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SUMMARY

The gut microbiome exhibits extreme compositional variation between hominid hosts. However, it is unclear
how this variation impacts host physiology across species and whether this effect can be mediated through
microbial regulation of host gene expression in interacting epithelial cells. Here, we characterize the tran-
scriptional response of human colonic epithelial cells in vitro to live microbial communities extracted from
humans, chimpanzees, gorillas, and orangutans.We find that most host genes exhibit a conserved response,
whereby they respond similarly to the four hominid microbiomes. However, hundreds of host genes exhibit a
divergent response, whereby they respond only to microbiomes from specific host species. Such genes are
associated with intestinal diseases in humans, including inflammatory bowel disease and Crohn’s disease.
Last, we find that inflammation-associated microbial species regulate the expression of host genes
previously associated with inflammatory bowel disease, suggesting health-related consequences for spe-
cies-specific host-microbiome interactions across hominids.

INTRODUCTION

The microbiome of the primate gastrointestinal tract plays an

important role in host physiology and health. Extreme variation

in the gut microbiome has been observed between healthy hu-

man individuals; this variation is evenmore pronounced between

different species of great apes (HumanMicrobiome Project Con-

sortium, 2012; Nishida and Ochman, 2019). Microbiome compo-

sition is strongly correlated with the species of the host, a pattern

known as co-diversification. Within hominids and other

nonhuman primates, co-diversification between host and micro-

bial symbionts has led to overall microbiome composition clus-

tering along the expected phylogenetic relationships of the

host species, including bacterial, archeal, and eukaryotic groups

within the gut microbiome (Ochman et al., 2010; Moeller et al.,

2012; Raymann et al., 2017; Mann et al., 2020; Amato et al.,

2019a. However, reports show that these phylogenetic con-

straints are flexible, depending on diet and subsistence strategy

(Gomez et al., 2019). For example, compared with industrialized

human groups, small scale rural or agricultural human popula-

tions share a greater number of gut microbiome traits with wild

nonhuman primates (Gomez et al., 2019; Amato et al., 2019b.

Different hominid species harbor many of the same bacterial

phyla in the gastrointestinal tract, but in varying abundances.

For example, both the human and chimpanzee guts are primarily

colonized by Bacteroidetes and Firmicutes, but the chimpanzee

gut also harbors higher abundances of microbial phyla that are

relatively rare in humans, including Actinobacteria, Euryarch-

eaota, Tenericutes, and Verrucomicrobia (Ochman et al., 2010;

Nishida and Ochman, 2019). Gorillas, besides also displaying

the presence of these rare taxa, harbor greater abundances of

Chloroflexi, Tenericutes, and Fibrobacteres (Gomez et al.,

2015, 2016b; Hicks et al., 2018). Although the orangutan micro-

biome has not been characterized as thoroughly, a previous

report has shown that orangutan guts harbor higher diversity in

archaeal lineages compared to other great apes, in addition to

Cell Reports 37, 110057, November 23, 2021 ª 2021 The Author(s). 1
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similar microbial phyla as gorillas and chimpanzees (Raymann

et al., 2017; Delsuc et al., 2014). At lower microbial taxonomic

levels, very different microbial species are present in human

and chimpanzee microbiomes, resulting in greater divergence

(Nishida and Ochman, 2019).

Overall gut microbiome composition is shaped by a combina-

tion of host genetics, host physiology, and environmental fac-

tors. Studies have shown that host genetic variation influences

microbiome composition within humans, but has yet to be stud-

ied in other hominids (Blekhman et al., 2015; Goodrich et al.,

2014). Among environmental influences, diet has a large impact

on the primate gut microbiome (Nagpal et al., 2018; Hicks et al.,

2018; Gomez et al., 2016b. Most non-human great ape species

in the wild and in captivity subsist on a primarily plant-based diet

of fruit and vegetation that is occasionally supplemented by an-

imal protein, such as meat or insects (Vogel et al., 2015; Tutin

and Fernandez, 1993; Watts et al., 2012). In contrast, human di-

ets are usually omnivorous and highly variable depending on cul-

tural influences, agricultural practices, geographic location, and

individual dietary preferences (Wu et al., 2011; Lang et al., 2018).

Other environmental factors that can influence microbiome

composition between primates include variation in geography,

seasonality, and other social behaviors such as grooming

(Tung et al., 2015; Grieneisen et al., 2019). In addition, physiolog-

ical differences between primate species, such as differences in

gut morphology and digestive processes, also contribute to dif-

ferences in microbiome composition Amato et al., 2019a.

Although a large effort has beenmade to characterize the factors

that influence variation in the microbiome, it is unclear how vari-

ation inmicrobiome composition between great ape species can

impact relevant host phenotypes.

A likely mechanism by which the microbiome can affect host

physiology is through regulating the expression of host genes in

interacting intestinal epithelial cells (Luca et al., 2018; Richards

et al., 2016, 2019). Studies in animal models have demon-

strated that gut microbiota can drive changes in host gene

expression by altering epigenetic programming, such as his-

tone modification, transcription factor binding, and methylation

(Qin et al., 2018; Camp et al., 2014; Pan et al., 2018; Krautk-

ramer et al., 2016). For example, Camp et al. (2014) found

that the microbiome drives the differential expression of tran-

scription factors enriched in accessible binding sites. In addi-

tion, Pan et al. (2018) found that the microbiome can alter

DNA methylation in the gut epithelial cells of mice. Moreover,

in cell culture, inter-individual variation in microbiome composi-

tion can drive differential responses in host gene expression at

the intestinal level (Richards et al., 2019). However, we do not

know how interspecies variation in the microbiome affects

gene regulation in host cells. When considering microbiota vari-

ation among great ape species and their influences on host

gene expression, in vivo studies in experimental animal models

are limited. Furthermore, in vivo experiments can be

confounded by a multitude of factors, such as differences in

diet between the animal model species and the primate spe-

cies of interest, microbiota colonization history of the animal

model, and inherent differences in the genetic backgrounds be-

tween the animal model and the primate species (Luca et al.,

2018).

Here, we use an in vitro experimental system (Richards et al.,

2019, 2016) to assess host gene expression changes in

response to diverse gut microbiota from four great ape species:

humans (Homo sapiens), and captive chimpanzees (Pan troglo-

dytes), gorillas (Gorilla gorilla gorilla), and orangutans (Pongo

abelii). We collected microbiomes from four humans, three

chimpanzees, six gorillas, and three orangutans as biological

replicates. In each of the non-human primate groups, one of

the individuals donated two samples, bringing the total number

of samples to four human, four chimpanzee, seven gorilla, and

four orangutan samples. This experimental design allows us to

determine causal relationships between gutmicrobiome compo-

sition and gene expression changes in colonic epithelial cells

that are induced by the microbiome while controlling for poten-

tially confounding environmental and technical effects (Richards

et al., 2016, 2019). We have leveraged this design to ascertain

how host genes respond to between-species variation in micro-

biome composition across hominids, characterize the function of

host genes that respond to microbiota from each great ape spe-

cies, and identify microbial taxa and pathways that likely drive

expression of specific host genes.

RESULTS

To assess how host genes respond to variation in the micro-

biome, we extracted live microbiota from 19 fecal samples

from16 individuals from four hominid species (4 humans, 3 chim-

panzees, 6 gorillas, and 3 orangutans), and treated human

colonic epithelial cells (colonocytes) with the extracted micro-

biota using an experimental technique from a previously pub-

lished method (Table S1) (Richards et al., 2016, 2019). Briefly,

colonocytes are treated with live primate microbiota for 2 h, after

which we quantify changes in gene expression in the colono-

cytes using RNA sequencing (RNA-seq) (Figure 1A; see STAR

Methods). Additionally, we used 16S rRNA sequencing and

shotgun metagenomics to characterize the composition of the

microbiome in these samples. A principal coordinate analysis

of Bray-Curtis dissimilarities shows that the microbiome

samples do not change during the treatment, due to the short

culturing time. Importantly, microbiome samples cluster by

primate host species of origin (Figures 1B and S1A). This obser-

vation is consistent with previous findings showing that the

phylogenetic relationship between primate host species is re-

flected in their microbiomes (Ochman et al., 2010), and indicates

that interspecies microbiome distinctions between wild apes is

maintained in the captive individuals included in our study. We

note that in a comparison of our captive chimpanzees and go-

rillas samples with publicly available data fromwild chimpanzees

and gorillas (Campbell et al., 2020), we find that, as expected,

captive microbiomes differ from their wild counterparts (Fig-

ure S1B). However, the clear clustering of the microbiomes

used in our study by species (Figure 1B) indicates that strong in-

ter-species distinctions in the gut microbiome persist in these

captive individuals.

The bacterial composition of the samples confirmed clear dis-

tinctions between hominid species at the phylum level (Figures

1C and S1C), with nine of the most abundant microbial phyla

showing significantly different levels between hominid species

2 Cell Reports 37, 110057, November 23, 2021
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Figure 1. Experimental design and gut microbiome composition
(A) Schematic of the experimental design. Live microbiomes were extracted from fecal samples from humans (n = 4, blue) chimpanzees (n = 4, orange), gorillas

(n = 7, green), and orangutans (n = 4; purple), and were sequenced with metagenomic shotgun sequencing. Microbes were incubated with human colonic

epithelial cells for 2 h, after which host response was profiled through RNA-seq on the epithelial cells, and themicrobiomewas profiled via 16S rRNA sequencing.

See also Table S1.

(B) PCOA plot showing the Bray-Curtis dissimilarity of all the microbiome samples from all four primate species (represented by the same colors in A) at different

stages of the experiment. Here, ‘‘Raw’’ refers to the microbiomes of raw fecal samples; ‘‘Prepared’’ refers to microbiome samples that have been prepared (see

STAR Methods) but have not been cultured with colonocytes; ‘‘Colonocytes’’ refers to microbiomes after incubation with colonocytes; ‘‘Control’’ refers to mi-

crobiomes that have been incubated without colonocytes. See also Figure S1A.

(C) Relative abundances of microbial phyla from shotgun metagenomic sequencing for each hominid fecal sample, sequenced before being cultured with co-

lonocytes. The legend on the right indicates the colors corresponding to each phylum. See also Figures S1B and S1C.

(D) Examples of microbial species (from shotgun metagenomics sequencing) with various patterns of abundance across hominid species. In each panel, the x

axis indicates the primate host species, whereas the y axis indicates the relative abundance of the microbial species. Each dot represents the abundance of the

microbial species in a hominid individual host. Bacteroides ovatus (top left) shows a high abundance in humans relative to the other hominid species. Phas-

colarctobacterium succinatutens is highly abundant in the non-human hominids but not present in the human microbiomes. Faecalibacterium prausnitzii is highly

abundant in all four hominid species. Prevotella copri is highly abundant in chimpanzees and gorillas, has a lower abundance in orangutans, and is not present in

the human samples. See also Figure S1C and Table S2.
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(Table S2; Kruskal-Wallis test, Benjamini-Hochberg false discov-

ery rate [FDR] <0.1). The human microbiome samples have a

high relative abundance of Bacteroidetes and Firmicutes, which

have both been previously identified as dominant phyla in the hu-

man gut (Human Microbiome Project Consortium, 2012; Turn-

baugh et al., 2007). In addition, Actinobacteria abundance is

significantly different between hominid species (Kruskal-Wallis

test, Benjamini-Hochberg q-value = 0.00567; ANOVA, Benja-

mini-Hochberg q-value = 3.82 3 10�9), with chimpanzees

showing the greatest abundance (see Figure 1C). Furthermore,

we identified 21microbial species that are differentially abundant

between hominid host species (Table S2; Kruskal-Wallis, Benja-

mini-Hochberg FDR <0.1). Examples of several microbes that

have variable abundance across species, including Bacteroides

ovatus, which shows higher abundance in humans compared to

other hominids; Phascolarctobacterium succinatutens, which

shows lower abundance in humans compared to other hominids;

and Prevotella copri, which has higher abundance in gorilla and

orangutan, are shown in Figure 1D.

To characterize the host response to themicrobiome, we used

likelihood ratio tests combined with a negative binomial model

(DESeq2) to identify host genes that change their expression

after inoculation with microbiomes from the four hominid host

species (see STAR Methods). We identified 4,329 host genes

that respond to the microbiome of at least one hominid species

(Figure 2A, Benjamini-Hochberg FDR <0.1). The majority of

differentially expressed genes (2,261 genes, 52%) respond to

the microbiomes of all four hominids (Figures 2A and 2B; Table

S3, full dataset available; STAR Methods). Despite this overall

consistent response, we find 164 host genes that respond in a

species-specific manner; namely, respond to the microbiome

of one hominid species but not the other three. For example,

SHROOM3 responds to the human microbiome, but shows no

response to the chimpanzee, gorilla, and orangutan micro-

biomes (Figure 2C). Similarly, B3GAT2, DUSP11, and DARS2

respond in a species-specific manner to the chimpanzee, gorilla,

and orangutan microbiomes, respectively (Figure 2C). We also

find 394 host genes that respond to microbiomes from two

hominid species (e.g., CBR1 responds to orangutan and gorilla

microbiomes) (Figure 2C). Likewise, 1,313 host genes respond

to microbiomes from three hominid species, and 13,531 genes

show no response to any of the hominid microbiomes (e.g.,

INVS) (Figure 2C).

To understand how genes with a host species-specific

response may interact with each other, we visualized interaction

networks for differentially expressed host genes that respond to

microbiomes from each hominid species (Krämer et al., 2014) (In-

genuity Pathway Analysis, https://www.qiagenbioinformatics.

com) (Figures 3A, 3B, S2A, and S2B; STAR Methods). The most

significant interaction network of host genes that respond only

to human microbiomes is enriched with functional categories

related to cancer, cell death and survival, and organismal injuries

and abnormalities (Figure 3A; Table S4). This is consistent with

previous studies showing that the microbiome may influence

host disease through changes in host gene regulation, but also

suggests that this effect may be specific to human microbiomes

(Qin et al., 2018; Camp et al., 2014; Pan et al., 2018; Krautkramer

et al., 2016). By comparison, the most significant interaction

network of genes that respond specifically to orangutan micro-

biomes is enriched for functional categories related to carbohy-

dratemetabolism, lipidmetabolism, and small molecule biochem-

istry (Figure 3B; Table S4). This is consistent with the observation

that orangutan diets, compared to that of gorillas or chimpanzees,

could incorporate a greater proportion of ripe fruits and highly

digestible/simple sugars in peak seasons (up to 100% depen-

dence on fruit) (Remis, 1997; Taylor, 2006). In addition, previous

reports point to a highly diverse archeal community in orangutans

compared to other apes, which could be associated with an

increased capacity to metabolize highly fermentable plant mate-

rials (Raymann et al., 2017). See Table S4 for functions enriched

in the most significant networks for genes that respond only to

gorilla microbiomes and only to chimpanzee microbiomes.

To further characterize the biological functions represented

by host genes that respond to variation in hominid micro-

biomes, we categorized differentially expressed genes into

two groups: low-divergence genes, which show a similar

magnitude and direction of response to the four hominid micro-

biomes, and high-divergence genes, which show a highly vari-

able response to the four hominid microbiomes (following the

approach of Hagai et al. [2018]) (Table S5; STAR Methods).

We find that low-divergence genes, namely, differentially ex-

pressed genes that show a similar response to microbiomes

from all four primate species, tend to be enriched for functions

related to basic cell processes, such as RNA processing, cell

cycle, and RNA metabolic processing (Figure 3C, Benjamini-

Hochberg FDR <0.1; Table S6). This suggests that these genes

are likely involved in basic host responses to bacterial cells,

rather than response to specific microbial features. Interest-

ingly, high-divergence genes, namely, genes that respond

differently to the microbiomes from the four primate host spe-

cies, tend to be enriched for categories related to disease,

inflammation, and cancer (Figures 3C, S3A, and S3B). Of

note, colorectal cancer, rheumatoid arthritis, and Salmonella

infection functional categories are enriched among high-diver-

gence genes and have all been associated with gut microbiome

composition in previous studies (Dahmus et al., 2018; Scher

and Abramson, 2011; Ferreira et al., 2011). Moreover, when

considering host genes that have been previously associated

with complex human traits through genome-wide association

studies (GWAS) using data in the GWAS catalog (Buniello

et al., 2019), we find that high-divergence genes are enriched

with traits and diseases that have also been linked to the micro-

biome, such as Crohn’s disease (CD), inflammatory bowel dis-

ease (IBD), and body mass index (Figure 3D; STAR Methods).

This might indicate that these complex disease phenotypes

may be modulated by differences in composition of the gut mi-

crobial community through the regulation of these key host

genes.

Next, we sought to identify genes whose response is directly

correlated with the abundance of specific microbial taxa. To

do so, we used mixed linear models that integrated host

response transcriptomic data (via RNA-seq) and microbial

species abundance information data (via shotgun metagenom-

ics; see STAR Methods). We identified 25 microbial species

that drive the expression of 80 differentially expressed host

genes across the four hominids (Figure 4A; Table S7, 162 host

4 Cell Reports 37, 110057, November 23, 2021

Resource
ll

OPEN ACCESS

https://www.qiagenbioinformatics.com
https://www.qiagenbioinformatics.com


gene-microbial taxon pairs in total, Benjamini-Hochberg FDR

<0.05). A heatmap of the interactions reveals two roughly defined

major clusters, one of which includes a subcluster of host genes

that are downregulated by microbial taxa that are rare or absent

in humans but present in the other hominids, such as Prevotella

copri, Methanobrevibacter (unclassified), and Phascolarctobac-

terium succinatutens (highlighted in Figure 4A; also see Figure 1D

for P. copri and P. succinatutens abundances across hominids).

Genes that are downregulated in the presence of thesemicrobial

species are significantly enriched for several immune-related
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Figure 2. Patterns of host gene expression change in response to hominid microbiome treatment

(A) Heatmap showing the log2 fold change for all differentially expressed host genes (rows), grouped by expression pattern. Each row in the heatmap represents a

host gene and each column represents one of the four hominid species. The colored bar on the right hand side indicates the hominid microbiome to which these

genes respond (Benjamini-Hochberg FDR < 0.1). See also Table S13.

(B) UpSet plot visualizing the intersections among the sets of host genes that respond to hominid microbiomes. The x axis indicates the hominid species (or

combination of hominid species) considered in the intersection and is represented by colored dots underneath the x axis (each color depicts a hominid species as

in Figure 1). The y axis indicates the number of genes in the intersection. The bars in the lower left indicate the total number of differentially expressed genes by

hominid species. For example, the leftmost bar shows that 2,261 genes are differentially expressed in response tomicrobiomes from all four hominid species, and

the rightmost bar shows that 12 genes are differentially expressed in response to only orangutan microbiomes. See also Table S3.

(C) Examples of expression patterns of eight differentially expressed genes. Each panel represents a single host gene, labeled at the top of the plot. The x axis

represents the four hominid species, and the y axis represents the log2 fold change in expression of the gene. Each dot represents the log2 fold change in

response to the microbiomes of each hominid, with error bars indicating the SE. The gray dotted line is at zero and denotes no differential expression. See also

Tables S3 and S13.
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pathways, such as cytokine activity, interleukin (IL)-7 signaling,

malaria, Legionellosis, and tumor necrosis factor (TNF) signaling

(Table S8). Using a similar method, we identified 89 microbial

pathways that drive the expression of 310 unique host genes

for a total of 2,061 significant microbial pathway-host gene inter-

actions (Benjamini-Hochberg FDR <0.05). For simplicity, we

focused on the top 48 microbial pathways that drive the expres-

sion of the top 44 unique host genes (Figure 4B; Table S9), with a

total of 216microbial pathway-host gene pairs (examples of spe-

cific interactions can be found in Figure S4A). Clustering of this

interaction data revealed three main clusters (I, II, and III), with

genes in cluster II associated with pathways that are more abun-

dant in humans compared to other hominid microbiomes. These

host genes are enriched in functional categories related to

A

B

B

GWAS -log(P-value)

Fo
ld

 E
nr

ic
hm

en
t

10 20 30 40

0
5

10
15

Age-related macular degeneration

Body mass index

Crohn's disease
Inflammatory bowel disease

Menarche (age at onset)

Rheumatoid arthritis

AGE−RAGE signaling pathway in diabetic complications
MAPK signaling pathway
Colorectal cancer
Rheumatoid arthritis
Viral protein interaction with cytokine and cytokine receptor
Fluid shear stress and atherosclerosis
Cytokine−cytokine receptor interaction
Salmonella infection
IL−17 signaling pathway 
TNF signaling pathway

Antigen processing and presentation
IL−17 signaling pathway
Adherens junction
Spliceosome

1 2 3 4 5

PI3K/AKT Signaling in Cancer
Interleukin−4 and Interleukin−13 signaling
MAPK1/MAPK3 signaling
MAPK family signaling cascades
Negative regulation of the PI3K/AKT network
RAF−independent MAPK1/3 activation
Signaling by Interleukins
Constitutive Signaling by Aberrant PI3K in Cancer
PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling
Interleukin−10 signaling

mRNA 3'−end processing
Transport of Mature mRNA derived from an Intron−Containing Transcript
Transport of Mature Transcript to Cytoplasm
Apoptotic cleavage of cellular proteins
Cell Cycle Checkpoints
Cytosolic tRNA aminoacylation
Adherens junctions interactions
mRNA Splicing − Major Pathway
mRNA Splicing
Processing of Capped Intron−Containing Pre−mRNA

K
EG

G
R

ea
ct

om
e

Divergence

Number of Genes

x High 

Low

10 
20 
30 
40

-log(Q-value)

C

D

Cytokine/Growth Factor 

Enzyme 

Group/Complex 

Transcription Regulator 

Transporter 

Protein/Other Complex 

Ion Channel 

Kinase 

Upregulated 

Downregulated

Figure 3. Interaction networks and functional enrichment categories for host genes responding to hominid gut microbiomes

(A) Interaction network showing host genes that respond only to human microbiomes, generated using Ingenuity Pathway Analysis. Each node indicates a gene,

and the color of the node indicates whether the gene is upregulated (red) or downregulated (green). The shape of each node represents a specific function as

depicted in the legend. A line indicates a direct interaction, and a dashed line indicates an indirect interaction. See also Figure S2.

(B) Similar to (A), but with host genes that respond only to orangutan microbiomes.

(C) Functional categories in the KEGG (top) and Reactome (bottom) databases enriched among high-divergence genes (red) and low-divergence genes (blue).

The x axis indicates the statistical significance of enrichment, and the circle size corresponds to the number of genes in each category, as shown in the legend

(Benjamini-Hochberg FDR < 0.1). See also Figure S3 and Table S6.

(D) Complex disease enriched among genes that respond to hominidmicrobiomes. Fold enrichment (y axis) is shown for a given p value threshold (x axis) to define

genes that are associated with each complex disease in the GWAS catalog. Each colored line represents a complex disease with a statistically significant

enrichment after multiple test correction (using Fisher’s exact test, FDR < 0.1; see STARMethods), with a circle indicating the most significant p value threshold.

Diseases that did not reach significance are shown in gray lines.
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inflammation and infectious disease, including Legionellosis,

malaria, and pertussis, and overlap with genes found in the clus-

ter described above in the species-level analysis (Table S10).

To investigate specific host gene-microbe interactions, we

considered the network of all high-divergence host genes for

which expression is driven by microbial species (28 host genes

and 14 microbial species; Benjamini-Hochberg FDR <0.01). We

find that certain microbial taxa are represented in highly con-

nected nodes and likely control the regulation of several high-

divergence host genes (Figure 4C). For example, twoBacteroides

species,B.ovatusandB.uniformis, drive theexpressionof several

host genes, including LIF and DUSP5 respectively, both of which

have been previously associated with inflammation (Yue et al.,

2015; Habibian et al., 2017). Bacteroides is a highly abundant mi-

crobial genus in the humangut and is known to havemixed effects

on human health (Wexler, 2007). Notably,B. ovatus is highly abun-

dant in the humanmicrobiome samples, but is at low abundances

in the orangutan gut microbiomes and entirely absent in the chim-

panzee and gorilla microbiomes (Figure 1D, FDR <0.1).

To explore the possible phenotypic consequences of host

genes for which expression is driven by certain microbial spe-

cies, we integrated gene-trait associations identified through

transcription-wide association study (TWAS). TWAS identifies

associations between gene expression and complex traits by

considering genetically predicted gene expression from

expression quantitative trait locus (eQTL) studies and SNP-trait

associations from GWAS. We considered genes implicated in

114 complex traits through Probabilistic TWAS (Zhang et al.,

2020) and found that expression of 44 out of 57 high-divergence

host genes is associated with 43 complex phenotypes (Fig-

ure 4D). These include diseases and phenotypes previously

linked to the gut microbiome, including CD, IBD, ulcerative coli-

tis, body mass index, body fat percentage, and schizophrenia

(Figure 4D; Table S11). We found several microbial taxa that

have higher abundance in the non-human microbiomes,

including P. copri and P. succinatutens, which have previously

been hypothesized to have protective effects, downregulate

the expression of host gene LIF, which has been linked to
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Figure 4. Relationship between host gene expression and specific microbiome features

(A) Heatmap showing correlations between abundance of microbial species from metagenomics sequencing data (rows) and host gene expression response

(columns) (Benjamini-Hochberg FDR < 0.05). The colored bars at the top indicate to which hominid microbiome (or combination of hominid microbiomes) a gene

responds, with blue, orange, green, and purple bars depicting the human, chimpanzee, gorilla, and orangutan microbiomes, respectively. Boxplots to the right

show the abundance of each microbial species in each hominid microbiome (microbial abundance transformed by log2) using the same color scheme. See also

Figure S4 and Table S7.

(B) Similar to (A), but showing the abundance of microbial pathways instead of microbial species (Benjamini-Hochberg FDR < 0.05). See also Figure S4 and Table

S9.

(C) Network visualization of high-divergence host genes (purple nodes) and microbial species (green nodes) to which these host genes respond (shown as

arrows). The node size of microbial species corresponds to abundance, and the node size of host genes corresponds to log2 fold change of the differential

expression in response to microbiome exposure. Arrow colors indicate whether a microbial species increases (blue) or decreases (red) the expression of the

connected host gene. See also Table S8.

(D) Three-tier network showing microbial species (left column), the host genes they each regulate (middle column), and the TWAS phenotypes these genes are

associated with (right column). Microbial species and host gene node size indicate microbial abundance and differential expression, respectively, correlated with

high-divergence genes and TWAS phenotypes. See also Table S11.

(E) Similar to (C), but showing microbial pathways instead of microbial species. See also Table S10.
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ulcerative colitis, IBD, and CD in our TWAS analysis (Figures 4C

and 4D) (De Vadder et al., 2016; Morgan et al., 2012). These re-

sults are consistent with findings from the enrichment analysis

reported in Figures 3C and 3D, where we found phenotypes

related to inflammation were driven by high-divergence genes.

Furthermore, we find that Eubacterium rectale andB. ovatus, mi-

crobes that have higher abundance in humans and that have

been previously associated with IBD (Zhang et al., 2017; Noor

et al., 2010), upregulate the expression of CSF3, which has

been reported as upregulated in ulcerative colitis patients (Hotte

et al., 2012; de Lange and Barrett, 2015)

To investigate specific host gene-pathway interactions, we

constructed a network of the most significant interactions be-

tween microbial pathways and high-divergence host genes as

described above (Figure 4E; see STAR Methods). We find that

nine of these 17 host genes, including DUSP5, CYR61, NFKBIZ,

PTGS2, IL6, CXCL8, IL36G, IL1B, and IL36RN (all displayed at

the top layer in Figure 4E) have been implicated in immune func-

tion or inflammation (Habibian et al., 2017; Emre and Imhof,

2014; Hörber et al., 2016; M€uller et al., 2018; Cox et al., 2004;

Rincon, 2012; Gales et al., 2013; Wang et al., 2017; Ren and

Torres, 2009; Onoufriadis et al., 2011). We found that these

genes are associated with several microbial pathways, including

phosphopanthothenate biosynthesis I, chorismate biosynthesis,

UDP-N-acetylmuramoyl pentapeptide biosynthesis II (lysine-

containing), and UDP-N-acetylmuramoyl pentapeptide biosyn-

thesis I (meso-diaminopimelate containing).

DISCUSSION

Interactions between hominid hosts and their microbiomes have

been an underexplored area of research, and the complexity of

the host-microbiome relationship makes identifying the specific

microbial features that causally impact the host phenotype

inherently challenging. Here, we use an in vitro model to assess

how gut microbiomes from different host species impact gene

regulation, which is a likely mechanism for microbes to drive

changes in host phenotype and health. Inoculating host colonic

epithelial cells with live gut microbiome communities from four

great ape species, we find that most host genes are regulated

similarly by microbiomes from all four hominid microbiomes.

However, some host genes are regulated only by microbiomes

from a single hominid; these genes are enriched with immunity

functions and are involved in the development of IBD.

Chimpanzees, gorillas, and orangutans are our closest extant

relatives, making these species an important study system for

understanding human evolution as well as the genetic and envi-

ronmental etiology of human-specific diseases. Distinct physio-

logical, cognitive, and behavioral differences between primate

species are hypothesized to be the result of changes in host

gene regulation (Gilad et al., 2006; King andWilson, 1975; Britten

and Davidson, 1971; Enard et al., 2002). Indeed, studies have

identified genes showing a species-specific expression pattern

and genes for which regulation likely evolves under natural selec-

tion (Blekhman et al., 2008; Brawand et al., 2011). Here, we show

that microbiomes of different hominid species elicit different

gene expression responses in the same type of intestinal epithe-

lial cells (human colonocytes). Although we show that most host

genes respond to microbiomes from different hominids in a

similar manner, we also identified genes that exhibit a species-

specific response. Thus, it may be tempting to hypothesize

that some of the species-specific differences in gene expression

observed previously are driven by interactions with the gut mi-

crobiome. These species-specific microbiome-regulated host

genes might facilitate host-specific adaptations to physiological

or dietary constraints; for example, our analysis indicates that

genes with a response to only orangutan microbiomes are en-

riched for carbohydrate metabolism, lipid metabolism, and small

molecule biochemistry, which suggests that the interaction of

the orangutan microbiome and colonic epithelial cells may aid

in digestion of specific macronutrients, especially those associ-

ated with diets rich in high-energy, highly digestible plant

sources (e.g., ripe fruit).

In addition to environmental adaptations, species-specific re-

sponses to the microbiota may indicate tightly controlled symbi-

otic relationships that may result in disease phenotypes when

altered. We find that high-divergence genes—namely, genes

that respond discordantly to microbiomes from different hominid

species—are enriched for traits associatedwith disease, such as

inflammation and aberrant apoptosis. This suggests that genes

with a response highly sensitive to the variation across hominid

microbiomes may possibly play a role in host disease traits.

These genes are also significantly associated with relevant

disease traits in the GWAS catalog and in our TWAS analysis,

including CD and IBD. Significant distinctions exist in gut

microbiome composition and diversity across apes with marked

differences in subsistence strategies: for instance, industrialized

human societies and primates in captivity have lower gut

microbiome diversity and show higher incidences of noncommu-

nicable diseases than small-scale human populations and wild

non-human primates, respectively Gomez et al., 2016a ; Clayton

et al., 2016). Thus, one hypothesis is that these unique features

of the microbiome are causal for the development of diseases

common in humans living in industrialized areas, but not in

non-industrialized human populations or in non-human wild

primates, such as IBD. Our results are consistent with this

hypothesis, and further suggest that a mechanism by which

the microbiome can affect disease risk is through regulating

the expression of host genes in interacting colonic epithelial

cells. For example, we found that several microbes that have

lower abundance in humans compared to the other hominids,

including P. copri and P. succinatutens, downregulate the

expression of the gene LIF, which has been associated

with IBD (Figure S4B). This suggests that these microbes

may confer a protective effect through regulation of host

genes, and their absence in humans is possibly detrimental.

Conversely, we found that microbes that have higher

abundance in humans compared to the other hominids,

including B. ovatus and E. rectale, upregulate the expression of

CSF3, which has been associated with IBD (Figure S4B). This

suggests that these microbes may have a human-specific

pathogenic effect. Moreover, some of the genes we found to

be regulated by the microbiome in a species-specific manner,

such as IL1B, IL6, IL36G, IL36RN, and CXCL8, have been previ-

ously implicated in IBD (Schulze et al., 2008; Khor et al., 2011;

Parisinos et al., 2018; Gijsbers et al., 2004; Russell et al., 2016;
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M€uller et al., 2018), whereas others, such as DUSP5, CYR61,

NFKBIZ, and PTGS2, have rules in immune response (Habibian

et al., 2017; Emre and Imhof, 2014; Hörber et al., 2016; Cox

et al., 2004).

In conclusion, we find that gut microbial communities from

different hominids mostly elicit a conserved regulatory response

in host cells, wherebymost host genes respond similarly to hom-

inid microbiomes. However, we also find that some host genes

show a divergent response, and a number of host genes respond

only to microbiomes from one hominid species and not the

others. These genes are enriched in functional categories related

to immunity and inflammation and are over-represented in path-

ways involved in autoinflammatory diseases, such as IBD and

CD. These results represent an important step toward under-

standing the causal relationships between variation in the gut

microbiome across hominids and the regulation of intestinal

epithelial cells. We hope that future studies will expand on this

work using organoid culture or animal models to understand

microbial regulation of host genes in more complex systems.

Moreover, we expect that testing specific isolates or manipu-

lating the composition of the microbiome will allow character-

izing the contribution of specific microbes to the development

of disease through regulation of host genes.

Limitations of study
Our ability to interpret these results in a comparative evolutionary

context is limited by the unavailability of colonocytes from the

non-human hominids in the study. In addition, the non-human

hominids in the study are all captive, and our comparison of

these samples to publicly available data indicates that the

captive chimpanzee and gorilla microbiomes in our study differ

from their wild counterparts; nevertheless, the microbiomes

used in this study still cluster by host species identity, and pre-

serve clear between-species variation in microbiome composi-

tion. Another limitation of our analysis is that the taxonomic

profiling of metagenomic shotgun sequencing data relies on da-

tabases that are biased toward microbes residing in human mi-

crobiomes and might impact our ability to detect and accurately

quantify certain microbes in the non-human samples. Moreover,

the in vitro approach used here represents a simplified version of

the complex interactions occurring at the organismal level.

Nevertheless, our approach allows for tightly controlled experi-

mental conditions that can be tailored to the specific question

of interest, by focusing on the relevant host cell type and micro-

biomes, and massively reducing confounding effects of cellular

composition and the environment. Indeed, our approach allows

controlling for various factors that may affect both the micro-

biome and host gene regulation, such as organismal-level

variables (e.g., infection and hormones), host genetic variation,

environmental factors (e.g., host diet), and oscillations and circa-

dian dynamics in the microbiome and host gene expression.
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Genome Reference Consortium https://www.ncbi.nlm.nih.gov/

assembly/GCF_000001405.26/

Experimental models: cell lines

Human Colonic Epithelial Cells: HCoEpiC, lot: 9763 ScienCell Research Laboratories lot# 9763

Software and algorithms

R N/A https://www.r-project.org/

FastQC N/A https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/

Trimmomatic Bolger et al., 2014 http://www.usadellab.org/

cms/?page=trimmomatic

HISAT2 Kim et al., 2019 http://daehwankimlab.github.io/hisat2/

HUManN2 Franzosa et al., 2018 https://huttenhower.sph.

harvard.edu/humann2/

Metaphlan2 Truong et al., 2015 https://huttenhower.sph.harvard.

edu/metaphlan2/#:�:text=The%

20Huttenhower%20Lab%20%3E%

20MetaPhlAn2,from%20metagenomic%

20shotgun%20sequencing%20data.

Diamond Buchfink et al., 2015 https://www.uppmax.uu.se/

resources/databases/diamond-

protein-alignment-databases/

DADA2 Callahan et al., 2016 https://benjjneb.github.io/

dada2/tutorial.html

Vegan N/A https://cran.r-project.org/web/packages/

vegan/vignettes/intro-vegan.pdf

DESeq2 Love et al., 2014 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Ingenuity Pathway Analysis N/A https://digitalinsights.qiagen.com/

products/ingenuity-pathway-analysis
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ran

Blekhman (blekhman@umn.edu)

Materials availability
This study did not generate new unique reagents.

Data and code availability
All sequencing data (RNA-seq, metagenomic shotgun, and 16S rRNA) have been deposited at the Sequence Read Archive (SRA) and

are publicly available as of the date of publication, under BioProject accession number SRA: PRJNA661048. Accession numbers are

listed in the Key Resources Table.

All original code has been deposited onGithub (https://github.com/blekhmanlab/Primates) and on Zenodo and is publicly available

as of the date of publication. DOIs are listed in the Key Resources Table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample acquisition and live microbiota extraction
See Table S1 for full details about the human and non-human primate fecal samples used in this analysis. Non-human fecal samples

from gorillas and orangutans were collected from captive animals immediately after defecation. One orangutan who donated two

samples was on a low dose of antibiotics for chronic colitis. Samples were collected as soon as possible (within an hour of defecation)

into a 50mL conical tube containing 20mL of cryoprotectant solution consisting of a 50:50mixture of glycerol and saline solution. The

cryoprotectant was filter sterilized through a 0.22mm filter. Samples were shaken vigorously to distribute the cryoprotectant. Gorilla

and orangutan samples were stored at �80�C within 1 hour after collection and shipped to the lab on dry ice. Chimpanzee samples

were stored at�20�Cwithin 1 hour of collection and then shipped to theU.S. lab on dry icewithin one day. Human fecal sampleswere

purchased from OpenBiome and arrived frozen on dry ice. The following briefly describes the protocol by which OpenBiome pro-

cesses stool samples. The sample is collected by OpenBiome and given to a technician within 1 hour of defecation. The mass of

the sample is measured and transferred to a sterile biosafety cabinet. The stool sample is put into a sterile filter bag, and a sterile

filtered dilutant of 12.5% glycerol is added with a normal saline buffer (0.90% [wt/vol] NaCl in water). The sample solution is then

introduced to a homogenizer blender for 60 s and aliquoted into sterile bottles. The bottles are then immediately frozen at �80�C.
Any sample not fully processed within 2 hours of passage is destroyed.

To extract fecal microbiota from the non-human primate samples, inside a sterile low-oxygen cabinet we placed fecal material into

a sterilized disposable standard commercial blender cup, and added 20mL glycerol to reach approximately 30mL glycerol and

200mL normal saline buffer (0.90% [wt/vol] NaCl in water). Fecal material was blended until fully homogenized (about 1-2 min).

Blended material was transferred to the same side of the membrane in a 330-micron filter bag and the liquid suspension of the bac-

terial community was collected on the other side of the filter. The resulting microbiota suspension was then mixed and aliquoted into

small tubes and stored at �80�C.
The research and sample collection in this study complied with protocols approved through the University of Minnesota Institu-

tional Animal Care and Use Committee.

Colonic Epithelial Cell Line and Growth Conditions
Experiments were conducted using primary human colonic epithelial cells (HCoEpiC, lot: 9763), hereby called colonocytes (ScienCell

Research Laboratories, Carlsbad, California, USA, 2950). The cells were cultured on plates or flasks coated with poly-l-lysine (PLL),

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ClusterProfiler Yu et al., 2012 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml

MinPath Ye and Doak, 2009 https://omics.informatics.

indiana.edu/MinPath/

UniRef90 Suzek et al., 2015 https://www.uniprot.org/help/uniref
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according to the supplier’s specifications (ScienCell 0413). Colonocytes were cultured in colonic epithelial cell medium

supplemented with colonic epithelial cell growth supplement and penicillin-streptomycin according to the manufacturer’s protocol

(ScienCell 2951) at 37�C with 5% CO2. At 24 hours before treatment, cells were changed to antibiotic-free medium and moved to an

incubator at 37�C, 5% CO2, and a reduced 5% O2.

METHOD DETAILS

Colonocyte with hominid-derived microbiota treatment experiment
The experimental protocol used for the treatment of colonocytes with microbiota has previously been described in Richards et al.

(2016). Fecal microbiota were not thawed until the day of the experiment. Prior to treatment, the microbiota was thawed at 30�C,
and the microbial density (OD600) was assessed via a spectrophotometer (Bio-Rad SmartSpec 3000). Medium was removed from

the colonocytes and fresh antibiotic-free medium was added to the cells, with a final microbial ratio of 10:1 microbe:colonocyte in

each well. Additional wells containing only colonocytes were also cultured in the same 24-well plate for use as controls.

After 2 hours, the wells were scraped on ice, pelleted, and washed with cold phosphate-buffered saline (PBS) and then resus-

pended in lysis buffer (Dynabeads mRNA Direct kit, ThermoFisher Scientific, Waltham, Massachusetts, USA) and stored at

�80�C until extraction of colonocyte RNA for RNA-seq. We conducted both metagenomic shotgun sequencing and 16S rRNA

sequencing on the microbiomes at four points: before preparation (raw), after preparation (prepared), cultured with colonocytes (co-

lonocytes) and cultured without colonocytes (control). Previous experiments have shown that microbiome composition does not

change drastically over the 2 hour co-culture period (Richards et al., 2019). Human fecal microbiome samples were purchased as

‘‘prepared’’ from Openbiome and therefore were not sequenced raw.

RNA-seq experiment and data processing
Poly-adenylated mRNA was isolated from thawed cell lysates using the Dynabeads mRNA Direct Kit (Ambion) following the manu-

facturer’s instructions. RNA-seq libraries were prepared using a protocol modified from the NEBNext Ultradirectional (NEB) library

preparation protocol to use Barcodes fromBIOOScientific added by ligation, as described in Richards et al. (2019). The libraries were

then pooled and sequenced on two lanes of the Illumina Next-seq 500 in the Luca/Pique-Regi laboratory using the high output kits for

75 cycles to obtain paired-end reads. Reads were 80 bp in length. Read counts ranged between 12,632,223 and 36,747,968 reads

per sample, with a mean of 18,726,038 and median of 16,993,999 reads per sample.

FastQC was used to determine the quality of reads from raw data (FastQC, version 0.11.5). Trimmomatic was used to trim

adapters. FastQC was again used to determine the quality of reads after trimming of adapters (Trimmomatic version 0.33). Tran-

scripts were aligned to database GRCh38 using HISAT2 (HISAT2 version 2.0.2) (Kim et al., 2019). After alignment, read counts ranged

between 10,817,737 and 33,592,529 aligned reads per sample, with a mean of 17,142,585.72 and a median of 15,542,693.5 aligned

reads per sample. Overall, the average alignment rate was �70% across samples (Figure S5). The R ‘Subread’ package with the

‘featureCounts’ program was used to make the transcript abundance file (R version 3.3.3, Subread version 1.4.6).

16S rRNA sequencing
Sequencing on the 16S rRNA V4 region was performed at the University of Minnesota Genomics Center using the protocol described

in Gohl et al. (2016). DNA isolated from fecal samples was quantified with qPCR and the V4 region of the 16S rRNA gene was

amplified using PCR with barcodes for multiplexing.

The forward indexing primer sequence is -AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTC and the reverse

indexing primer sequence is -CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG (where the bolded regions are the p5

and p7 flow cell adapters and [i5] and [i7] refer to the index sequence codes used by Illumina). The qPCR step starts with an initial

denaturing step at 95�C for 5min followed by 35 cycles of denaturation (20 s at 98�C), annealing (15 s at 66�C) and elongation (1min at

72�C). After qPCR, samples are normalized to 167,000 molecules/ml. This is based on the volume of sample used for PCR1 (3ml), so

500,000 molecules is roughly 10x the target sequencing coverage. The next PCR (PCR1) step is similar to the qPCR step, except

with only 25 cycles of denaturation, annealing, and elongation. After the first round of amplification, PCR1 products are diluted

1:100 and 5ml of 1:100 PCR1 is used in the second PCR reaction. The next step (PCR2) is similar to the previous two PCR protocols,

except with only 10 cycles of denaturation, annealing, and elongation. Next, pooled samples were denatured with NaOH, diluted to 8

pM in Illumina’s HT1 buffer, spiked with 15% PhiX, and heat denatured at 96�C for 2 minutes immediately prior to loading. A MiSeq

600 cycle v3 kit was used to sequence the sample. The following Nextera adaptor sequences for post-run trimming are also used. For

read 1 - CTGTCTCTTATACACATCTCCGAGCCCACGAGACNNNNNNNNATCTCGTATGCCGTCTTCTGCTTG and for read 2 - CTGT

CTCTTATACACATCTGACGCTGCCGACGANNNNNNNNGTGTAGATCTCGGTGGTCGCCGTATCATT

Metagenomic shotgun sequencing
Metagenomic shotgun sequencing on prepared microbiota samples was performed at the University of Minnesota Genomics Center

(UMGC). DNA samples were quantified using a fluorimetric PicoGreen assay gDNA samples were converted to Illumina sequencing

libraries using Illumina’s NexteraXT DNA Sample Preparation Kit (Cat. # FC-130-1005). 1 ng of gDNAwas simultaneously fragmented

and tagged with a unique adaptor sequence. This ‘‘tagmentation’’ step is mediated by a transposase. The tagmented DNA was
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simultaneously indexed and amplified with 12 PCR cycles. Final library size distribution was validated using capillary electrophoresis

and quantified using fluorimetry (PicoGreen). Truseq libraries were hybridized to a NextSeq. Base call (.bcl) files for each cycle of

sequencing were generated by Illumina Real Time Analysis (RTA) software. The base call fileswere demultiplexed and then converted

to index specific fastq files using the MiSeq Reporter software on-instrument.

QUANTIFICATION AND STATISTICAL ANALYSIS

Characterizing microbiota
To identify microbial features from themetagenomic shotgun sequencing data, including taxa and pathway abundances, we used the

HUMAnN2 pipeline with Metaphlan2 (HUMAnN2 v0.11.1, Metaphlan2 v0.2.6.0) (Truong et al., 2015; Franzosa et al., 2018). FastQC

v0.11.7 was used to determine the quality of sequencing reads before trimming. Sequencing adapters were trimmed from the raw

reads using Trimmomatic (Trimmomatic v0.33) (Bolger et al., 2014). FastQC v0.11.7 was again used to determine quality of

sequencing reads after trimming the sequencing adapters from the reads (Figure S6). Metaphlan2 was used to assign taxonomy

at all taxonomic levels to the sequencing reads in each sequencing file, and in particular to get relative abundances of microbial

taxa for each sample. The HUMAnN2 pipeline utilizes bowtie v0.2.2 for read alignment (Langmead and Salzberg, 2012), DIAMOND

v0.8.22 for high throughput protein alignment (Buchfink et al., 2015), MinPath (Ye and Doak, 2009) for pathway reconstruction from

protein family predictions. The UniRef90 database was used for determining gene family abundances (Suzek et al., 2015). We found a

total of 166 named microbial species detected in at least one sample (Figure S7).

Principal Coordinate Analysis of Samples
Using the 16S rRNA data from the fecal microbiota samples, we used the R package ‘DADA20 (DADA2, version 1.2.2) to identify am-

plicon sequence variants (ASVs) from the reads (Callahan et al., 2016). DADA2 was used to filter and trim sequences from raw reads.

Forward reads were trimmed to position 240 and reverse reads were trimmed to position 160. Reads were truncated at the first qual-

ity score less than or equal to 2. Reads with more than two errors were discarded after truncation. Amplicon sequences were der-

eplicated using the function ‘derepFastq.’ Sample composition was inferred using the ‘dada’ function. Chimeras were removed using

‘removeBimeraDenovo.’ We assigned taxonomy to the resulting ASVs using ‘assignTaxonomy.’ Using the R package ‘vegan’

(version 2.5-3), we calculated Bray-Curtis dissimilarities and plotted these as a principal coordinate analysis plot (Figure 1B).

Comparison of microbiome composition between captive and wild gorillas and chimpanzees
Previous studies have shown differences in composition between wild and captive primate microbiomes (Clayton et al., 2016). To

compare our captive primate samples to their wild counterparts, we downloaded the processed ASV table from Campbell et al.

(2020), which sequenced gut microbiomes from wild chimpanzees and wild gorillas. Campbell et al. (2020) sequenced wild gorilla

and chimpanzee fecal microbiome samples using the Illumina MiSeq, targeting the V4 region of the 16S rRNA gene. Campbell

et al. (2020) processed their data using DADA2, v1.8, and assigned taxonomy on the resulting ASVs using the Greengenes database.

The data in our study was sequenced on the same region and processed with DADA2, v1.2.2, and also assigned taxonomy using

Greengenes. Using the R package ‘phyloseq’, we combined the two datasets and created a stacked barplot showing the taxonomic

relative abundances at the phylum level for each of the samples, with captive and wild individuals from each species (Figure S1B).

Species-specific differential expression analysis
We filtered the RNA-seq counts table so that we only consider protein coding genes, reducing the number of considered genes from

60,674 to 19,715. Host genes were filtered for only protein coding genes using the R package ‘biomaRt’ with ensembl build 37.Within

DESeq2 (DESeq2 version 1.14.1), RNA-seq counts were further filtered such that each gene had to be present at least once over all

the samples, leaving 17,860 tested genes (Love et al., 2014). DESeq2 uses a negative binomial model to model the count data while it

also estimates an appropriate size factor to normalize each sample by its sequencing depth. Additionally, the overdispersion param-

eter governing the negative binomial distribution is estimated per each gene and using a regularization approach that can monitor

outliers and adjust for the mean-variance dependency. The parameter governing the mean gene expression after adjusting to its

sequencing depth ismodeled as a linear combination that incorporates known batch effects (i.e., plate) and the effect of the biological

variable of interest (i.e., each microbiome):

Host gene expression � ExperimentPlate + Microbiome effects:

or, in mathematical terms:

Ynj =
X

s

bS
jsMns +

X
p

bP
jpPnp

Where Ynj represents the internal DEseq parameter for mean gene expression for gene j and experiment n, Mnsis the treatment in-

dicator (control or microbiome for species s), and the bMjs parameter is the microbiome effect for each species. To model plate as

a known batch effect we use Pnp and bPjp for the plate indicator variable and its effect on gene expression.
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For four hominid microbiomes, 24 = 16 effect configurations are possible (for each species combination of which parameters bMjs =

0), andwe ran a likelihood test for each configuration Li: a gene can respond to a single primatemicrobiome (chimp, gorilla, human, or

orangutan), a gene can respond to two of the four primate microbiomes (chimp-gorilla, chimp-human, chimp-orangutan, gorilla-hu-

man, gorilla-orangutan, human-orangutan), a gene can respond to three of the four primate microbiomes (chimp-gorilla-human,

chimp-human-orangutan, chimp-gorilla-orangutan, or gorilla-human-orangutan), a gene can respond to all four primate micro-

biomes, or a gene can show no response to any of the four primate microbiomes. The no-response case is considered the base

case, or null model for all the likelihood ratio tests performed.

To identify genes that respond to microbiomes from a specific primate species and to detect the total number of differentially ex-

pressed genes that respond to each of the fifteen possible non null combinations of primatemicrobiomeswe ran a likelihood ratio test

against the base model, which assumes that the host gene shows no response:

Host gene expression � Experiment Plate

and all the coefficients are zero. After determining across all genes and configurations which were statistically significant at FDR <

10%. We used the likelihood statistics Lji for each gene j and configuration i to calculate the most probable configuration PðHji

��DÞ =
Lji
SiLji

.

Simplified models for pairwise comparisons of primate microbiomes
We performed an additional analysis to determine which genes are differentially expressed between each of the pairwise combina-

tions of hominids. We ran the following DESeq2 model:

Gene Expression � Experiment Plate + Species

Where Species is a vector indicating which hominid species themicrobiome sample originated from.We filtered the RNA-seq counts

so that only genes that are present in at least 3 individuals with count > 0 are considered in themodel. We ran contrasts in DESeq2 for

all six of the pairwise comparisons between hominids: Chimpanzee-Gorilla, Chimpanzee-Human, Chimpanzee-Orangutan, Gorilla-

Human, Gorilla-Orangutan, and Human-Orangutan (Figure S8; Table S12).

Enrichment analysis
Enrichment analysis was performed using Ingenuity Pathway Analysis (IPA, QIAGEN Inc., https://digitalinsights.qiagen.com/

products/ingenuity-pathway-analysis). We analyzed genes that show a response to microbiomes from a specific primate species.

Here, we define those genes as genes that are upregulated or downregulated in response to a specific primate host species, or

that show no response to microbiomes from that primate species and show a response to the other three primate host species.

For example, genes that show a response only to human microbiomes will be upregulated or downregulated in response to human

microbiomes, or show no response to human microbiomes and a response to chimpanzee, gorilla, and orangutan microbiomes.

Genes that show a response to three species but not the fourth are also showing a species specific response to the fourth primate

species.

We further validated these results using the R package ‘ClusterProfiler’ for enrichment analysis using all detected genes present in

at least one sample as the background set (ClusterProfiler v3.2.14) (Figure 3C) (Yu et al., 2012). We used ENRICHR for enrichment

analysis of the high and low-divergence genes and extracted the top ten response categories from the GO Biological, GOMolecular,

KEGG, and Reactome databases) (Figure S3) (Kuleshov et al., 2016; Chen et al., 2013).

To identify enrichment of high-divergence genes among genes that were previously found to be associated with complex human

disease and traits, we used data from the GWAS catalog (Buniello et al., 2019). Since each GWAS has a different distribution of p

values and significance cutoffs, we chose to use a set of �log10(p value) cutoffs in the range of 8-50 (plotted along the x axis in Fig-

ure 3D). For a given trait, we identified the overlap between the genes significantly associated with the disease at each cutoff and

high-divergence genes, and calculated a fold enrichment (plotted along the y axis in Figure 3D), defined as the ratio of observed/ex-

pected overlap between the two gene sets. We used a Fisher’s Exact Test to calculate a p value for each cutoff, and traits for which

this value was significant after multiple test correction (FDR = 0.1) were marked with a colored line in Figure 3D.

K-means clustering was performed using the ‘kmeans’ function in base R (version 3.3.3) on the cluster of microbes P. copri,Meth-

anobrevibacter and P. succinatutens for the genes in Figure 4A. Enrichment analysis was performed using ENRICHR on the two

clusters of genes. A k-means clustering analysis was also performed on the full set of microbial pathway-host gene correlations

in Figure 4B to produce three clusters of genes.

Log fold change of genes by primate species
To calculate the fold changes for each gene for each of the four primate species, we used a similar DESeq2 model to the one

described above:

Gene expression � ExperimentPlate + Species

or, in mathematical terms:
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Ynj =
X

s

bS
jsMns +

X
p

bP
jpPnp

Here, Species is a vector indicating which primate species themicrobiome sample originated from, and ExperimentPlate controls for

the batch effect as before, but we just test the marginal effect of each species-specific parameter bSjs being not different than the un-

treated control bCj . We use the contrast argument in DESeq2 to extract comparisons of each primate species against the control.

Thus, this resulted in log fold change calculations for each gene as it responds to each of the four primate species’ microbiomes.

These values are available in Table S13.

Divergence scores for differentially expressed, conserved genes
Using DESeq2, we identified genes that responded tomicrobiome treatment.We used the following hemodel to determine whether a

gene responds to treatment:

Gene expression � ExperimentPlate + Treatment

Where ExperimentPlate controls for the batch effect of the experiment, and Treatment is a binary vector indicating whether the co-

lonocytes are treated with a microbiome or act as a control for the experiment. Mathematically:

Ynj = m+ bT
j Tn +

X
p

bP
jpPnp

Where Ynj represents the internal DEseq mean gene expression parameter for gene j and experiment n as before, Tnis the treatment

indicator (control = 0 or microbiome = 1), and the bTj parameter is the microbiome effect. Plate effects are modeled as before. To

model plate as a known batch effect we used Pnp and bPjp for the plate indicator variable and its effect on gene expression.

Log fold changes for each genewere calculated as described above, and then used to calculate a divergencemetric for each gene.

We used a similar divergence calculation as described in Hagai et al. (2018). Namely, for the genes identified as responding to treat-

ment with microbiomes, we used the log fold changes for each species in the following equation:

Divergence = log2

�
1

6
Si;jðlogFC primatei -- logFC primatejÞ2

�

Following Hagai et al. (2018), the top 25% of genes were assigned a ‘‘high-divergence’’ status, and the lowest 25% of genes were

assigned a ‘‘low-divergence’’ status. These genes were used in the enrichment analyses described below.

The rest of the genes are considered ‘‘medium divergence’’ genes. These genes are used in the enrichment analysis as a back-

ground set (Figures 3A and 3C).

Pairwise correlations between host genes and microbial species and pathways
Using the microbial species abundances calculated from the metagenomic shotgun sequencing, we ran correlation analysis be-

tween genes that are differentially expressed with respect to treatment with microbiota and abundances of microbial species.

Within DESeq2 (DESeq2 version 1.14.1), RNA-seq counts were further filtered such that each gene had to be present at least

twenty times leaving 15,855 tested genes (Love et al., 2014) Metaphlan2 reports microbial species as a proportion of the total

microbial community per sample. Microbial species were filtered such that only microbial species present in at least half of the

samples and that reached a total summed relative abundance of 9% were included in the analysis, leaving 36 microbial species.

We applied a center log-ratio transformation to the filtered microbial species abundance data. Microbial pathways were filtered

such that the total of each pathway had to be greater than a summed threshold of 8000 reads per kilobase (RPK), leaving 95 mi-

crobial pathways to be included in the analysis. Microbial pathways were normalized using the centered log ratio transformation in

a similar manner to the microbial species.

Using DESeq2, we identified which microbial species or pathways are associated with differentially expressed genes using the

following model:

Gene Expression � ExperimentPlate + Treatment + Microbial feature abundance

Mathematically:

Ynj = m+
X
p

bP
jpPnp + bT

j Tn + b
AðfÞ
j Afn

Where Ynj represents the internal DEseq parameter for gene expression for gene j and experiment n as before, Tnis the treatment

indicator (control = 0 or microbiome = 1), and the bTj parameter is the microbiome effect. Plate effects are modeled as before. The

parameter b
AðfÞ
j Afn is used to model the effect of the microbiome feature (i.e., microbial species or pathway) f on gene expression.

We statistically test effect b
AðfÞ
j s0in a separate DESeq model run for each feature f. We used an FDR correction on the combined
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results from all models. The microbial species abundance is a continuous numeric value that represents that center log ratio trans-

formed relative abundance of the microbial feature f Afn for each sample n.

TWAS analysis
To directly investigate whether discovered effects on gene expression may contribute to complex traits, we considered PTWAS

gene-trait associations for 114 traits from Zhang et al. (2020). PTWAS utilizes probabilistic eQTL annotations derived from multi-

variant Bayesian fine-mapping analysis of eQTL data across 49 tissues from GTEx v8 to detect associations between gene

expression levels and complex trait risk. Using the host genes that were highly correlated with a microbial species and fell into

the high-divergence category (FDR < 0.05), we overlapped the significant results with genes causally implicated in complex traits

across all tissues by Zhang et al. (2020) (PTWAS scan, 5% FDR). We repeated the same analysis with the host genes that were highly

correlated with a microbial pathway (FDR < 0.01) and fell into the high-divergence category.

Cell Reports 37, 110057, November 23, 2021 e7

Resource
ll

OPEN ACCESS


	Interspecies variation in hominid gut microbiota controls host gene regulation
	Recommended Citation
	Authors

	Interspecies variation in hominid gut microbiota controls host gene regulation
	Introduction
	Results
	Discussion
	Limitations of study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Sample acquisition and live microbiota extraction
	Colonic Epithelial Cell Line and Growth Conditions

	Method details
	Colonocyte with hominid-derived microbiota treatment experiment
	RNA-seq experiment and data processing
	16S rRNA sequencing
	Metagenomic shotgun sequencing

	Quantification and statistical analysis
	Characterizing microbiota
	Principal Coordinate Analysis of Samples
	Comparison of microbiome composition between captive and wild gorillas and chimpanzees
	Species-specific differential expression analysis
	Simplified models for pairwise comparisons of primate microbiomes
	Enrichment analysis
	Log fold change of genes by primate species
	Divergence scores for differentially expressed, conserved genes
	Pairwise correlations between host genes and microbial species and pathways
	TWAS analysis




