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GUEST EDITORS’ INTRODUCTION

The Graph Database
Jack of All Trades or Just 
Not SQL?

George F. Hurlburt, STEMCorp

George K. Thiruvathukal, Loyola University Chicago

Maria R. Lee, Shih Chien University, Taiwan

T
he notion of graph reasoning is not new. 
The heretofore curious and obscure 
branch of mathematics, graph theory, 
extends to Leonhard Euler in the 18th 

century.1 The application of graph theory to all 
manner of networks is quite new, however. Graph 
theory has exploded, largely due to the existence 
of the Internet.

An unintended consequence of the Internet 
was to reveal how interconnected the world has 
always been. While the term “network” used to 
refer almost exclusively to electronic transmis-
sion systems, suddenly, networks are every-
where. They are social. They are supply chains. 
They are part and parcel of ecosystems. They 
are food chains. They transport people, sig-
nals, and energy. They exist throughout biology, 
physics, chemistry, and economics. They are in 
our DNA, our software, and our malware. Even 
dark matter now appears to be interconnected, 

almost like gigantic intergalactic neurons.  
Albert-László Barabási’s Linked: How Everything 
Is Connected to Everything Else defines the value 
proposition behind the rapidly emerging field of 
network science.2

Unlike the Industrial Age—which comprised 
lots of immutable physical laws governing highly 
predictable, linear, and deterministic behavior— 
today’s networked world is nonlinear and seem-
ingly messy by comparison. Cause and effect in 
the networked world are often decoupled, mak-
ing interpretation difficult without the right 
mathematical tools. In a networked world, reduc-
tionism fails, given that the whole often exceeds 
the sum of the parts. Nonetheless, applied graph 
theory leads to quantitative sense-making in an 
otherwise seemingly senseless world—a world 
increasingly dominated by data that are instan-
taneous, enormous, and interconnected in in-
numerable ways. In such a volatile world, where 
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even things share massive data, the graph data-
base is a logical fallout and a suitable alternative 
to the venerable relational database management 
system (RDBMS).

The Relational Legacy
The long-favored RDBMS is an artifact of the 
foregone linear age. Relational algebra, the math-
ematics underlying the RDBMS, grew out of a 
need to efficiently compress data during the 1960s, 
when storage was both limited and very expen-
sive.3 The RDBMS still serves well in transaction- 
rich, process-stable environments in which  
relationships can be expressed as one-to-one, 
one-to-many, or many-to-one. For example, huge 
credit-card processing systems operate reliably 
from large-scale 24/7/365 RDBMS installations. 
For this reason, and because RDBMS technology  
is good for data aggregation, this technology will 
not be going away. Much like television did not 
replace radio, the RDBMS has a definite niche. 
When predefined transactions become less prev-
alent or process dynamics vary frequently, the 
RDBMS becomes exceedingly costly to docu-
ment and manipulate. When the preponder-
ance of relationships become many-to-many,  
RDBMS performance takes a nosedive. More-
over, the RDBMS schema, as a formal means of 
defining entity relationships, is typically inflex-
ible, requiring high maintenance to effect the 
most minute change.

As an interesting aside, although RDBMS be-
came the de facto standard for databases, the 
1960s also produced early database technol-
ogy similar to graph databases. The hierarchical 
model was created at IBM to represent tree-
structured relationships, in which individual re-
cords are arranged in a treelike fashion (an idea 
that is mimicked with foreign keys in RDBMS 
today and enforced with triggers). Similarly, the 
network model of the late 1960s was an early at-
tempt to model objects and their relationships—
an idea that would re-emerge in the 1980s with 
object-oriented databases. Thus, the notion of 
graph databases can be thought of as a more 
modern rendition of these nascent attempts to 
build more tree- or graph-like databases com-
bined with the advances of the web era, wherein 
unstructured (or weakly structured) data (for ex-
ample, in JSON) can be used to represent node 
and edge data (and metadata).

Enter the Graph Database
By contrast, the graph database is built around the 
notion of efficiently managing many-to-many,  
property-laden relationships that coexist in 
highly dynamic environments. Sporting impres-
sive performance numbers for the many-to-many 
relationships common to networks, the graph 
database becomes an ideal way to represent and 
analyze complex nonlinear networks. It has the 
drawback, however, of being inefficient with end-
to-end transaction processing and rapid associa-
tive summarization as its relational predecessor.

Graphs are expressed in node-arc-node  
(subject-predicate-object) triples. This notion of 
a graph is fundamentally straightforward. Nodes 
generally represent physical or conceptual ob-
jects, typically associated with objects as repre-
sented in a programming language. Nodes can 
typically have one or many descriptive properties 
ascribed to them. Arcs, or edges, represent meta-
physical constructs that connect or create rela-
tionships between nodes or properties.4 In some 
graph representations, properties can also be as-
signed to arcs.

Thus, the assertion that “Jack knows Jill” is a 
simple triple expressing a relationship between 
two nodes—in this case, human beings. Other 
triple assertions might also apply: “Jack uses a 
pail,” “Jill has thirst,” “Jack carries the pail,” “a 
hill leads to water,” “Jack climbs the hill,” “Jill 
climbs the hill,” and so on. Many graph databases  
go a step further and allow the attachment of 
properties to both nodes and relationships. Thus, 
Jack can take the properties such as “male,” “age 
19,” “loving,” or “physically fit,” while the pail 
can be ascribed the properties “used” or perhaps 
“leaky.” The “Jack uses a pail” relationship might 
also have an assigned property to better describe 
what the use of a pail can be.

The graph database, a popular variant of the 
NoSQL (“not only SQL”) database, has grown as 
an effective tool for representing dynamic net-
work-related relationships. Unlike the simple Jack 
and Jill nursery rhyme relationships, which only 
entail a few triples, significant graphs can easily 
grow to many millions, or even billions, of tri-
ples. To accommodate databases of this size, spe-
cialized supportive and performance-enhancing  
hardware and algorithms have arrived on the 
market. The parallel-processer-based graphics  
processing unit (GPU) also offers hardware 
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alternatives to accelerate large-scale graph 
processing.5 Some firms, such as Cray,6 have  
developed specially configured supercomputers 
to digest and return rapid results from massively 
scaled graphs.

The graph database, while still in its relative in-
fancy, shows great promise for traversing complex 
paths to establish the linkages and influences that 
momentarily connect cause to effect via a chain of 
events. Because time is a factor, and nodes come 
and go over time, the resulting cause and effect re-
lationships themselves are often fleeting. As such, 
the graph database offers the tantalizing ability to 
understand a growing myriad of network behav-
iors both qualitatively and quantitatively.

Qualitatively Speaking
The qualitative aspect of a graph database comes 
into play when data are queried, particularly 
when based on like properties common to nu-
merous nodes or arcs. This, however, necessi-
tates some salient precautions. The quality of the 
data in any graph depends on the quality of the 
relationships. Thus, while not initially requir-
ing the demanding rigor of the RDBMS-related 
entity-relationship diagrams (ERD), the graph 
database nonetheless requires some degree of ef-
fective front-end modeling.

The good news is that, unlike ERDs, simple 
graph models are visual, flexible, and accom-
modate changes on the fly. If the relationships 
are straightforward, and their number is limited, 
the data can be self-describing. A simple graph 
model shows the family of overarching relation-
ships between nodes in a given graph environ-
ment. As the data grows to large collections of 
instances, such as the number of sensors in a 
burgeoning Internet of Things (IoT), the graph 
model becomes necessary to sort out the many 
varied nodal properties and meta-relationship 
types these nodes and properties might possess.

The bad news is that as mission criticality and 
scale grow, the requisite modeling can grow to 
the proportion of full-blown semantic ontol-
ogy. This sophisticated level of modeling often 
requires at least as much or more design fore-
thought than an ERD.

In either case, poorly thought-through rela-
tionships contribute to poorly defined graph en-
vironments. For example, defining a node by a 
foreign key from a former RDBMS does not yield 

a great deal of meaningful information in a graph 
data environment. Rather, the declarations of all 
nodes, properties, and relationships need to be 
explicit and should conform to a generalized pat-
tern defined via the specific graph model. To al-
leviate storage consistency concerns, many graph 
databases do support the Atomic, Consistent, 
Isolated, and Durable (ACID) consistency model, 
which is a spin-off storage-locking scheme from 
RDBMS technology (bit.ly/2gfNjQu).

Scale introduces yet another qualitative con-
cern. It is easy for graph data to grow rapidly as 
more and more instances are brought to bear. 
This relates to the classic “how much is enough” 
dilemma when building any model. The problem 
is heightened in the graph database environment, 
because each graph instantiation is typically iso-
lated on a single graph server. As the graph grows 
in scale, the related query complexity grows as 
well. Fortunately, graphs can be intelligently 
reduced to more salient subgraphs that can be 
better managed, queried, and understood. This 
reinforces the growing practice of persisting data 
in a relational or appropriate nongraph NoSQL 
environment. The choice of an appropriate data 
persistence tool often depends on tolerance for 
the amount of structure or lack thereof in the 
data. From this larger corpus, subgraphs (data-
base “views”) can be intelligently isolated for fur-
ther analysis of dynamics as a specific subgraph 
drawn from a larger graph. As scale increases, 
modern algorithms can assist in the subgraph 
mining process.7

Ironically, SQL might prove to be a useful 
means to permit building pattern-based rela-
tionships from simple taxonomy-based arrays 
of descriptive data stored as relational data. For 
example, we might wish to view an IoT graph 
phenomenon from its supply chain perspec-
tive to examine the efficiency of material flow to 
meet an operational IoT requirement in a given 
timeframe. At another time, however, isolating 
actual IoT operations as governed by interaction 
among the nodes and their properties might be 
important to fully understand mission effective-
ness. Although the RDBMS environment cannot  
support the requisite number of many-to-many 
relationships entailed in the graph, it can none-
theless serve as a storehouse for the data neces-
sary to efficiently generate the requisite model 
(both role and rule)-based relationships. In such 
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fashion, if accompanied by a well-designed user 
interface, data entry becomes more straightfor-
ward and does not require graph database lan-
guage expertise on top of subject matter expertise.

This notion of hybrid systems also has the 
distinct advantage of permitting some level of 
seamless coupling between various graph data-
bases. Although some query languages, such as 
Neo4j’s Cypher8 language, are becoming popu-
lar, there is little semantic commonality among 
the various graph languages in use and their 
rules of syntax. For example, higher volume 
graph databases rely on stylized variations of 
RDF9 to enumerate their triples. Thus, the no-
tion of sharing data between various graph da-
tabases is a function of the user’s tolerance for 
expressing the same triples in differing syntacti-
cal frameworks. Needless to say, if cross graph 
database sharing is required, this concern could 
burden a beleaguered subject matter expert who 
must now enter the data as well as master new 
methods of its expression.

Numerically Speaking
Although not fully incorporated in most com-
mercial graph databases, the qualitative prom-
ise will come as metric algorithms, derived from 
graph theory, are applied as analytical tools. 
Search algorithms, based on path traversal— 
although already an important family of graph 
database algorithms—are just the beginning of 
a wide array of metrics, now extending beyond 
mere networks to far more daunting networks 
of networks.10 Although research is still increas-
ing our understanding of the complex charac-
teristics of networks of networks, it is becoming 
evident that these relationships can be demon-
strated mathematically using graph theory. In 
time, built-in mathematical functions, residing 
in graph databases, could add a level of depth 
to truly understanding and quantifying graph 
relationships. If it is advantageous to eventually 
design networks of all types to perform useful 
purposes, the quantitative aspect of this design 
cannot be overlooked. For example, as large-scale 
systems embracing massively embedded software 
are already known to form complex adaptive re-
lationships, it is doubtful whether large software 
systems of systems can be effectively evaluated 
without some quantitative expression of their 
operations.

What Lies Ahead
This special issue explores the emergent world 
of graph databases in increasing depth. It starts 
with four articles that establish the dimensions 
of graph data modeling. We begin with Zuopeng  
Zhang’s “Graph Databases for Knowledge  
Management,” which differentiates between an 
RDBMS ERD and a graph data model (GDM). 
In “Modeling Graph Database Schema,” Noa 
Roy-Hubara, Lior Rokach, Bracha Shapira, and 
Peretz Shoval then demonstrate a technique to 
map the ERD to the GDM. As graph databases 
grow to support full-blown enterprise knowledge 
graphs, appropriate graph modeling presents  
elevated sophistication and rigor. Jans Aasman 
explores these challenges in “Transmuting In-
formation to Knowledge with an Enterprise 
Knowledge Graph.” Finally, in a specialized use 
case, “Modeling XACML Security Policies Using 
Graph Databases,” Fidel Paniagua Diez, Amrutha 
Chikkanayakanahalli Vasu, Diego Suárez Touce-
da, and José María Sierra Cámara demonstrate 
a method to efficiently store eXtensible Access 
Control Markup Language (XACML) security 
policies using an optimized graph model.

Our final article deals with enhancing graph 
database performance. Here, we turn our focus to 
hardware specifically focused on optimal graph 
database performance. “High-Performance with 
an In-GPU Graph Database Cache,” by Shin 
Morishima and Hiroki Matsutani, examines 
GPU efficiency when distributed and optimized 
for performance.

W e commend these excellent articles to 
you for the awareness they build re-
garding the state of the art in graph da-

tabases. We look forward to a growing trend in 
such insightful articles as the still young graph 
database industry continues to mature. 

References
 1. B. Bollobas, Modern Graph Theory, Springer, 1998.
 2. A.L. Barabási, Linked: The New Science of Networks, 1st 

ed., Perseus Books Group, 2002.
 3. D. Kronke and K. Dolan, Database Processing, 3rd ed., 

Scientific Research Associates, 1998, pp. 19–20.
 4. N. Jatana et al., “A Survey and Comparison of Re-

lational and Non-Relational Database,” Int’l J. Eng., 
Research & Technology, vol. 1, no. 6, 2012, pp. 1–5.



6 IT Pro  November/December 2017

GUEST EDITORS’ INTRODUCTION

 5. J.D. Owens et al., “GPU Computing,” Proc. IEEE,  
vol. 96, no. 5, 2008, pp. 879–899.

 6. S.R. Sukumar and N. Bond, “Mining Large Hetero-
geneous Graphs Using Cray’s Urika,” Proc. ORNL 
Computational Data Analytics Workshop, 2013.

 7. J. Huan et al., “Spin: Mining Maximal Frequent  
Subgraphs from Graph Databases,” Proc. 10th ACM 
SIGKDD Int’l Conf. Knowledge Discovery and Data Min-
ing, 2004, pp. 581–586.

 8. I. Robinson, J. Webber, and E. Eifrenm, Graph Da-
tabases, New Opportunities for Connected Data, 2nd ed., 
O’Riley Media, 2015.

 9. R. Angles and G. Gutierrez, “Querying RDF Data 
from a Graph Database Perspective,” Proc. European 
Semantic Web Conf., 2005, pp. 346–360.

 10. S. Boccaletti et al., “The Structure and Dynamics of 
Multilayer Networks,” Physics Reports, vol. 544, no. 1, 
2014, pp. 1–122.

George F. Hurlburt is the chief scientist at STEMCorp, 
a nonprofit corporation that works in the public sector to 
further economic development via adoption of network sci-
ence to advance autonomous technologies as useful tools for 
human use. Contact him at ghurlburt@change-index.com.

George K. Thiruvathukal is a full professor of computer 
science at Loyola University Chicago and visiting computer 
scientist at Argonne National Laboratory. His research in-
terests include parallel and distributed computing, software 
engineering, history of computing, and interdisciplinary 
computing applications. Contact him at gkt@cs.luc.edu.

Maria R. Lee is a full professor of information technol-
ogy and management at Shih Chien University Taiwan, 
and a visiting professor at the Advanced Data Analytics 
(ADA) Lab at SooChow University, China. Her research 
interests include big data analytics, e-commerce, and arti-
ficial intelligence. Lee received a PhD in computer science 
and engineering from the University of New South Wales, 
Australia. Contact her at maria.lee@g2.usc.edu.tw.

Read your subscriptions through the 
myCS publications portal at

http://mycs.computer.org


	The Graph Database: Jack of All Trades or Just Not SQL?
	Recommended Citation

	tmp.1514931096.pdf.f7Wml

