
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

11-28-2017

The Graph Database: Jack of All Trades or Just Not SQL? The Graph Database: Jack of All Trades or Just Not SQL?

George F. Hurlburt
STEMCorp

Maria R. Lee
Shih Chien University

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
G. F. Hurlburt, G. K. Thiruvathukal and M. R. Lee, "The Graph Database: Jack of All Trades or Just Not
SQL?," in IT Professional, vol. 19, no. 6, pp. 21-25, November/December 2017. doi: 10.1109/
MITP.2017.4241475

This Article is brought to you for free and open access by the Faculty Publications and Other Works by Department
at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other
Works by an authorized administrator of Loyola eCommons. For more information, please contact
ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F187&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

2 IT Pro November/December 2017 P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 1520-9202/17/$33.00 © 2017 IEEE

GUEST EDITORS’ INTRODUCTION

The Graph Database
Jack of All Trades or Just
Not SQL?

George F. Hurlburt, STEMCorp

George K. Thiruvathukal, Loyola University Chicago

Maria R. Lee, Shih Chien University, Taiwan

T
he notion of graph reasoning is not new.
The heretofore curious and obscure
branch of mathematics, graph theory,
extends to Leonhard Euler in the 18th

century.1 The application of graph theory to all
manner of networks is quite new, however. Graph
theory has exploded, largely due to the existence
of the Internet.

An unintended consequence of the Internet
was to reveal how interconnected the world has
always been. While the term “network” used to
refer almost exclusively to electronic transmis-
sion systems, suddenly, networks are every-
where. They are social. They are supply chains.
They are part and parcel of ecosystems. They
are food chains. They transport people, sig-
nals, and energy. They exist throughout biology,
physics, chemistry, and economics. They are in
our DNA, our software, and our malware. Even
dark matter now appears to be interconnected,

almost like gigantic intergalactic neurons.
Albert-László Barabási’s Linked: How Everything
Is Connected to Everything Else defines the value
proposition behind the rapidly emerging field of
network science.2

Unlike the Industrial Age—which comprised
lots of immutable physical laws governing highly
predictable, linear, and deterministic behavior—
today’s networked world is nonlinear and seem-
ingly messy by comparison. Cause and effect in
the networked world are often decoupled, mak-
ing interpretation difficult without the right
mathematical tools. In a networked world, reduc-
tionism fails, given that the whole often exceeds
the sum of the parts. Nonetheless, applied graph
theory leads to quantitative sense-making in an
otherwise seemingly senseless world—a world
increasingly dominated by data that are instan-
taneous, enormous, and interconnected in in-
numerable ways. In such a volatile world, where

 computer.org/ITPro 3

even things share massive data, the graph data-
base is a logical fallout and a suitable alternative
to the venerable relational database management
system (RDBMS).

The Relational Legacy
The long-favored RDBMS is an artifact of the
foregone linear age. Relational algebra, the math-
ematics underlying the RDBMS, grew out of a
need to efficiently compress data during the 1960s,
when storage was both limited and very expen-
sive.3 The RDBMS still serves well in transaction-
rich, process-stable environments in which
relationships can be expressed as one-to-one,
one-to-many, or many-to-one. For example, huge
credit-card processing systems operate reliably
from large-scale 24/7/365 RDBMS installations.
For this reason, and because RDBMS technology
is good for data aggregation, this technology will
not be going away. Much like television did not
replace radio, the RDBMS has a definite niche.
When predefined transactions become less prev-
alent or process dynamics vary frequently, the
RDBMS becomes exceedingly costly to docu-
ment and manipulate. When the preponder-
ance of relationships become many-to-many,
RDBMS performance takes a nosedive. More-
over, the RDBMS schema, as a formal means of
defining entity relationships, is typically inflex-
ible, requiring high maintenance to effect the
most minute change.

As an interesting aside, although RDBMS be-
came the de facto standard for databases, the
1960s also produced early database technol-
ogy similar to graph databases. The hierarchical
model was created at IBM to represent tree-
structured relationships, in which individual re-
cords are arranged in a treelike fashion (an idea
that is mimicked with foreign keys in RDBMS
today and enforced with triggers). Similarly, the
network model of the late 1960s was an early at-
tempt to model objects and their relationships—
an idea that would re-emerge in the 1980s with
object-oriented databases. Thus, the notion of
graph databases can be thought of as a more
modern rendition of these nascent attempts to
build more tree- or graph-like databases com-
bined with the advances of the web era, wherein
unstructured (or weakly structured) data (for ex-
ample, in JSON) can be used to represent node
and edge data (and metadata).

Enter the Graph Database
By contrast, the graph database is built around the
notion of efficiently managing many-to-many,
property-laden relationships that coexist in
highly dynamic environments. Sporting impres-
sive performance numbers for the many-to-many
relationships common to networks, the graph
database becomes an ideal way to represent and
analyze complex nonlinear networks. It has the
drawback, however, of being inefficient with end-
to-end transaction processing and rapid associa-
tive summarization as its relational predecessor.

Graphs are expressed in node-arc-node
(subject-predicate-object) triples. This notion of
a graph is fundamentally straightforward. Nodes
generally represent physical or conceptual ob-
jects, typically associated with objects as repre-
sented in a programming language. Nodes can
typically have one or many descriptive properties
ascribed to them. Arcs, or edges, represent meta-
physical constructs that connect or create rela-
tionships between nodes or properties.4 In some
graph representations, properties can also be as-
signed to arcs.

Thus, the assertion that “Jack knows Jill” is a
simple triple expressing a relationship between
two nodes—in this case, human beings. Other
triple assertions might also apply: “Jack uses a
pail,” “Jill has thirst,” “Jack carries the pail,” “a
hill leads to water,” “Jack climbs the hill,” “Jill
climbs the hill,” and so on. Many graph databases
go a step further and allow the attachment of
properties to both nodes and relationships. Thus,
Jack can take the properties such as “male,” “age
19,” “loving,” or “physically fit,” while the pail
can be ascribed the properties “used” or perhaps
“leaky.” The “Jack uses a pail” relationship might
also have an assigned property to better describe
what the use of a pail can be.

The graph database, a popular variant of the
NoSQL (“not only SQL”) database, has grown as
an effective tool for representing dynamic net-
work-related relationships. Unlike the simple Jack
and Jill nursery rhyme relationships, which only
entail a few triples, significant graphs can easily
grow to many millions, or even billions, of tri-
ples. To accommodate databases of this size, spe-
cialized supportive and performance-enhancing
hardware and algorithms have arrived on the
market. The parallel-processer-based graphics
processing unit (GPU) also offers hardware

4 IT Pro November/December 2017

GUEST EDITORS’ INTRODUCTION

alternatives to accelerate large-scale graph
processing.5 Some firms, such as Cray,6 have
developed specially configured supercomputers
to digest and return rapid results from massively
scaled graphs.

The graph database, while still in its relative in-
fancy, shows great promise for traversing complex
paths to establish the linkages and influences that
momentarily connect cause to effect via a chain of
events. Because time is a factor, and nodes come
and go over time, the resulting cause and effect re-
lationships themselves are often fleeting. As such,
the graph database offers the tantalizing ability to
understand a growing myriad of network behav-
iors both qualitatively and quantitatively.

Qualitatively Speaking
The qualitative aspect of a graph database comes
into play when data are queried, particularly
when based on like properties common to nu-
merous nodes or arcs. This, however, necessi-
tates some salient precautions. The quality of the
data in any graph depends on the quality of the
relationships. Thus, while not initially requir-
ing the demanding rigor of the RDBMS-related
entity-relationship diagrams (ERD), the graph
database nonetheless requires some degree of ef-
fective front-end modeling.

The good news is that, unlike ERDs, simple
graph models are visual, flexible, and accom-
modate changes on the fly. If the relationships
are straightforward, and their number is limited,
the data can be self-describing. A simple graph
model shows the family of overarching relation-
ships between nodes in a given graph environ-
ment. As the data grows to large collections of
instances, such as the number of sensors in a
burgeoning Internet of Things (IoT), the graph
model becomes necessary to sort out the many
varied nodal properties and meta-relationship
types these nodes and properties might possess.

The bad news is that as mission criticality and
scale grow, the requisite modeling can grow to
the proportion of full-blown semantic ontol-
ogy. This sophisticated level of modeling often
requires at least as much or more design fore-
thought than an ERD.

In either case, poorly thought-through rela-
tionships contribute to poorly defined graph en-
vironments. For example, defining a node by a
foreign key from a former RDBMS does not yield

a great deal of meaningful information in a graph
data environment. Rather, the declarations of all
nodes, properties, and relationships need to be
explicit and should conform to a generalized pat-
tern defined via the specific graph model. To al-
leviate storage consistency concerns, many graph
databases do support the Atomic, Consistent,
Isolated, and Durable (ACID) consistency model,
which is a spin-off storage-locking scheme from
RDBMS technology (bit.ly/2gfNjQu).

Scale introduces yet another qualitative con-
cern. It is easy for graph data to grow rapidly as
more and more instances are brought to bear.
This relates to the classic “how much is enough”
dilemma when building any model. The problem
is heightened in the graph database environment,
because each graph instantiation is typically iso-
lated on a single graph server. As the graph grows
in scale, the related query complexity grows as
well. Fortunately, graphs can be intelligently
reduced to more salient subgraphs that can be
better managed, queried, and understood. This
reinforces the growing practice of persisting data
in a relational or appropriate nongraph NoSQL
environment. The choice of an appropriate data
persistence tool often depends on tolerance for
the amount of structure or lack thereof in the
data. From this larger corpus, subgraphs (data-
base “views”) can be intelligently isolated for fur-
ther analysis of dynamics as a specific subgraph
drawn from a larger graph. As scale increases,
modern algorithms can assist in the subgraph
mining process.7

Ironically, SQL might prove to be a useful
means to permit building pattern-based rela-
tionships from simple taxonomy-based arrays
of descriptive data stored as relational data. For
example, we might wish to view an IoT graph
phenomenon from its supply chain perspec-
tive to examine the efficiency of material flow to
meet an operational IoT requirement in a given
timeframe. At another time, however, isolating
actual IoT operations as governed by interaction
among the nodes and their properties might be
important to fully understand mission effective-
ness. Although the RDBMS environment cannot
support the requisite number of many-to-many
relationships entailed in the graph, it can none-
theless serve as a storehouse for the data neces-
sary to efficiently generate the requisite model
(both role and rule)-based relationships. In such

 computer.org/ITPro 5

fashion, if accompanied by a well-designed user
interface, data entry becomes more straightfor-
ward and does not require graph database lan-
guage expertise on top of subject matter expertise.

This notion of hybrid systems also has the
distinct advantage of permitting some level of
seamless coupling between various graph data-
bases. Although some query languages, such as
Neo4j’s Cypher8 language, are becoming popu-
lar, there is little semantic commonality among
the various graph languages in use and their
rules of syntax. For example, higher volume
graph databases rely on stylized variations of
RDF9 to enumerate their triples. Thus, the no-
tion of sharing data between various graph da-
tabases is a function of the user’s tolerance for
expressing the same triples in differing syntacti-
cal frameworks. Needless to say, if cross graph
database sharing is required, this concern could
burden a beleaguered subject matter expert who
must now enter the data as well as master new
methods of its expression.

Numerically Speaking
Although not fully incorporated in most com-
mercial graph databases, the qualitative prom-
ise will come as metric algorithms, derived from
graph theory, are applied as analytical tools.
Search algorithms, based on path traversal—
although already an important family of graph
database algorithms—are just the beginning of
a wide array of metrics, now extending beyond
mere networks to far more daunting networks
of networks.10 Although research is still increas-
ing our understanding of the complex charac-
teristics of networks of networks, it is becoming
evident that these relationships can be demon-
strated mathematically using graph theory. In
time, built-in mathematical functions, residing
in graph databases, could add a level of depth
to truly understanding and quantifying graph
relationships. If it is advantageous to eventually
design networks of all types to perform useful
purposes, the quantitative aspect of this design
cannot be overlooked. For example, as large-scale
systems embracing massively embedded software
are already known to form complex adaptive re-
lationships, it is doubtful whether large software
systems of systems can be effectively evaluated
without some quantitative expression of their
operations.

What Lies Ahead
This special issue explores the emergent world
of graph databases in increasing depth. It starts
with four articles that establish the dimensions
of graph data modeling. We begin with Zuopeng
Zhang’s “Graph Databases for Knowledge
Management,” which differentiates between an
RDBMS ERD and a graph data model (GDM).
In “Modeling Graph Database Schema,” Noa
Roy-Hubara, Lior Rokach, Bracha Shapira, and
Peretz Shoval then demonstrate a technique to
map the ERD to the GDM. As graph databases
grow to support full-blown enterprise knowledge
graphs, appropriate graph modeling presents
elevated sophistication and rigor. Jans Aasman
explores these challenges in “Transmuting In-
formation to Knowledge with an Enterprise
Knowledge Graph.” Finally, in a specialized use
case, “Modeling XACML Security Policies Using
Graph Databases,” Fidel Paniagua Diez, Amrutha
Chikkanayakanahalli Vasu, Diego Suárez Touce-
da, and José María Sierra Cámara demonstrate
a method to efficiently store eXtensible Access
Control Markup Language (XACML) security
policies using an optimized graph model.

Our final article deals with enhancing graph
database performance. Here, we turn our focus to
hardware specifically focused on optimal graph
database performance. “High-Performance with
an In-GPU Graph Database Cache,” by Shin
Morishima and Hiroki Matsutani, examines
GPU efficiency when distributed and optimized
for performance.

W e commend these excellent articles to
you for the awareness they build re-
garding the state of the art in graph da-

tabases. We look forward to a growing trend in
such insightful articles as the still young graph
database industry continues to mature.

References
 1. B. Bollobas, Modern Graph Theory, Springer, 1998.
 2. A.L. Barabási, Linked: The New Science of Networks, 1st

ed., Perseus Books Group, 2002.
 3. D. Kronke and K. Dolan, Database Processing, 3rd ed.,

Scientific Research Associates, 1998, pp. 19–20.
 4. N. Jatana et al., “A Survey and Comparison of Re-

lational and Non-Relational Database,” Int’l J. Eng.,
Research & Technology, vol. 1, no. 6, 2012, pp. 1–5.

6 IT Pro November/December 2017

GUEST EDITORS’ INTRODUCTION

 5. J.D. Owens et al., “GPU Computing,” Proc. IEEE,
vol. 96, no. 5, 2008, pp. 879–899.

 6. S.R. Sukumar and N. Bond, “Mining Large Hetero-
geneous Graphs Using Cray’s Urika,” Proc. ORNL
Computational Data Analytics Workshop, 2013.

 7. J. Huan et al., “Spin: Mining Maximal Frequent
Subgraphs from Graph Databases,” Proc. 10th ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Min-
ing, 2004, pp. 581–586.

 8. I. Robinson, J. Webber, and E. Eifrenm, Graph Da-
tabases, New Opportunities for Connected Data, 2nd ed.,
O’Riley Media, 2015.

 9. R. Angles and G. Gutierrez, “Querying RDF Data
from a Graph Database Perspective,” Proc. European
Semantic Web Conf., 2005, pp. 346–360.

 10. S. Boccaletti et al., “The Structure and Dynamics of
Multilayer Networks,” Physics Reports, vol. 544, no. 1,
2014, pp. 1–122.

George F. Hurlburt is the chief scientist at STEMCorp,
a nonprofit corporation that works in the public sector to
further economic development via adoption of network sci-
ence to advance autonomous technologies as useful tools for
human use. Contact him at ghurlburt@change-index.com.

George K. Thiruvathukal is a full professor of computer
science at Loyola University Chicago and visiting computer
scientist at Argonne National Laboratory. His research in-
terests include parallel and distributed computing, software
engineering, history of computing, and interdisciplinary
computing applications. Contact him at gkt@cs.luc.edu.

Maria R. Lee is a full professor of information technol-
ogy and management at Shih Chien University Taiwan,
and a visiting professor at the Advanced Data Analytics
(ADA) Lab at SooChow University, China. Her research
interests include big data analytics, e-commerce, and arti-
ficial intelligence. Lee received a PhD in computer science
and engineering from the University of New South Wales,
Australia. Contact her at maria.lee@g2.usc.edu.tw.

Read your subscriptions through the
myCS publications portal at

http://mycs.computer.org

	The Graph Database: Jack of All Trades or Just Not SQL?
	Recommended Citation

	tmp.1514931096.pdf.f7Wml

