model where hardware cost is equated with physical volume, we use the routing algorithm to demonstrate that fat-trees are universal routing networks in the sense that any routing network can be efficiently simulated by a fat-tree of comparable hardware cost. This is joint work with Charles Leiserson.

HOST: David Shmoys